mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
23-07-08
mse -> sparse_categorical_crossentropy 로 수정 ( BP 에서 mse 로는 학습이 되지 않음 )
This commit is contained in:
9
mnist.py
9
mnist.py
@@ -50,11 +50,12 @@ def make_model():
|
||||
|
||||
# %%
|
||||
model = make_model()
|
||||
x_test, y_test = get_data_test()
|
||||
x_train, y_train, x_test, y_test = get_data()
|
||||
|
||||
loss = [
|
||||
"mse",
|
||||
"categorical_crossentropy",
|
||||
"sparse_categorical_crossentropy",
|
||||
"binary_crossentropy",
|
||||
"kullback_leibler_divergence",
|
||||
"poisson",
|
||||
@@ -69,7 +70,7 @@ if __name__ == "__main__":
|
||||
try:
|
||||
pso_mnist = Optimizer(
|
||||
model,
|
||||
loss=loss[0],
|
||||
loss=loss[2],
|
||||
n_particles=100,
|
||||
c0=0.35,
|
||||
c1=0.8,
|
||||
@@ -80,8 +81,8 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
best_score = pso_mnist.fit(
|
||||
x_test,
|
||||
y_test,
|
||||
x_train,
|
||||
y_train,
|
||||
epochs=200,
|
||||
save=True,
|
||||
save_path="./result/mnist",
|
||||
|
||||
79
mnist_tf.py
Normal file
79
mnist_tf.py
Normal file
@@ -0,0 +1,79 @@
|
||||
# %%
|
||||
import os
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||||
import tensorflow as tf
|
||||
|
||||
gpus = tf.config.experimental.list_physical_devices("GPU")
|
||||
if gpus:
|
||||
try:
|
||||
tf.config.experimental.set_memory_growth(gpus[0], True)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
finally:
|
||||
del gpus
|
||||
|
||||
from keras.datasets import mnist
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.models import Sequential
|
||||
|
||||
from pso import Optimizer
|
||||
|
||||
|
||||
def get_data():
|
||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
|
||||
x_train, x_test = x_train / 255.0, x_test / 255.0
|
||||
x_train = x_train.reshape((60000, 28, 28, 1))
|
||||
x_test = x_test.reshape((10000, 28, 28, 1))
|
||||
|
||||
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
|
||||
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
||||
|
||||
return x_train, y_train, x_test, y_test
|
||||
|
||||
|
||||
def get_data_test():
|
||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
x_test = x_test.reshape((10000, 28, 28, 1))
|
||||
|
||||
return x_test, y_test
|
||||
|
||||
|
||||
def make_model():
|
||||
model = Sequential()
|
||||
model.add(
|
||||
Conv2D(
|
||||
32,
|
||||
kernel_size=(5, 5),
|
||||
strides=(1, 1),
|
||||
padding="same",
|
||||
activation="relu",
|
||||
input_shape=(28, 28, 1),
|
||||
)
|
||||
)
|
||||
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
|
||||
model.add(Conv2D(64, kernel_size=(2, 2), activation="relu", padding="same"))
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(Dropout(0.25))
|
||||
model.add(Flatten())
|
||||
model.add(Dense(1000, activation="relu"))
|
||||
model.add(Dense(10, activation="softmax"))
|
||||
|
||||
return model
|
||||
|
||||
|
||||
model = make_model()
|
||||
x_train, y_train, x_test, y_test = get_data()
|
||||
|
||||
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
|
||||
|
||||
print("Training model...")
|
||||
model.fit(x_train, y_train, epochs=1000, batch_size=128, verbose=1)
|
||||
|
||||
print("Evaluating model...")
|
||||
model.evaluate(x_test, y_test, verbose=1)
|
||||
|
||||
weights = model.get_weights()
|
||||
|
||||
# %%
|
||||
Reference in New Issue
Block a user