코드 변경 내용을 요약한 커밋 메시지입니다.

This commit is contained in:
jung-geun
2024-02-25 09:29:59 +09:00
parent cacf1fe750
commit 4d8d6e13f0
13 changed files with 5 additions and 9 deletions

132
test/mnist_tf.py Normal file
View File

@@ -0,0 +1,132 @@
from keras.models import Sequential
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.datasets import mnist
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
# from tensorflow.data.Dataset import from_tensor_slices
import tensorflow as tf
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
try:
tf.config.experimental.set_memory_growth(gpus[0], True)
except Exception as e:
print(e)
finally:
del gpus
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
class _batch_generator_:
def __init__(self, x, y, batch_size: int = None):
self.index = 0
self.x = x
self.y = y
self.setBatchSize(batch_size)
def next(self):
self.index += 1
if self.index >= self.max_index:
self.index = 0
self.__getBatchSlice(self.batch_size)
return self.dataset[self.index][0], self.dataset[self.index][1]
def getMaxIndex(self):
return self.max_index
def getIndex(self):
return self.index
def setIndex(self, index):
self.index = index
def getBatchSize(self):
return self.batch_size
def setBatchSize(self, batch_size: int = None):
if batch_size is None:
batch_size = len(self.x) // 10
elif batch_size > len(self.x):
batch_size = len(self.x)
self.batch_size = batch_size
print(f"batch size : {self.batch_size}")
self.dataset = self.__getBatchSlice(self.batch_size)
self.max_index = len(self.dataset)
def __getBatchSlice(self, batch_size):
return list(
tf.data.Dataset.from_tensor_slices((self.x, self.y))
.shuffle(len(self.x))
.batch(batch_size)
)
def getDataset(self):
return self.dataset
def make_model():
model = Sequential()
model.add(
Conv2D(64, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Conv2D(128, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(2048, activation="relu"))
model.add(Dropout(0.8))
model.add(Dense(1024, activation="relu"))
model.add(Dropout(0.8))
model.add(Dense(10, activation="softmax"))
return model
model = make_model()
x_train, y_train, x_test, y_test = get_data()
y_train = tf.one_hot(y_train, 10)
y_test = tf.one_hot(y_test, 10)
batch = 64
dataset = _batch_generator_(x_train, y_train, batch)
model.compile(
optimizer="adam",
loss="categorical_crossentropy",
metrics=["accuracy", "mse"],
)
count = 0
print(f"batch size : {batch}")
print("iter " + str(dataset.getMaxIndex()))
print("Training model...")
# while count < dataset.getMaxIndex():
# x_batch, y_batch = dataset.next()
# count += 1
# print(f"iter {count}/{dataset.getMaxIndex()}")
model.fit(x_train, y_train, epochs=1000, batch_size=batch, verbose=1)
print(count)
print("Evaluating model...")
model.evaluate(x_test, y_test, verbose=1)
weights = model.get_weights()