mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
코드 변경 내용: digits.py, iris.py, mnist.py, bean.py
Keras 모듈을 사용하여 코드를 업데이트했습니다.
This commit is contained in:
39
bean.py
39
bean.py
@@ -1,24 +1,21 @@
|
||||
import os
|
||||
|
||||
import pandas as pd
|
||||
import tensorflow as tf
|
||||
from keras.layers import Dense
|
||||
from keras.models import Sequential
|
||||
from keras.utils import to_categorical
|
||||
from sklearn.model_selection import train_test_split
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
from tensorflow.keras.layers import Dense
|
||||
from tensorflow.keras.models import Sequential
|
||||
from tensorflow.keras.utils import to_categorical
|
||||
from ucimlrepo import fetch_ucirepo
|
||||
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
|
||||
|
||||
|
||||
def make_model():
|
||||
model = Sequential()
|
||||
model.add(Dense(12, input_dim=16, activation='relu'))
|
||||
model.add(Dense(8, activation='relu'))
|
||||
model.add(Dense(7, activation='softmax'))
|
||||
model.add(Dense(12, input_dim=16, activation="relu"))
|
||||
model.add(Dense(8, activation="relu"))
|
||||
model.add(Dense(7, activation="softmax"))
|
||||
|
||||
return model
|
||||
|
||||
@@ -34,7 +31,7 @@ def get_data():
|
||||
x = X.to_numpy()
|
||||
# object to categorical
|
||||
|
||||
x = x.astype('float32')
|
||||
x = x.astype("float32")
|
||||
|
||||
y_class = to_categorical(y)
|
||||
|
||||
@@ -49,21 +46,27 @@ def get_data():
|
||||
# y_class = to_categorical(y)
|
||||
|
||||
x_train, x_test, y_train, y_test = train_test_split(
|
||||
x, y_class, test_size=0.2, random_state=42, shuffle=True)
|
||||
x, y_class, test_size=0.2, random_state=42, shuffle=True
|
||||
)
|
||||
return x_train, x_test, y_train, y_test
|
||||
|
||||
|
||||
x_train, x_test, y_train, y_test = get_data()
|
||||
model = make_model()
|
||||
early_stopping = keras.callbacks.EarlyStopping(
|
||||
patience=10, min_delta=0.001, restore_best_weights=True)
|
||||
patience=10, min_delta=0.001, restore_best_weights=True
|
||||
)
|
||||
|
||||
|
||||
model.compile(loss='sparse_categorical_crossentropy',
|
||||
optimizer='adam', metrics=['accuracy', "mse"])
|
||||
model.compile(
|
||||
loss="sparse_categorical_crossentropy",
|
||||
optimizer="adam",
|
||||
metrics=["accuracy", "mse"],
|
||||
)
|
||||
|
||||
model.summary()
|
||||
|
||||
history = model.fit(x_train, y_train, epochs=150,
|
||||
batch_size=10, callbacks=[early_stopping])
|
||||
history = model.fit(
|
||||
x_train, y_train, epochs=150, batch_size=10, callbacks=[early_stopping]
|
||||
)
|
||||
score = model.evaluate(x_test, y_test, verbose=2)
|
||||
|
||||
Reference in New Issue
Block a user