mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
23-07-11
one hot 인코딩 적용
This commit is contained in:
8
mnist.py
8
mnist.py
@@ -5,6 +5,7 @@ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
|||||||
|
|
||||||
import gc
|
import gc
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
from tensorflow import keras
|
from tensorflow import keras
|
||||||
from keras.datasets import mnist
|
from keras.datasets import mnist
|
||||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||||
@@ -22,6 +23,8 @@ def get_data():
|
|||||||
x_train = x_train.reshape((60000, 28, 28, 1))
|
x_train = x_train.reshape((60000, 28, 28, 1))
|
||||||
x_test = x_test.reshape((10000, 28, 28, 1))
|
x_test = x_test.reshape((10000, 28, 28, 1))
|
||||||
|
|
||||||
|
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
|
||||||
|
|
||||||
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
|
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
|
||||||
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
||||||
|
|
||||||
@@ -33,6 +36,8 @@ def get_data_test():
|
|||||||
x_test = x_test / 255.0
|
x_test = x_test / 255.0
|
||||||
x_test = x_test.reshape((10000, 28, 28, 1))
|
x_test = x_test.reshape((10000, 28, 28, 1))
|
||||||
|
|
||||||
|
y_test = tf.one_hot(y_test, 10)
|
||||||
|
|
||||||
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
||||||
|
|
||||||
return x_test, y_test
|
return x_test, y_test
|
||||||
@@ -60,6 +65,7 @@ x_train, y_train = get_data_test()
|
|||||||
|
|
||||||
loss = [
|
loss = [
|
||||||
"mse",
|
"mse",
|
||||||
|
"categorical_crossentropy",
|
||||||
"sparse_categorical_crossentropy",
|
"sparse_categorical_crossentropy",
|
||||||
"binary_crossentropy",
|
"binary_crossentropy",
|
||||||
"kullback_leibler_divergence",
|
"kullback_leibler_divergence",
|
||||||
@@ -84,7 +90,7 @@ if __name__ == "__main__":
|
|||||||
c1=0.4,
|
c1=0.4,
|
||||||
w_min=0.3,
|
w_min=0.3,
|
||||||
w_max=0.7,
|
w_max=0.7,
|
||||||
negative_swarm=0.2,
|
negative_swarm=0.1,
|
||||||
mutation_swarm=0.2,
|
mutation_swarm=0.2,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
@@ -59,8 +59,11 @@ def make_model():
|
|||||||
model = make_model()
|
model = make_model()
|
||||||
x_train, y_train, x_test, y_test = get_data()
|
x_train, y_train, x_test, y_test = get_data()
|
||||||
|
|
||||||
|
y_train = tf.one_hot(y_train, 10)
|
||||||
|
y_test = tf.one_hot(y_test, 10)
|
||||||
|
|
||||||
model.compile(
|
model.compile(
|
||||||
optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
|
optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
|
||||||
)
|
)
|
||||||
|
|
||||||
# model.compile(optimizer="adam", loss="mse", metrics=["accuracy"])
|
# model.compile(optimizer="adam", loss="mse", metrics=["accuracy"])
|
||||||
|
|||||||
BIN
weights.h5
BIN
weights.h5
Binary file not shown.
Reference in New Issue
Block a user