mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-19 20:44:39 +09:00
23-06-01
함수 실행마다 사용안하는 변수 delete 및 gc.collect() 를 실행하여 메모리 문제 해결을 위해 변경
This commit is contained in:
103
pso/optimizer.py
103
pso/optimizer.py
@@ -12,11 +12,11 @@ from tqdm import tqdm
|
||||
from datetime import datetime
|
||||
import json
|
||||
import gc
|
||||
from copy import copy, deepcopy
|
||||
|
||||
from pso.particle import Particle
|
||||
|
||||
|
||||
|
||||
class Optimizer:
|
||||
"""
|
||||
Args:
|
||||
@@ -27,18 +27,19 @@ class Optimizer:
|
||||
c1 (float): global rate - 전역 최적값 관성 수치
|
||||
w_min (float): 최소 관성 수치
|
||||
w_max (float): 최대 관성 수치
|
||||
random (float): 랜덤 파티클 비율 - 0 ~ 1 사이의 값
|
||||
nefative_swarm (float): 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: keras.models,
|
||||
loss = "mse",
|
||||
loss="mse",
|
||||
n_particles: int = 10,
|
||||
c0=0.5,
|
||||
c1=1.5,
|
||||
w_min=0.5,
|
||||
w_max=1.5,
|
||||
random:float = 0,
|
||||
negative_swarm: float = 0,
|
||||
):
|
||||
self.model = model # 모델 구조
|
||||
self.loss = loss # 손실함수
|
||||
@@ -61,10 +62,11 @@ class Optimizer:
|
||||
w_ = np.random.uniform(-1.5, 1.5, len(w_))
|
||||
m.set_weights(self._decode(w_, sh_, len_))
|
||||
m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
|
||||
if i < random * self.n_particles:
|
||||
self.particles[i] = Particle(m, loss, random=True)
|
||||
if i < negative_swarm * self.n_particles:
|
||||
self.particles[i] = Particle(m, loss, negative=True)
|
||||
else:
|
||||
self.particles[i] = Particle(m, loss, random=False)
|
||||
self.particles[i] = Particle(m, loss, negative=False)
|
||||
gc.collect()
|
||||
|
||||
"""
|
||||
Args:
|
||||
@@ -74,6 +76,7 @@ class Optimizer:
|
||||
(list) : 가중치의 원본 shape
|
||||
(list) : 가중치의 원본 shape의 길이
|
||||
"""
|
||||
|
||||
def _encode(self, weights):
|
||||
# w_gpu = cp.array([])
|
||||
w_gpu = np.array([])
|
||||
@@ -86,6 +89,8 @@ class Optimizer:
|
||||
# w_gpu = cp.append(w_gpu, w_)
|
||||
w_gpu = np.append(w_gpu, w_)
|
||||
|
||||
del weights
|
||||
gc.collect()
|
||||
return w_gpu, shape, lenght
|
||||
|
||||
"""
|
||||
@@ -119,6 +124,8 @@ class Optimizer:
|
||||
self.model.set_weights(weights)
|
||||
self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
|
||||
score = self.model.evaluate(x, y, verbose=0)[1]
|
||||
|
||||
gc.collect()
|
||||
if score > 0:
|
||||
return 1 / (1 + score)
|
||||
else:
|
||||
@@ -136,6 +143,7 @@ class Optimizer:
|
||||
Dispersion : bool - True : g_best 의 값을 분산시켜 전역해를 찾음, False : g_best 의 값만 사용
|
||||
check_point : int - 저장할 위치 - None : 저장 안함
|
||||
"""
|
||||
|
||||
def fit(
|
||||
self,
|
||||
x,
|
||||
@@ -149,24 +157,27 @@ class Optimizer:
|
||||
check_point: int = None,
|
||||
):
|
||||
self.save_path = save_path
|
||||
|
||||
|
||||
self.renewal = renewal
|
||||
if renewal == "acc":
|
||||
self.g_best_score = 0
|
||||
elif renewal == "loss":
|
||||
self.g_best_score = np.inf
|
||||
|
||||
if save:
|
||||
if save_path is None:
|
||||
raise ValueError("save_path is None")
|
||||
else:
|
||||
self.save_path = save_path
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
self.day = datetime.now().strftime("%m-%d-%H-%M")
|
||||
|
||||
try:
|
||||
if save:
|
||||
if save_path is None:
|
||||
raise ValueError("save_path is None")
|
||||
else:
|
||||
self.save_path = save_path
|
||||
if not os.path.exists(save_path):
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
self.day = datetime.now().strftime("%m-%d-%H-%M")
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
sys.exit(1)
|
||||
# for i, p in enumerate(self.particles):
|
||||
for i in tqdm(range(self.n_particles), desc="Initializing Particles"):
|
||||
p = self.particles[i]
|
||||
p = copy(self.particles[i])
|
||||
local_score = p.get_score(x, y, renewal=renewal)
|
||||
|
||||
if renewal == "acc":
|
||||
@@ -179,9 +190,12 @@ class Optimizer:
|
||||
self.g_best_score = local_score[0]
|
||||
self.g_best = p.get_best_weights()
|
||||
self.g_best_ = p.get_best_weights()
|
||||
|
||||
del local_score
|
||||
del p
|
||||
gc.collect()
|
||||
|
||||
print(f"initial g_best_score : {self.g_best_score}")
|
||||
|
||||
|
||||
try:
|
||||
for _ in range(epochs):
|
||||
print(f"epoch {_ + 1}/{epochs}")
|
||||
@@ -192,6 +206,12 @@ class Optimizer:
|
||||
min_loss = np.inf
|
||||
max_loss = 0
|
||||
|
||||
ts = self.c0 + np.random.rand() * (self.c1 - self.c0)
|
||||
g_, g_sh, g_len = self._encode(self.g_best)
|
||||
decrement = (epochs - (_) + 1) / epochs
|
||||
g_ = (1 - decrement) * g_ + decrement * ts
|
||||
self.g_best_ = self._decode(g_, g_sh, g_len)
|
||||
|
||||
# for i in tqdm(range(len(self.particles)), desc=f"epoch {_ + 1}/{epochs}", ascii=True):
|
||||
for i in range(len(self.particles)):
|
||||
w = self.w_max - (self.w_max - self.w_min) * _ / epochs
|
||||
@@ -215,11 +235,19 @@ class Optimizer:
|
||||
g_a = self.avg_score
|
||||
l_b = p_b - g_a
|
||||
l_b = np.sqrt(np.power(l_b, 2))
|
||||
p_ = 1 / (self.n_particles * np.linalg.norm(self.c1 - self.c0)) * l_b
|
||||
p_ = (
|
||||
1
|
||||
/ (self.n_particles * np.linalg.norm(self.c1 - self.c0))
|
||||
* l_b
|
||||
)
|
||||
p_ = np.exp(-1 * p_)
|
||||
w_p = p_
|
||||
w_g = 1 - p_
|
||||
|
||||
del p_b
|
||||
del g_a
|
||||
del l_b
|
||||
del p_
|
||||
|
||||
score = self.particles[i].step_w(
|
||||
x, y, self.c0, self.c1, w, g_best, w_p, w_g, renewal=renewal
|
||||
)
|
||||
@@ -238,8 +266,8 @@ class Optimizer:
|
||||
self.g_best_score = score[0]
|
||||
self.g_best = self.particles[i].get_best_weights()
|
||||
|
||||
loss += score[0]
|
||||
acc += score[1]
|
||||
loss = loss + score[0]
|
||||
acc = acc + score[1]
|
||||
if score[0] < min_loss:
|
||||
min_loss = score[0]
|
||||
if score[0] > max_loss:
|
||||
@@ -258,19 +286,8 @@ class Optimizer:
|
||||
f.write(f"{score[0]}, {score[1]}")
|
||||
if i != self.n_particles - 1:
|
||||
f.write(", ")
|
||||
|
||||
TS = self.c0 + np.random.rand() * (self.c1 - self.c0)
|
||||
g_, g_sh, g_len = self._encode(self.g_best)
|
||||
decrement = (epochs - (_) + 1) / epochs
|
||||
g_ = (1 - decrement) * g_ + decrement * TS
|
||||
self.g_best_ = self._decode(g_, g_sh, g_len)
|
||||
|
||||
if save:
|
||||
with open(
|
||||
f"./{save_path}/{self.day}_{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv",
|
||||
"a",
|
||||
) as f:
|
||||
f.write("\n")
|
||||
else:
|
||||
f.write("\n")
|
||||
|
||||
# print(f"loss min : {min_loss} | loss max : {max_loss} | acc min : {min_score} | acc max : {max_score}")
|
||||
# print(f"loss avg : {loss/self.n_particles} | acc avg : {acc/self.n_particles} | Best {renewal} : {self.g_best_score}")
|
||||
@@ -279,12 +296,13 @@ class Optimizer:
|
||||
)
|
||||
|
||||
gc.collect()
|
||||
|
||||
|
||||
if check_point is not None:
|
||||
if _ % check_point == 0:
|
||||
os.makedirs(f"./{save_path}/{self.day}", exist_ok=True)
|
||||
self._check_point_save(f"./{save_path}/{self.day}/ckpt-{_}")
|
||||
self.avg_score = acc/self.n_particles
|
||||
self.avg_score = acc / self.n_particles
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("Ctrl + C : Stop Training")
|
||||
except MemoryError:
|
||||
@@ -296,8 +314,8 @@ class Optimizer:
|
||||
print("model save")
|
||||
self.save_info(save_path)
|
||||
print("save info")
|
||||
|
||||
return self.g_best, self.g_best_score
|
||||
|
||||
|
||||
def get_best_model(self):
|
||||
model = keras.models.model_from_json(self.model.to_json())
|
||||
@@ -329,12 +347,11 @@ class Optimizer:
|
||||
"a",
|
||||
) as f:
|
||||
json.dump(json_save, f, indent=4)
|
||||
f.write(",\n")
|
||||
|
||||
|
||||
def _check_point_save(self, save_path: str = f"./result/check_point"):
|
||||
model = self.get_best_model()
|
||||
model.save_weights(save_path)
|
||||
|
||||
|
||||
def model_save(self, save_path: str = "./result"):
|
||||
model = self.get_best_model()
|
||||
model.save(
|
||||
|
||||
121
pso/particle.py
121
pso/particle.py
@@ -1,21 +1,26 @@
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
|
||||
# import cupy as cp
|
||||
import numpy as np
|
||||
import gc
|
||||
|
||||
|
||||
class Particle:
|
||||
def __init__(self, model:keras.models, loss, random:bool = False):
|
||||
def __init__(self, model: keras.models, loss, negative: bool = False):
|
||||
self.model = model
|
||||
self.loss = loss
|
||||
self.init_weights = self.model.get_weights()
|
||||
i_w_,s_,l_ = self._encode(self.init_weights)
|
||||
init_weights = self.model.get_weights()
|
||||
i_w_, s_, l_ = self._encode(init_weights)
|
||||
i_w_ = np.random.rand(len(i_w_)) / 5 - 0.10
|
||||
self.velocities = self._decode(i_w_,s_,l_)
|
||||
self.random = random
|
||||
self.velocities = self._decode(i_w_, s_, l_)
|
||||
self.negative = negative
|
||||
self.best_score = 0
|
||||
self.best_weights = self.init_weights
|
||||
self.best_weights = init_weights
|
||||
|
||||
del i_w_, s_, l_
|
||||
del init_weights
|
||||
gc.collect()
|
||||
|
||||
"""
|
||||
Returns:
|
||||
@@ -23,7 +28,8 @@ class Particle:
|
||||
(list) : 가중치의 원본 shape
|
||||
(list) : 가중치의 원본 shape의 길이
|
||||
"""
|
||||
def _encode(self, weights:list):
|
||||
|
||||
def _encode(self, weights: list):
|
||||
# w_gpu = cp.array([])
|
||||
w_gpu = np.array([])
|
||||
lenght = []
|
||||
@@ -34,6 +40,7 @@ class Particle:
|
||||
lenght.append(len(w_))
|
||||
# w_gpu = cp.append(w_gpu, w_)
|
||||
w_gpu = np.append(w_gpu, w_)
|
||||
gc.collect()
|
||||
return w_gpu, shape, lenght
|
||||
|
||||
"""
|
||||
@@ -41,7 +48,7 @@ class Particle:
|
||||
(list) : 가중치 원본 shape으로 복원
|
||||
"""
|
||||
|
||||
def _decode(self, weight:list, shape, lenght):
|
||||
def _decode(self, weight: list, shape, lenght):
|
||||
weights = []
|
||||
start = 0
|
||||
for i in range(len(shape)):
|
||||
@@ -52,10 +59,13 @@ class Particle:
|
||||
# w_ = w_.reshape(shape[i])
|
||||
weights.append(w_)
|
||||
start = end
|
||||
|
||||
del start, end, w_
|
||||
del shape, lenght
|
||||
del weight
|
||||
gc.collect()
|
||||
return weights
|
||||
|
||||
def get_score(self, x, y, renewal:str = "acc"):
|
||||
def get_score(self, x, y, renewal: str = "acc"):
|
||||
self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
|
||||
score = self.model.evaluate(x, y, verbose=0)
|
||||
# print(score)
|
||||
@@ -67,56 +77,97 @@ class Particle:
|
||||
if score[0] < self.best_score:
|
||||
self.best_score = score[0]
|
||||
self.best_weights = self.model.get_weights()
|
||||
|
||||
gc.collect()
|
||||
return score
|
||||
|
||||
def _update_velocity(self, local_rate, global_rate, w, g_best):
|
||||
encode_w, w_sh, w_len = self._encode(weights = self.model.get_weights())
|
||||
encode_v, _, _ = self._encode(weights = self.velocities)
|
||||
encode_p, _, _ = self._encode(weights = self.best_weights)
|
||||
encode_g, _, _ = self._encode(weights = g_best)
|
||||
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
|
||||
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
|
||||
encode_p, p_sh, p_len = self._encode(weights=self.best_weights)
|
||||
encode_g, g_sh, g_len = self._encode(weights=g_best)
|
||||
r0 = np.random.rand()
|
||||
r1 = np.random.rand()
|
||||
new_v = w * encode_v + local_rate * r0 * (encode_p - encode_w) + global_rate * r1 * (encode_g - encode_w)
|
||||
if self.negative:
|
||||
new_v = (
|
||||
w * encode_v
|
||||
+ -1 * local_rate * r0 * (encode_p - encode_w)
|
||||
+ -1 * global_rate * r1 * (encode_g - encode_w)
|
||||
)
|
||||
else:
|
||||
new_v = (
|
||||
w * encode_v
|
||||
+ local_rate * r0 * (encode_p - encode_w)
|
||||
+ global_rate * r1 * (encode_g - encode_w)
|
||||
)
|
||||
self.velocities = self._decode(new_v, w_sh, w_len)
|
||||
|
||||
del encode_w, w_sh, w_len
|
||||
del encode_v, v_sh, v_len
|
||||
del encode_p, p_sh, p_len
|
||||
del encode_g, g_sh, g_len
|
||||
del r0, r1
|
||||
gc.collect()
|
||||
|
||||
def _update_velocity_w(self, local_rate, global_rate, w, w_p, w_g, g_best):
|
||||
encode_w, w_sh, w_len = self._encode(weights = self.model.get_weights())
|
||||
encode_v, _, _ = self._encode(weights = self.velocities)
|
||||
encode_p, _, _ = self._encode(weights = self.best_weights)
|
||||
encode_g, _, _ = self._encode(weights = g_best)
|
||||
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
|
||||
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
|
||||
encode_p, p_sh, p_len = self._encode(weights=self.best_weights)
|
||||
encode_g, g_sh, g_len = self._encode(weights=g_best)
|
||||
r0 = np.random.rand()
|
||||
r1 = np.random.rand()
|
||||
new_v = w * encode_v + local_rate * r0 * (w_p * encode_p - encode_w) + global_rate * r1 * (w_g * encode_g - encode_w)
|
||||
if self.negative:
|
||||
new_v = (
|
||||
w * encode_v
|
||||
+ -1 * local_rate * r0 * (w_p * encode_p - encode_w)
|
||||
+ -1 * global_rate * r1 * (w_g * encode_g - encode_w)
|
||||
)
|
||||
else:
|
||||
new_v = (
|
||||
w * encode_v
|
||||
+ local_rate * r0 * (w_p * encode_p - encode_w)
|
||||
+ global_rate * r1 * (w_g * encode_g - encode_w)
|
||||
)
|
||||
self.velocities = self._decode(new_v, w_sh, w_len)
|
||||
|
||||
del encode_w, w_sh, w_len
|
||||
del encode_v, v_sh, v_len
|
||||
del encode_p, p_sh, p_len
|
||||
del encode_g, g_sh, g_len
|
||||
del r0, r1
|
||||
gc.collect()
|
||||
|
||||
def _update_weights(self):
|
||||
encode_w, w_sh, w_len = self._encode(weights = self.model.get_weights())
|
||||
encode_v, _, _ = self._encode(weights = self.velocities)
|
||||
if self.random:
|
||||
encode_v = -0.5 * encode_v
|
||||
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
|
||||
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
|
||||
new_w = encode_w + encode_v
|
||||
self.model.set_weights(self._decode(new_w, w_sh, w_len))
|
||||
del encode_w, w_sh, w_len
|
||||
del encode_v, v_sh, v_len
|
||||
gc.collect()
|
||||
|
||||
def f(self, x, y, weights):
|
||||
self.model.set_weights(weights)
|
||||
score = self.model.evaluate(x, y, verbose = 0)[1]
|
||||
score = self.model.evaluate(x, y, verbose=0)[1]
|
||||
gc.collect()
|
||||
if score > 0:
|
||||
return 1 / (1 + score)
|
||||
else:
|
||||
return 1 + np.abs(score)
|
||||
|
||||
def step(self, x, y, local_rate, global_rate, w, g_best, renewal:str = "acc"):
|
||||
def step(self, x, y, local_rate, global_rate, w, g_best, renewal: str = "acc"):
|
||||
self._update_velocity(local_rate, global_rate, w, g_best)
|
||||
self._update_weights()
|
||||
gc.collect()
|
||||
return self.get_score(x, y, renewal)
|
||||
|
||||
def step_w(self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal:str = "acc"):
|
||||
|
||||
def step_w(
|
||||
self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal: str = "acc"
|
||||
):
|
||||
self._update_velocity_w(local_rate, global_rate, w, w_p, w_g, g_best)
|
||||
self._update_weights()
|
||||
gc.collect()
|
||||
return self.get_score(x, y, renewal)
|
||||
|
||||
|
||||
def get_best_score(self):
|
||||
return self.best_score
|
||||
|
||||
|
||||
def get_best_weights(self):
|
||||
return self.best_weights
|
||||
return self.best_weights
|
||||
|
||||
Reference in New Issue
Block a user