mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-19 20:44:39 +09:00
코드 변경 내용: digits.py, iris.py, mnist.py, bean.py
Keras 모듈을 사용하여 코드를 업데이트했습니다.
This commit is contained in:
39
bean.py
39
bean.py
@@ -1,24 +1,21 @@
|
||||
import os
|
||||
|
||||
import pandas as pd
|
||||
import tensorflow as tf
|
||||
from keras.layers import Dense
|
||||
from keras.models import Sequential
|
||||
from keras.utils import to_categorical
|
||||
from sklearn.model_selection import train_test_split
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
from tensorflow.keras.layers import Dense
|
||||
from tensorflow.keras.models import Sequential
|
||||
from tensorflow.keras.utils import to_categorical
|
||||
from ucimlrepo import fetch_ucirepo
|
||||
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
|
||||
|
||||
|
||||
def make_model():
|
||||
model = Sequential()
|
||||
model.add(Dense(12, input_dim=16, activation='relu'))
|
||||
model.add(Dense(8, activation='relu'))
|
||||
model.add(Dense(7, activation='softmax'))
|
||||
model.add(Dense(12, input_dim=16, activation="relu"))
|
||||
model.add(Dense(8, activation="relu"))
|
||||
model.add(Dense(7, activation="softmax"))
|
||||
|
||||
return model
|
||||
|
||||
@@ -34,7 +31,7 @@ def get_data():
|
||||
x = X.to_numpy()
|
||||
# object to categorical
|
||||
|
||||
x = x.astype('float32')
|
||||
x = x.astype("float32")
|
||||
|
||||
y_class = to_categorical(y)
|
||||
|
||||
@@ -49,21 +46,27 @@ def get_data():
|
||||
# y_class = to_categorical(y)
|
||||
|
||||
x_train, x_test, y_train, y_test = train_test_split(
|
||||
x, y_class, test_size=0.2, random_state=42, shuffle=True)
|
||||
x, y_class, test_size=0.2, random_state=42, shuffle=True
|
||||
)
|
||||
return x_train, x_test, y_train, y_test
|
||||
|
||||
|
||||
x_train, x_test, y_train, y_test = get_data()
|
||||
model = make_model()
|
||||
early_stopping = keras.callbacks.EarlyStopping(
|
||||
patience=10, min_delta=0.001, restore_best_weights=True)
|
||||
patience=10, min_delta=0.001, restore_best_weights=True
|
||||
)
|
||||
|
||||
|
||||
model.compile(loss='sparse_categorical_crossentropy',
|
||||
optimizer='adam', metrics=['accuracy', "mse"])
|
||||
model.compile(
|
||||
loss="sparse_categorical_crossentropy",
|
||||
optimizer="adam",
|
||||
metrics=["accuracy", "mse"],
|
||||
)
|
||||
|
||||
model.summary()
|
||||
|
||||
history = model.fit(x_train, y_train, epochs=150,
|
||||
batch_size=10, callbacks=[early_stopping])
|
||||
history = model.fit(
|
||||
x_train, y_train, epochs=150, batch_size=10, callbacks=[early_stopping]
|
||||
)
|
||||
score = model.evaluate(x_test, y_test, verbose=2)
|
||||
|
||||
10
digits.py
10
digits.py
@@ -1,15 +1,11 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
import pandas as pd
|
||||
import tensorflow as tf
|
||||
from keras.layers import Dense
|
||||
from keras.models import Sequential
|
||||
from keras.utils import to_categorical
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.model_selection import train_test_split
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
from tensorflow.keras.layers import Dense
|
||||
from tensorflow.keras.models import Sequential
|
||||
from tensorflow.keras.utils import to_categorical
|
||||
|
||||
from pso import optimizer
|
||||
|
||||
|
||||
@@ -1,15 +1,16 @@
|
||||
# %%
|
||||
from pso import optimizer
|
||||
from tensorflow import keras
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.datasets import mnist, fashion_mnist
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from keras.datasets import fashion_mnist
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.models import Sequential
|
||||
|
||||
from pso import optimizer
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||||
|
||||
|
||||
@@ -22,10 +23,8 @@ def get_data():
|
||||
|
||||
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
|
||||
|
||||
x_train, x_test = tf.convert_to_tensor(
|
||||
x_train), tf.convert_to_tensor(x_test)
|
||||
y_train, y_test = tf.convert_to_tensor(
|
||||
y_train), tf.convert_to_tensor(y_test)
|
||||
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
|
||||
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
|
||||
|
||||
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
|
||||
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
||||
@@ -36,8 +35,7 @@ def get_data():
|
||||
def make_model():
|
||||
model = Sequential()
|
||||
model.add(
|
||||
Conv2D(32, kernel_size=(5, 5), activation="relu",
|
||||
input_shape=(28, 28, 1))
|
||||
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
|
||||
)
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
|
||||
@@ -51,72 +49,39 @@ def make_model():
|
||||
return model
|
||||
|
||||
|
||||
def random_state():
|
||||
with open(
|
||||
"result/mnist/20230723-061626/mean_squared_error_[0.6384999752044678, 0.0723000094294548].json",
|
||||
"r",
|
||||
) as f:
|
||||
json_ = json.load(f)
|
||||
rs = (
|
||||
json_["random_state_0"],
|
||||
np.array(json_["random_state_1"]),
|
||||
json_["random_state_2"],
|
||||
json_["random_state_3"],
|
||||
json_["random_state_4"],
|
||||
)
|
||||
|
||||
return rs
|
||||
|
||||
|
||||
# %%
|
||||
model = make_model()
|
||||
x_train, y_train, x_test, y_test = get_data()
|
||||
|
||||
loss = [
|
||||
"mean_squared_error",
|
||||
"categorical_crossentropy",
|
||||
"sparse_categorical_crossentropy",
|
||||
"binary_crossentropy",
|
||||
"kullback_leibler_divergence",
|
||||
"poisson",
|
||||
"cosine_similarity",
|
||||
"log_cosh",
|
||||
"huber_loss",
|
||||
"mean_absolute_error",
|
||||
"mean_absolute_percentage_error",
|
||||
]
|
||||
|
||||
# rs = random_state()
|
||||
|
||||
pso_mnist = optimizer(
|
||||
model,
|
||||
loss="categorical_crossentropy",
|
||||
n_particles=500,
|
||||
c0=0.5,
|
||||
c1=1.0,
|
||||
w_min=0.7,
|
||||
w_max=1.2,
|
||||
negative_swarm=0.05,
|
||||
mutation_swarm=0.3,
|
||||
n_particles=200,
|
||||
c0=0.7,
|
||||
c1=0.5,
|
||||
w_min=0.1,
|
||||
w_max=0.8,
|
||||
negative_swarm=0.0,
|
||||
mutation_swarm=0.05,
|
||||
convergence_reset=True,
|
||||
convergence_reset_patience=10,
|
||||
convergence_reset_monitor="loss",
|
||||
)
|
||||
|
||||
best_score = pso_mnist.fit(
|
||||
x_train,
|
||||
y_train,
|
||||
epochs=200,
|
||||
epochs=1000,
|
||||
save_info=True,
|
||||
log=2,
|
||||
log_name="fashion_mnist",
|
||||
renewal="acc",
|
||||
renewal="loss",
|
||||
check_point=25,
|
||||
empirical_balance=False,
|
||||
dispersion=False,
|
||||
batch_size=5000,
|
||||
back_propagation=True,
|
||||
)
|
||||
|
||||
print("Done!")
|
||||
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
14
iris.py
14
iris.py
@@ -1,13 +1,15 @@
|
||||
from pso import optimizer
|
||||
from tensorflow.keras.models import Sequential
|
||||
from tensorflow.keras import layers
|
||||
from tensorflow import keras
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.datasets import load_iris
|
||||
import gc
|
||||
import os
|
||||
import sys
|
||||
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
from tensorflow.keras.models import Sequential
|
||||
|
||||
from pso import optimizer
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||||
|
||||
|
||||
|
||||
47
mnist.py
47
mnist.py
@@ -1,15 +1,15 @@
|
||||
# %%
|
||||
from pso import optimizer
|
||||
from tensorflow import keras
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.datasets import mnist
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
from pso import optimizer
|
||||
|
||||
import tensorflow as tf
|
||||
from keras.datasets import mnist
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.models import Sequential
|
||||
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||||
|
||||
|
||||
@@ -53,33 +53,17 @@ def make_model():
|
||||
model = make_model()
|
||||
x_train, y_train, x_test, y_test = get_data()
|
||||
|
||||
loss = [
|
||||
"mean_squared_error",
|
||||
"categorical_crossentropy",
|
||||
"sparse_categorical_crossentropy",
|
||||
"binary_crossentropy",
|
||||
"kullback_leibler_divergence",
|
||||
"poisson",
|
||||
"cosine_similarity",
|
||||
"log_cosh",
|
||||
"huber_loss",
|
||||
"mean_absolute_error",
|
||||
"mean_absolute_percentage_error",
|
||||
|
||||
]
|
||||
|
||||
# rs = random_state()
|
||||
|
||||
pso_mnist = optimizer(
|
||||
model,
|
||||
loss="categorical_crossentropy",
|
||||
n_particles=500,
|
||||
c0=0.5,
|
||||
c1=0.3,
|
||||
n_particles=200,
|
||||
c0=0.7,
|
||||
c1=0.4,
|
||||
w_min=0.1,
|
||||
w_max=0.9,
|
||||
negative_swarm=0.0,
|
||||
mutation_swarm=0.1,
|
||||
mutation_swarm=0.05,
|
||||
convergence_reset=True,
|
||||
convergence_reset_patience=10,
|
||||
convergence_reset_monitor="loss",
|
||||
@@ -89,16 +73,13 @@ pso_mnist = optimizer(
|
||||
best_score = pso_mnist.fit(
|
||||
x_train,
|
||||
y_train,
|
||||
epochs=500,
|
||||
epochs=1000,
|
||||
save_info=True,
|
||||
log=2,
|
||||
log_name="mnist",
|
||||
renewal="loss",
|
||||
check_point=25,
|
||||
empirical_balance=False,
|
||||
dispersion=False,
|
||||
batch_size=10000,
|
||||
back_propagation=False,
|
||||
batch_size=5000,
|
||||
validate_data=(x_test, y_test),
|
||||
)
|
||||
|
||||
|
||||
43
mnist_tf.py
43
mnist_tf.py
@@ -2,6 +2,8 @@ from keras.models import Sequential
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.datasets import mnist
|
||||
from keras.utils import to_categorical
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
# from tensorflow.data.Dataset import from_tensor_slices
|
||||
import tensorflow as tf
|
||||
import os
|
||||
@@ -31,14 +33,6 @@ def get_data():
|
||||
|
||||
return x_train, y_train, x_test, y_test
|
||||
|
||||
|
||||
def get_data_test():
|
||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
x_test = x_test.reshape((10000, 28, 28, 1))
|
||||
|
||||
return x_test, y_test
|
||||
|
||||
|
||||
class _batch_generator_:
|
||||
def __init__(self, x, y, batch_size: int = None):
|
||||
self.index = 0
|
||||
@@ -77,8 +71,9 @@ class _batch_generator_:
|
||||
|
||||
def __getBatchSlice(self, batch_size):
|
||||
return list(
|
||||
tf.data.Dataset.from_tensor_slices(
|
||||
(self.x, self.y)).shuffle(len(self.x)).batch(batch_size)
|
||||
tf.data.Dataset.from_tensor_slices((self.x, self.y))
|
||||
.shuffle(len(self.x))
|
||||
.batch(batch_size)
|
||||
)
|
||||
|
||||
def getDataset(self):
|
||||
@@ -88,17 +83,18 @@ class _batch_generator_:
|
||||
def make_model():
|
||||
model = Sequential()
|
||||
model.add(
|
||||
Conv2D(32, kernel_size=(5, 5), activation="relu",
|
||||
input_shape=(28, 28, 1))
|
||||
Conv2D(64, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
|
||||
)
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(Dropout(0.5))
|
||||
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
|
||||
model.add(Conv2D(128, kernel_size=(3, 3), activation="relu"))
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(Flatten())
|
||||
model.add(Dropout(0.5))
|
||||
model.add(Dense(256, activation="relu"))
|
||||
model.add(Dense(128, activation="relu"))
|
||||
model.add(Dense(2048, activation="relu"))
|
||||
model.add(Dropout(0.8))
|
||||
model.add(Dense(1024, activation="relu"))
|
||||
model.add(Dropout(0.8))
|
||||
model.add(Dense(10, activation="softmax"))
|
||||
|
||||
return model
|
||||
@@ -112,18 +108,21 @@ y_test = tf.one_hot(y_test, 10)
|
||||
batch = 64
|
||||
dataset = _batch_generator_(x_train, y_train, batch)
|
||||
|
||||
model.compile(optimizer="adam", loss="categorical_crossentropy",
|
||||
metrics=["accuracy", "mse", "mae"])
|
||||
model.compile(
|
||||
optimizer="adam",
|
||||
loss="categorical_crossentropy",
|
||||
metrics=["accuracy", "mse"],
|
||||
)
|
||||
|
||||
count = 0
|
||||
print(f"batch size : {batch}")
|
||||
print("iter " + str(dataset.getMaxIndex()))
|
||||
print("Training model...")
|
||||
while count < dataset.getMaxIndex():
|
||||
x_batch, y_batch = dataset.next()
|
||||
count += 1
|
||||
print(f"iter {count}/{dataset.getMaxIndex()}")
|
||||
model.fit(x_batch, y_batch, epochs=1, batch_size=batch, verbose=1)
|
||||
# while count < dataset.getMaxIndex():
|
||||
# x_batch, y_batch = dataset.next()
|
||||
# count += 1
|
||||
# print(f"iter {count}/{dataset.getMaxIndex()}")
|
||||
model.fit(x_train, y_train, epochs=1000, batch_size=batch, verbose=1)
|
||||
|
||||
print(count)
|
||||
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import atexit
|
||||
import gc
|
||||
import json
|
||||
import os
|
||||
@@ -8,10 +9,10 @@ from datetime import datetime
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from sklearn.model_selection import train_test_split
|
||||
from tensorboard.plugins.hparams import api as hp
|
||||
from tensorflow import keras
|
||||
from tqdm.auto import tqdm
|
||||
import atexit
|
||||
|
||||
from .particle import Particle
|
||||
|
||||
@@ -46,7 +47,7 @@ class Optimizer:
|
||||
n_particles: int = None,
|
||||
c0: float = 0.5,
|
||||
c1: float = 0.3,
|
||||
w_min: float = 0.2,
|
||||
w_min: float = 0.1,
|
||||
w_max: float = 0.9,
|
||||
negative_swarm: float = 0,
|
||||
mutation_swarm: float = 0,
|
||||
@@ -56,7 +57,7 @@ class Optimizer:
|
||||
convergence_reset: bool = False,
|
||||
convergence_reset_patience: int = 10,
|
||||
convergence_reset_min_delta: float = 0.0001,
|
||||
convergence_reset_monitor: str = "mse",
|
||||
convergence_reset_monitor: str = "loss",
|
||||
):
|
||||
"""
|
||||
particle swarm optimization
|
||||
@@ -284,10 +285,10 @@ class Optimizer:
|
||||
|
||||
def next(self):
|
||||
self.index += 1
|
||||
if self.index >= self.max_index:
|
||||
if self.index > self.max_index:
|
||||
self.index = 0
|
||||
self.__getBatchSlice(self.batch_size)
|
||||
return self.dataset[self.index][0], self.dataset[self.index][1]
|
||||
return self.dataset[self.index - 1][0], self.dataset[self.index - 1][1]
|
||||
|
||||
def getMaxIndex(self):
|
||||
return self.max_index
|
||||
@@ -306,13 +307,12 @@ class Optimizer:
|
||||
batch_size = len(self.x) // 10
|
||||
elif batch_size > len(self.x):
|
||||
batch_size = len(self.x)
|
||||
|
||||
self.batch_size = batch_size
|
||||
|
||||
print(f"batch size : {self.batch_size}")
|
||||
self.dataset = self.__getBatchSlice(self.batch_size)
|
||||
self.max_index = len(self.dataset)
|
||||
if batch_size % len(self.x) != 0:
|
||||
self.max_index -= 1
|
||||
|
||||
def __getBatchSlice(self, batch_size):
|
||||
return list(
|
||||
@@ -331,14 +331,16 @@ class Optimizer:
|
||||
epochs: int = 1,
|
||||
log: int = 0,
|
||||
log_name: str = None,
|
||||
save_info: bool = False,
|
||||
renewal: str = "mse",
|
||||
empirical_balance: bool = False,
|
||||
dispersion: bool = False,
|
||||
save_info: bool = None,
|
||||
renewal: str = None,
|
||||
empirical_balance: bool = None,
|
||||
dispersion: bool = None,
|
||||
check_point: int = None,
|
||||
batch_size: int = None,
|
||||
validate_data: tuple = None,
|
||||
validation_split: float = None,
|
||||
back_propagation: bool = False,
|
||||
weight_reduction: int = None,
|
||||
):
|
||||
"""
|
||||
# Args:
|
||||
@@ -355,12 +357,16 @@ class Optimizer:
|
||||
batch_size : int - batch size default : None => len(x) // 10
|
||||
batch_size > len(x) : auto max batch size
|
||||
validate_data : tuple - (x, y) default : None => (x, y)
|
||||
back_propagation : bool - True : back propagation, False : not back propagation
|
||||
back_propagation : bool - True : back propagation, False : not back propagation default : False
|
||||
weight_reduction : int - 가중치 감소 초기화 주기 default : None => epochs
|
||||
"""
|
||||
try:
|
||||
if x.shape[0] != y.shape[0]:
|
||||
raise ValueError("x, y shape error")
|
||||
|
||||
if save_info is None:
|
||||
save_info = False
|
||||
|
||||
if log not in [0, 1, 2]:
|
||||
raise ValueError(
|
||||
"""log not in [0, 1, 2]
|
||||
@@ -370,9 +376,18 @@ class Optimizer:
|
||||
"""
|
||||
)
|
||||
|
||||
if renewal is None:
|
||||
renewal = "loss"
|
||||
|
||||
if renewal not in ["acc", "loss", "mse"]:
|
||||
raise ValueError("renewal not in ['acc', 'loss', 'mse']")
|
||||
|
||||
if empirical_balance is None:
|
||||
empirical_balance = False
|
||||
|
||||
if dispersion is None:
|
||||
dispersion = False
|
||||
|
||||
if validate_data is not None:
|
||||
if validate_data[0].shape[0] != validate_data[1].shape[0]:
|
||||
raise ValueError("validate_data shape error")
|
||||
@@ -380,12 +395,23 @@ class Optimizer:
|
||||
if validate_data is None:
|
||||
validate_data = (x, y)
|
||||
|
||||
if validation_split is not None:
|
||||
if validation_split < 0 or validation_split > 1:
|
||||
raise ValueError("validation_split not in [0, 1]")
|
||||
|
||||
x, validate_data[0], y, validate_data[1] = train_test_split(
|
||||
x, y, test_size=validation_split, shuffle=True
|
||||
)
|
||||
|
||||
if batch_size is not None and batch_size < 1:
|
||||
raise ValueError("batch_size < 1")
|
||||
|
||||
if batch_size is None or batch_size > len(x):
|
||||
batch_size = len(x)
|
||||
|
||||
if weight_reduction == None:
|
||||
weight_reduction = epochs
|
||||
|
||||
except ValueError as ve:
|
||||
sys.exit(ve)
|
||||
except Exception as e:
|
||||
@@ -430,6 +456,9 @@ class Optimizer:
|
||||
except Exception as e:
|
||||
sys.exit(e)
|
||||
|
||||
try:
|
||||
dataset = self.batch_generator(x, y, batch_size=batch_size)
|
||||
|
||||
if back_propagation:
|
||||
model_ = keras.models.model_from_json(self.model.to_json())
|
||||
model_.compile(
|
||||
@@ -446,18 +475,20 @@ class Optimizer:
|
||||
|
||||
del model_
|
||||
|
||||
dataset = self.batch_generator(x, y, batch_size=batch_size)
|
||||
|
||||
else:
|
||||
for i in tqdm(
|
||||
range(len(self.particles)),
|
||||
desc="best score init",
|
||||
ascii=True,
|
||||
leave=True,
|
||||
leave=False,
|
||||
):
|
||||
score = self.particles[i].get_score(x, y, self.renewal)
|
||||
score = self.particles[i].get_score(
|
||||
validate_data[0], validate_data[1], self.renewal
|
||||
)
|
||||
self.particles[i].check_global_best(self.renewal)
|
||||
|
||||
try:
|
||||
print("best score init complete" + str(Particle.g_best_score))
|
||||
|
||||
epoch_sum = 0
|
||||
epochs_pbar = tqdm(
|
||||
range(epochs),
|
||||
@@ -486,7 +517,12 @@ class Optimizer:
|
||||
)
|
||||
|
||||
# w = self.w_max - (self.w_max - self.w_min) * epoch / epochs
|
||||
w = self.w_max - (self.w_max - self.w_min) * (epoch % 100) / 100
|
||||
w = (
|
||||
self.w_max
|
||||
- (self.w_max - self.w_min)
|
||||
* (epoch % weight_reduction)
|
||||
/ weight_reduction
|
||||
)
|
||||
for i in part_pbar:
|
||||
part_pbar.set_description(
|
||||
f"loss: {min_loss:.4f} acc: {max_acc:.4f} mse: {min_mse:.4f}"
|
||||
|
||||
Reference in New Issue
Block a user