코드 변경 내용을 요약한 커밋 메시지입니다.

This commit is contained in:
jung-geun
2024-02-25 09:29:59 +09:00
parent cacf1fe750
commit 4d8d6e13f0
13 changed files with 5 additions and 9 deletions

87
test/fashion_mnist.py Normal file
View File

@@ -0,0 +1,87 @@
# %%
import json
import os
import sys
import numpy as np
import tensorflow as tf
from keras.datasets import fashion_mnist
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.models import Sequential
from pso import optimizer
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
def get_data():
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.25))
model.add(Dense(256, activation="relu"))
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
return model
# %%
model = make_model()
x_train, y_train, x_test, y_test = get_data()
pso_mnist = optimizer(
model,
loss="categorical_crossentropy",
n_particles=200,
c0=0.7,
c1=0.5,
w_min=0.1,
w_max=0.8,
negative_swarm=0.0,
mutation_swarm=0.05,
convergence_reset=True,
convergence_reset_patience=10,
convergence_reset_monitor="loss",
)
best_score = pso_mnist.fit(
x_train,
y_train,
epochs=1000,
save_info=True,
log=2,
log_name="fashion_mnist",
renewal="loss",
check_point=25,
batch_size=5000,
)
print("Done!")
sys.exit(0)