one hot 인코딩 적용
This commit is contained in:
jung-geun
2023-07-11 02:10:14 +09:00
parent 0dd6cc4cab
commit 026223bd19
4 changed files with 16 additions and 7 deletions

View File

@@ -5,6 +5,7 @@ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import gc import gc
import tensorflow as tf
from tensorflow import keras from tensorflow import keras
from keras.datasets import mnist from keras.datasets import mnist
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
@@ -22,6 +23,8 @@ def get_data():
x_train = x_train.reshape((60000, 28, 28, 1)) x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1)) x_test = x_test.reshape((10000, 28, 28, 1))
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}") print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}") print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
@@ -33,6 +36,8 @@ def get_data_test():
x_test = x_test / 255.0 x_test = x_test / 255.0
x_test = x_test.reshape((10000, 28, 28, 1)) x_test = x_test.reshape((10000, 28, 28, 1))
y_test = tf.one_hot(y_test, 10)
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}") print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_test, y_test return x_test, y_test
@@ -60,6 +65,7 @@ x_train, y_train = get_data_test()
loss = [ loss = [
"mse", "mse",
"categorical_crossentropy",
"sparse_categorical_crossentropy", "sparse_categorical_crossentropy",
"binary_crossentropy", "binary_crossentropy",
"kullback_leibler_divergence", "kullback_leibler_divergence",
@@ -84,7 +90,7 @@ if __name__ == "__main__":
c1=0.4, c1=0.4,
w_min=0.3, w_min=0.3,
w_max=0.7, w_max=0.7,
negative_swarm=0.2, negative_swarm=0.1,
mutation_swarm=0.2, mutation_swarm=0.2,
) )

View File

@@ -59,8 +59,11 @@ def make_model():
model = make_model() model = make_model()
x_train, y_train, x_test, y_test = get_data() x_train, y_train, x_test, y_test = get_data()
y_train = tf.one_hot(y_train, 10)
y_test = tf.one_hot(y_test, 10)
model.compile( model.compile(
optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
) )
# model.compile(optimizer="adam", loss="mse", metrics=["accuracy"]) # model.compile(optimizer="adam", loss="mse", metrics=["accuracy"])

File diff suppressed because one or more lines are too long

Binary file not shown.