mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
코드 변경 내용: digits.py, iris.py, mnist.py, bean.py
Keras 모듈을 사용하여 코드를 업데이트했습니다.
This commit is contained in:
@@ -1,15 +1,16 @@
|
||||
# %%
|
||||
from pso import optimizer
|
||||
from tensorflow import keras
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.datasets import mnist, fashion_mnist
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from keras.datasets import fashion_mnist
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.models import Sequential
|
||||
|
||||
from pso import optimizer
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||||
|
||||
|
||||
@@ -22,10 +23,8 @@ def get_data():
|
||||
|
||||
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
|
||||
|
||||
x_train, x_test = tf.convert_to_tensor(
|
||||
x_train), tf.convert_to_tensor(x_test)
|
||||
y_train, y_test = tf.convert_to_tensor(
|
||||
y_train), tf.convert_to_tensor(y_test)
|
||||
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
|
||||
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
|
||||
|
||||
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
|
||||
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
||||
@@ -36,8 +35,7 @@ def get_data():
|
||||
def make_model():
|
||||
model = Sequential()
|
||||
model.add(
|
||||
Conv2D(32, kernel_size=(5, 5), activation="relu",
|
||||
input_shape=(28, 28, 1))
|
||||
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
|
||||
)
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
|
||||
@@ -51,72 +49,39 @@ def make_model():
|
||||
return model
|
||||
|
||||
|
||||
def random_state():
|
||||
with open(
|
||||
"result/mnist/20230723-061626/mean_squared_error_[0.6384999752044678, 0.0723000094294548].json",
|
||||
"r",
|
||||
) as f:
|
||||
json_ = json.load(f)
|
||||
rs = (
|
||||
json_["random_state_0"],
|
||||
np.array(json_["random_state_1"]),
|
||||
json_["random_state_2"],
|
||||
json_["random_state_3"],
|
||||
json_["random_state_4"],
|
||||
)
|
||||
|
||||
return rs
|
||||
|
||||
|
||||
# %%
|
||||
model = make_model()
|
||||
x_train, y_train, x_test, y_test = get_data()
|
||||
|
||||
loss = [
|
||||
"mean_squared_error",
|
||||
"categorical_crossentropy",
|
||||
"sparse_categorical_crossentropy",
|
||||
"binary_crossentropy",
|
||||
"kullback_leibler_divergence",
|
||||
"poisson",
|
||||
"cosine_similarity",
|
||||
"log_cosh",
|
||||
"huber_loss",
|
||||
"mean_absolute_error",
|
||||
"mean_absolute_percentage_error",
|
||||
]
|
||||
|
||||
# rs = random_state()
|
||||
|
||||
pso_mnist = optimizer(
|
||||
model,
|
||||
loss="categorical_crossentropy",
|
||||
n_particles=500,
|
||||
c0=0.5,
|
||||
c1=1.0,
|
||||
w_min=0.7,
|
||||
w_max=1.2,
|
||||
negative_swarm=0.05,
|
||||
mutation_swarm=0.3,
|
||||
n_particles=200,
|
||||
c0=0.7,
|
||||
c1=0.5,
|
||||
w_min=0.1,
|
||||
w_max=0.8,
|
||||
negative_swarm=0.0,
|
||||
mutation_swarm=0.05,
|
||||
convergence_reset=True,
|
||||
convergence_reset_patience=10,
|
||||
convergence_reset_monitor="loss",
|
||||
)
|
||||
|
||||
best_score = pso_mnist.fit(
|
||||
x_train,
|
||||
y_train,
|
||||
epochs=200,
|
||||
epochs=1000,
|
||||
save_info=True,
|
||||
log=2,
|
||||
log_name="fashion_mnist",
|
||||
renewal="acc",
|
||||
renewal="loss",
|
||||
check_point=25,
|
||||
empirical_balance=False,
|
||||
dispersion=False,
|
||||
batch_size=5000,
|
||||
back_propagation=True,
|
||||
)
|
||||
|
||||
print("Done!")
|
||||
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user