seed 조정 추가
This commit is contained in:
jung-geun
2023-06-30 22:56:25 +09:00
parent 97abf75149
commit 174d68d518
6 changed files with 154 additions and 101 deletions

13
iris.py
View File

@@ -2,16 +2,10 @@ import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.random.set_seed(777) # for reproducibility
import numpy as np
np.random.seed(777)
import gc
import numpy as np
import tensorflow as tf
from pso import Optimizer
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
@@ -52,7 +46,8 @@ pso_iris = Optimizer(
c1=0.8,
w_min=0.7,
w_max=1.0,
negative_swarm=0.25
negative_swarm=0,
mutation_swarm=0,
)
best_score = pso_iris.fit(

View File

@@ -3,17 +3,9 @@ import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.random.set_seed(777) # for reproducibility
import numpy as np
np.random.seed(777)
import gc
from datetime import date
import tensorflow as tf
from keras import backend as K
from keras.datasets import mnist
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
@@ -76,7 +68,7 @@ if __name__ == "__main__":
w_min=0.6,
w_max=0.9,
negative_swarm=0.25,
momentun_swarm=0,
mutation_swarm=0,
)
best_score = pso_mnist.fit(

File diff suppressed because one or more lines are too long

View File

@@ -33,6 +33,8 @@ class Optimizer:
w_max=1.5,
negative_swarm: float = 0,
mutation_swarm: float = 0,
np_seed: int = 777,
tf_seed: int = 777,
):
"""
particle swarm optimization
@@ -48,6 +50,8 @@ class Optimizer:
nefative_swarm (float): 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
momentun_swarm (float): 관성을 추가로 사용할 파티클 비율 - 0 ~ 1 사이의 값
"""
np.random.seed(np_seed)
tf.random.set_seed(tf_seed)
self.model = model # 모델 구조
self.loss = loss # 손실함수
self.n_particles = n_particles # 파티클 개수
@@ -67,11 +71,14 @@ class Optimizer:
m = keras.models.model_from_json(model.to_json())
init_weights = m.get_weights()
w_, sh_, len_ = self._encode(init_weights)
w_ = np.random.rand(len(w_)) * 5 - 2.5
# w_ = np.random.uniform(-1.5, 1.5, len(w_))
w_ = np.random.uniform(-0.5, 0.5, len(w_))
m.set_weights(self._decode(w_, sh_, len_))
m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
self.particles[i] = Particle(m, loss, negative=True if i < negative_swarm * self.n_particles else False, mutation=True if i > self.n_particles * (1 - self.mutation_swarm) else False)
self.particles[i] = Particle(
m, loss,
negative=True if i < negative_swarm * self.n_particles else False,
mutation=True if i > self.n_particles * (1 - self.mutation_swarm) else False
)
gc.collect()
@@ -427,7 +434,7 @@ class Optimizer:
"empirical_balance": self.empirical_balance,
"Dispersion": self.Dispersion,
"negative_swarm": self.negative_swarm,
"momentun_swarm": self.momentun_swarm,
"mutation_swarm": self.mutation_swarm,
"renewal": self.renewal,
}

File diff suppressed because one or more lines are too long

12
xor.py
View File

@@ -1,19 +1,15 @@
# %%
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.random.set_seed(777) # for reproducibility
import numpy as np
np.random.seed(777)
import tensorflow as tf
# from pso_tf import PSO
from pso import Optimizer
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
print(tf.__version__)
print(tf.config.list_physical_devices())
@@ -40,7 +36,7 @@ x_test, y_test = get_data()
loss = ['mean_squared_error', 'mean_squared_logarithmic_error', 'binary_crossentropy', 'categorical_crossentropy', 'sparse_categorical_crossentropy', 'kullback_leibler_divergence', 'poisson', 'cosine_similarity', 'log_cosh', 'huber_loss', 'mean_absolute_error', 'mean_absolute_percentage_error']
pso_xor = Optimizer(model,
loss=loss[0], n_particles=75, c0=0.35, c1=0.8, w_min=0.6, w_max=1.2, negative_swarm=0.25)
loss=loss[0], n_particles=75, c0=0.35, c1=0.8, w_min=0.6, w_max=1.2, negative_swarm=0.25, mutation_swarm=0.25)
best_score = pso_xor.fit(
x_test, y_test, epochs=200, save=True, save_path="./result/xor", renewal="acc", empirical_balance=False, Dispersion=False, check_point=25)