mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
23-06-30
seed 조정 추가
This commit is contained in:
13
iris.py
13
iris.py
@@ -2,16 +2,10 @@ import os
|
|||||||
|
|
||||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||||
|
|
||||||
import tensorflow as tf
|
|
||||||
|
|
||||||
tf.random.set_seed(777) # for reproducibility
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
np.random.seed(777)
|
|
||||||
|
|
||||||
import gc
|
import gc
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
from pso import Optimizer
|
from pso import Optimizer
|
||||||
from sklearn.datasets import load_iris
|
from sklearn.datasets import load_iris
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
@@ -52,7 +46,8 @@ pso_iris = Optimizer(
|
|||||||
c1=0.8,
|
c1=0.8,
|
||||||
w_min=0.7,
|
w_min=0.7,
|
||||||
w_max=1.0,
|
w_max=1.0,
|
||||||
negative_swarm=0.25
|
negative_swarm=0,
|
||||||
|
mutation_swarm=0,
|
||||||
)
|
)
|
||||||
|
|
||||||
best_score = pso_iris.fit(
|
best_score = pso_iris.fit(
|
||||||
|
|||||||
12
mnist.py
12
mnist.py
@@ -3,17 +3,9 @@ import os
|
|||||||
|
|
||||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||||
|
|
||||||
import tensorflow as tf
|
|
||||||
|
|
||||||
tf.random.set_seed(777) # for reproducibility
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
np.random.seed(777)
|
|
||||||
|
|
||||||
import gc
|
import gc
|
||||||
from datetime import date
|
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
from keras import backend as K
|
from keras import backend as K
|
||||||
from keras.datasets import mnist
|
from keras.datasets import mnist
|
||||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||||
@@ -76,7 +68,7 @@ if __name__ == "__main__":
|
|||||||
w_min=0.6,
|
w_min=0.6,
|
||||||
w_max=0.9,
|
w_max=0.9,
|
||||||
negative_swarm=0.25,
|
negative_swarm=0.25,
|
||||||
momentun_swarm=0,
|
mutation_swarm=0,
|
||||||
)
|
)
|
||||||
|
|
||||||
best_score = pso_mnist.fit(
|
best_score = pso_mnist.fit(
|
||||||
|
|||||||
@@ -33,6 +33,8 @@ class Optimizer:
|
|||||||
w_max=1.5,
|
w_max=1.5,
|
||||||
negative_swarm: float = 0,
|
negative_swarm: float = 0,
|
||||||
mutation_swarm: float = 0,
|
mutation_swarm: float = 0,
|
||||||
|
np_seed: int = 777,
|
||||||
|
tf_seed: int = 777,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
particle swarm optimization
|
particle swarm optimization
|
||||||
@@ -48,6 +50,8 @@ class Optimizer:
|
|||||||
nefative_swarm (float): 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
|
nefative_swarm (float): 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
|
||||||
momentun_swarm (float): 관성을 추가로 사용할 파티클 비율 - 0 ~ 1 사이의 값
|
momentun_swarm (float): 관성을 추가로 사용할 파티클 비율 - 0 ~ 1 사이의 값
|
||||||
"""
|
"""
|
||||||
|
np.random.seed(np_seed)
|
||||||
|
tf.random.set_seed(tf_seed)
|
||||||
self.model = model # 모델 구조
|
self.model = model # 모델 구조
|
||||||
self.loss = loss # 손실함수
|
self.loss = loss # 손실함수
|
||||||
self.n_particles = n_particles # 파티클 개수
|
self.n_particles = n_particles # 파티클 개수
|
||||||
@@ -67,11 +71,14 @@ class Optimizer:
|
|||||||
m = keras.models.model_from_json(model.to_json())
|
m = keras.models.model_from_json(model.to_json())
|
||||||
init_weights = m.get_weights()
|
init_weights = m.get_weights()
|
||||||
w_, sh_, len_ = self._encode(init_weights)
|
w_, sh_, len_ = self._encode(init_weights)
|
||||||
w_ = np.random.rand(len(w_)) * 5 - 2.5
|
w_ = np.random.uniform(-0.5, 0.5, len(w_))
|
||||||
# w_ = np.random.uniform(-1.5, 1.5, len(w_))
|
|
||||||
m.set_weights(self._decode(w_, sh_, len_))
|
m.set_weights(self._decode(w_, sh_, len_))
|
||||||
m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
|
m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
|
||||||
self.particles[i] = Particle(m, loss, negative=True if i < negative_swarm * self.n_particles else False, mutation=True if i > self.n_particles * (1 - self.mutation_swarm) else False)
|
self.particles[i] = Particle(
|
||||||
|
m, loss,
|
||||||
|
negative=True if i < negative_swarm * self.n_particles else False,
|
||||||
|
mutation=True if i > self.n_particles * (1 - self.mutation_swarm) else False
|
||||||
|
)
|
||||||
|
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
@@ -427,7 +434,7 @@ class Optimizer:
|
|||||||
"empirical_balance": self.empirical_balance,
|
"empirical_balance": self.empirical_balance,
|
||||||
"Dispersion": self.Dispersion,
|
"Dispersion": self.Dispersion,
|
||||||
"negative_swarm": self.negative_swarm,
|
"negative_swarm": self.negative_swarm,
|
||||||
"momentun_swarm": self.momentun_swarm,
|
"mutation_swarm": self.mutation_swarm,
|
||||||
"renewal": self.renewal,
|
"renewal": self.renewal,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
168
test.ipynb
168
test.ipynb
File diff suppressed because one or more lines are too long
12
xor.py
12
xor.py
@@ -1,19 +1,15 @@
|
|||||||
# %%
|
# %%
|
||||||
import os
|
import os
|
||||||
|
|
||||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||||
|
|
||||||
import tensorflow as tf
|
|
||||||
tf.random.set_seed(777) # for reproducibility
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
np.random.seed(777)
|
import tensorflow as tf
|
||||||
|
|
||||||
# from pso_tf import PSO
|
# from pso_tf import PSO
|
||||||
from pso import Optimizer
|
from pso import Optimizer
|
||||||
|
|
||||||
from tensorflow import keras
|
from tensorflow import keras
|
||||||
from tensorflow.keras.models import Sequential
|
|
||||||
from tensorflow.keras import layers
|
from tensorflow.keras import layers
|
||||||
|
from tensorflow.keras.models import Sequential
|
||||||
|
|
||||||
print(tf.__version__)
|
print(tf.__version__)
|
||||||
print(tf.config.list_physical_devices())
|
print(tf.config.list_physical_devices())
|
||||||
@@ -40,7 +36,7 @@ x_test, y_test = get_data()
|
|||||||
loss = ['mean_squared_error', 'mean_squared_logarithmic_error', 'binary_crossentropy', 'categorical_crossentropy', 'sparse_categorical_crossentropy', 'kullback_leibler_divergence', 'poisson', 'cosine_similarity', 'log_cosh', 'huber_loss', 'mean_absolute_error', 'mean_absolute_percentage_error']
|
loss = ['mean_squared_error', 'mean_squared_logarithmic_error', 'binary_crossentropy', 'categorical_crossentropy', 'sparse_categorical_crossentropy', 'kullback_leibler_divergence', 'poisson', 'cosine_similarity', 'log_cosh', 'huber_loss', 'mean_absolute_error', 'mean_absolute_percentage_error']
|
||||||
|
|
||||||
pso_xor = Optimizer(model,
|
pso_xor = Optimizer(model,
|
||||||
loss=loss[0], n_particles=75, c0=0.35, c1=0.8, w_min=0.6, w_max=1.2, negative_swarm=0.25)
|
loss=loss[0], n_particles=75, c0=0.35, c1=0.8, w_min=0.6, w_max=1.2, negative_swarm=0.25, mutation_swarm=0.25)
|
||||||
best_score = pso_xor.fit(
|
best_score = pso_xor.fit(
|
||||||
x_test, y_test, epochs=200, save=True, save_path="./result/xor", renewal="acc", empirical_balance=False, Dispersion=False, check_point=25)
|
x_test, y_test, epochs=200, save=True, save_path="./result/xor", renewal="acc", empirical_balance=False, Dispersion=False, check_point=25)
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user