fashion mnist 추가
setup 조정
This commit is contained in:
jung-geun
2023-10-18 14:51:22 +09:00
parent dfc0df7d48
commit 082a32b5ef
3 changed files with 236 additions and 2 deletions

138
fashion_mnist.py Normal file
View File

@@ -0,0 +1,138 @@
# %%
from pso import optimizer
from tensorflow import keras
from keras.models import Sequential
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.datasets import mnist, fashion_mnist
import tensorflow as tf
import numpy as np
import json
import os
import sys
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
def get_data():
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
x_train, x_test = tf.convert_to_tensor(
x_train), tf.convert_to_tensor(x_test)
y_train, y_test = tf.convert_to_tensor(
y_train), tf.convert_to_tensor(y_test)
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def get_data_test():
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_test = x_test / 255.0
x_test = x_test.reshape((10000, 28, 28, 1))
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
x_train, x_test = tf.convert_to_tensor(
x_train), tf.convert_to_tensor(x_test)
y_train, y_test = tf.convert_to_tensor(
y_train), tf.convert_to_tensor(y_test)
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_test, y_test
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="sigmoid",
input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation="sigmoid"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation="sigmoid"))
model.add(Dense(10, activation="softmax"))
return model
def random_state():
with open(
"result/mnist/20230723-061626/mean_squared_error_[0.6384999752044678, 0.0723000094294548].json",
"r",
) as f:
json_ = json.load(f)
rs = (
json_["random_state_0"],
np.array(json_["random_state_1"]),
json_["random_state_2"],
json_["random_state_3"],
json_["random_state_4"],
)
return rs
# %%
model = make_model()
x_train, y_train, x_test, y_test = get_data()
loss = [
"mean_squared_error",
"categorical_crossentropy",
"sparse_categorical_crossentropy",
"binary_crossentropy",
"kullback_leibler_divergence",
"poisson",
"cosine_similarity",
"log_cosh",
"huber_loss",
"mean_absolute_error",
"mean_absolute_percentage_error",
]
# rs = random_state()
pso_mnist = optimizer(
model,
loss="mean_squared_error",
n_particles=500,
c0=0.2,
c1=0.4,
w_min=0.3,
w_max=0.5,
negative_swarm=0.05,
mutation_swarm=0.3,
particle_min=-4,
particle_max=4,
)
best_score = pso_mnist.fit(
x_train,
y_train,
epochs=200,
save_info=True,
log=2,
log_name="fashion_mnist",
save_path="./logs/fashion_mnist",
renewal="acc",
check_point=25,
empirical_balance=False,
dispersion=False,
batch_size=32,
)
print("Done!")
sys.exit(0)

96
fashion_mnist_tf.py Normal file
View File

@@ -0,0 +1,96 @@
from keras.models import Sequential
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.datasets import mnist, fashion_mnist
from keras.utils import to_categorical
# from tensorflow.data.Dataset import from_tensor_slices
import tensorflow as tf
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
try:
tf.config.experimental.set_memory_growth(gpus[0], True)
except Exception as e:
print(e)
finally:
del gpus
def get_data():
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def get_data_test():
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_test = x_test.reshape((10000, 28, 28, 1))
return x_test, y_test
class _batch_generator:
def __init__(self, x, y, batch_size: int = 32):
self.batch_size = batch_size
self.index = 0
dataset = tf.data.Dataset.from_tensor_slices((x, y))
self.dataset = list(dataset.batch(batch_size))
self.max_index = len(dataset) // batch_size
def next(self):
self.index += 1
if self.index >= self.max_index:
self.index = 0
return self.dataset[self.index][0], self.dataset[self.index][1]
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="relu",
input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
return model
model = make_model()
x_train, y_train, x_test, y_test = get_data()
y_train = tf.one_hot(y_train, 10)
y_test = tf.one_hot(y_test, 10)
dataset = _batch_generator(x_train, y_train, 32)
model.compile(optimizer="adam", loss="mse", metrics=["accuracy"])
count = 0
while count < 50:
x_batch, y_batch = dataset.next()
count += 1
print("Training model...")
model.fit(x_batch, y_batch, epochs=1, batch_size=1, verbose=1)
print(count)
print("Evaluating model...")
model.evaluate(x_test, y_test, verbose=2)
weights = model.get_weights()

View File

@@ -29,8 +29,8 @@ setup(
license="MIT",
classifiers=[
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3:: Only"
"Programming Language :: Python :: 3.7"
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",