자동 튜닝을 위한 스크립트 추가
메모리 관리를 위해 소멸자 추가
This commit is contained in:
jung-geun
2023-06-09 09:38:44 +00:00
parent e484f9f92f
commit 1662d58f05
5 changed files with 191 additions and 40 deletions

126
auto_tunning.py Normal file
View File

@@ -0,0 +1,126 @@
# %%
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.random.set_seed(777) # for reproducibility
from tensorflow import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
# from pso_tf import PSO
from pso import Optimizer
# from optimizer import Optimizer
import numpy as np
from datetime import date
from tqdm import tqdm
import gc
# print(tf.__version__)
# print(tf.config.list_physical_devices())
# print(f"Num GPUs Available: {len(tf.config.list_physical_devices('GPU'))}")
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def get_data_test():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_test = x_test.reshape((10000, 28, 28, 1))
return x_test, y_test
def make_model():
model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5),
activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
return model
# %%
model = make_model()
x_test, y_test = get_data_test()
# loss = 'binary_crossentropy'
# loss = 'categorical_crossentropy'
# loss = 'sparse_categorical_crossentropy'
# loss = 'kullback_leibler_divergence'
# loss = 'poisson'
# loss = 'cosine_similarity'
# loss = 'log_cosh'
# loss = 'huber_loss'
# loss = 'mean_absolute_error'
# loss = 'mean_absolute_percentage_error'
# loss = 'mean_squared_error'
loss = ['mse', 'categorical_crossentropy', 'binary_crossentropy', 'kullback_leibler_divergence', 'poisson', 'cosine_similarity', 'log_cosh', 'huber_loss', 'mean_absolute_error', 'mean_absolute_percentage_error']
n_particles = [50, 75, 100]
c0 = [0.25, 0.35, 0.45, 0.55]
c1 = [0.5, 0.6, 0.7, 0.8, 0.9]
w_min = [0.5, 0.6, 0.7]
w_max = [1.1, 1.2, 1.3]
negative_swarm = [0.25, 0.3, 0.5]
eb = [True, False]
dispersion = [True, False]
if __name__ == "__main__":
try:
for loss_ in loss:
for n in n_particles:
for c_0 in c0:
for c_1 in c1:
for w_m in w_min:
for w_M in w_max:
for n_s in negative_swarm:
pso_mnist = Optimizer(
model,
loss=loss_,
n_particles=n,
c0=c_0,
c1=c_1,
w_min=w_m,
w_max=w_M,
negative_swarm=n_s
)
best_score = pso_mnist.fit(
x_test,
y_test,
epochs=200,
save=True,
save_path="./result/mnist",
renewal="acc",
empirical_balance=False,
Dispersion=False,
check_point=25
)
del pso_mnist
gc.collect()
tf.keras.backend.clear_session()
except KeyboardInterrupt:
print("KeyboardInterrupt")
finally:
print("Finish")

View File

@@ -62,30 +62,23 @@ def make_model():
# %% # %%
model = make_model() model = make_model()
x_test, y_test = get_data_test() x_test, y_test = get_data_test()
# loss = 'binary_crossentropy'
# loss = 'categorical_crossentropy'
# loss = 'sparse_categorical_crossentropy'
# loss = 'kullback_leibler_divergence'
# loss = 'poisson'
# loss = 'cosine_similarity'
# loss = 'log_cosh'
# loss = 'huber_loss'
# loss = 'mean_absolute_error'
# loss = 'mean_absolute_percentage_error'
loss = 'mean_squared_error'
pso_mnist = Optimizer( loss = ['mse', 'categorical_crossentropy', 'binary_crossentropy', 'kullback_leibler_divergence', 'poisson', 'cosine_similarity', 'log_cosh', 'huber_loss', 'mean_absolute_error', 'mean_absolute_percentage_error']
if __name__ == "__main__":
try:
pso_mnist = Optimizer(
model, model,
loss=loss, loss=loss[0],
n_particles=50, n_particles=200,
c0=0.35, c0=0.35,
c1=0.8, c1=0.8,
w_min=0.7, w_min=0.7,
w_max=1.0, w_max=1.15,
negative_swarm=0.25 negative_swarm=0.25
) )
best_score = pso_mnist.fit( best_score = pso_mnist.fit(
x_test, x_test,
y_test, y_test,
epochs=200, epochs=200,
@@ -96,5 +89,8 @@ best_score = pso_mnist.fit(
Dispersion=False, Dispersion=False,
check_point=25 check_point=25
) )
except Exception as e:
print(e)
# pso_mnist.model_save("./result/mnist") # pso_mnist.model_save("./result/mnist")
# pso_mnist.save_info("./result/mnist") # pso_mnist.save_info("./result/mnist")

File diff suppressed because one or more lines are too long

View File

@@ -56,7 +56,7 @@ class Optimizer:
self.c1 = c1 # global rate - 전역 최적값 관성 수치 self.c1 = c1 # global rate - 전역 최적값 관성 수치
self.w_min = w_min # 최소 관성 수치 self.w_min = w_min # 최소 관성 수치
self.w_max = w_max # 최대 관성 수치 self.w_max = w_max # 최대 관성 수치
self.negative_swarm = negative_swarm # 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
self.g_best_score = 0 # 최고 점수 - 시작은 0으로 초기화 self.g_best_score = 0 # 최고 점수 - 시작은 0으로 초기화
self.g_best = None # 최고 점수를 받은 가중치 self.g_best = None # 최고 점수를 받은 가중치
self.g_best_ = None # 최고 점수를 받은 가중치 - 값의 분산을 위한 변수 self.g_best_ = None # 최고 점수를 받은 가중치 - 값의 분산을 위한 변수
@@ -75,6 +75,22 @@ class Optimizer:
self.particles[i] = Particle(m, loss, negative=False) self.particles[i] = Particle(m, loss, negative=False)
gc.collect() gc.collect()
def __del__(self):
del self.model
del self.loss
del self.n_particles
del self.particles
del self.c0
del self.c1
del self.w_min
del self.w_max
del self.negative_swarm
del self.g_best_score
del self.g_best
del self.g_best_
del self.avg_score
gc.collect()
""" """
Args: Args:
weights (list) : keras model의 가중치 weights (list) : keras model의 가중치
@@ -160,6 +176,8 @@ class Optimizer:
check_point: int = None, check_point: int = None,
): ):
self.save_path = save_path self.save_path = save_path
self.empirical_balance = empirical_balance
self.Dispersion = Dispersion
self.renewal = renewal self.renewal = renewal
if renewal == "acc": if renewal == "acc":
@@ -180,7 +198,7 @@ class Optimizer:
print(e) print(e)
sys.exit(1) sys.exit(1)
for i in tqdm(range(self.n_particles), desc="Initializing Particles"): for i in tqdm(range(self.n_particles), desc="Initializing velocity"):
p = self.particles[i] p = self.particles[i]
local_score = p.get_score(x, y, renewal=renewal) local_score = p.get_score(x, y, renewal=renewal)
@@ -364,6 +382,9 @@ class Optimizer:
"w_min": self.w_min, "w_min": self.w_min,
"w_max": self.w_max, "w_max": self.w_max,
"loss_method": self.loss, "loss_method": self.loss,
"empirical_balance": self.empirical_balance,
"Dispersion": self.Dispersion,
"negative_swarm": self.negative_swarm,
"renewal": self.renewal, "renewal": self.renewal,
} }

View File

@@ -22,6 +22,15 @@ class Particle:
del init_weights del init_weights
gc.collect() gc.collect()
def __del__(self):
del self.model
del self.loss
del self.velocities
del self.negative
del self.best_score
del self.best_weights
gc.collect()
""" """
Returns: Returns:
(cupy array) : 가중치 - 1차원으로 풀어서 반환 (cupy array) : 가중치 - 1차원으로 풀어서 반환