함수 실행마다 사용안하는 변수 delete 및 gc.collect() 를 실행하여 메모리 문제 해결을 위해 변경
This commit is contained in:
jung-geun
2023-06-01 18:10:57 +09:00
parent 89449048c4
commit 4ffc6cc6e5
6 changed files with 164 additions and 90 deletions

View File

@@ -1,21 +1,26 @@
import tensorflow as tf
from tensorflow import keras
# import cupy as cp
import numpy as np
import gc
class Particle:
def __init__(self, model:keras.models, loss, random:bool = False):
def __init__(self, model: keras.models, loss, negative: bool = False):
self.model = model
self.loss = loss
self.init_weights = self.model.get_weights()
i_w_,s_,l_ = self._encode(self.init_weights)
init_weights = self.model.get_weights()
i_w_, s_, l_ = self._encode(init_weights)
i_w_ = np.random.rand(len(i_w_)) / 5 - 0.10
self.velocities = self._decode(i_w_,s_,l_)
self.random = random
self.velocities = self._decode(i_w_, s_, l_)
self.negative = negative
self.best_score = 0
self.best_weights = self.init_weights
self.best_weights = init_weights
del i_w_, s_, l_
del init_weights
gc.collect()
"""
Returns:
@@ -23,7 +28,8 @@ class Particle:
(list) : 가중치의 원본 shape
(list) : 가중치의 원본 shape의 길이
"""
def _encode(self, weights:list):
def _encode(self, weights: list):
# w_gpu = cp.array([])
w_gpu = np.array([])
lenght = []
@@ -34,6 +40,7 @@ class Particle:
lenght.append(len(w_))
# w_gpu = cp.append(w_gpu, w_)
w_gpu = np.append(w_gpu, w_)
gc.collect()
return w_gpu, shape, lenght
"""
@@ -41,7 +48,7 @@ class Particle:
(list) : 가중치 원본 shape으로 복원
"""
def _decode(self, weight:list, shape, lenght):
def _decode(self, weight: list, shape, lenght):
weights = []
start = 0
for i in range(len(shape)):
@@ -52,10 +59,13 @@ class Particle:
# w_ = w_.reshape(shape[i])
weights.append(w_)
start = end
del start, end, w_
del shape, lenght
del weight
gc.collect()
return weights
def get_score(self, x, y, renewal:str = "acc"):
def get_score(self, x, y, renewal: str = "acc"):
self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
score = self.model.evaluate(x, y, verbose=0)
# print(score)
@@ -67,56 +77,97 @@ class Particle:
if score[0] < self.best_score:
self.best_score = score[0]
self.best_weights = self.model.get_weights()
gc.collect()
return score
def _update_velocity(self, local_rate, global_rate, w, g_best):
encode_w, w_sh, w_len = self._encode(weights = self.model.get_weights())
encode_v, _, _ = self._encode(weights = self.velocities)
encode_p, _, _ = self._encode(weights = self.best_weights)
encode_g, _, _ = self._encode(weights = g_best)
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
encode_p, p_sh, p_len = self._encode(weights=self.best_weights)
encode_g, g_sh, g_len = self._encode(weights=g_best)
r0 = np.random.rand()
r1 = np.random.rand()
new_v = w * encode_v + local_rate * r0 * (encode_p - encode_w) + global_rate * r1 * (encode_g - encode_w)
if self.negative:
new_v = (
w * encode_v
+ -1 * local_rate * r0 * (encode_p - encode_w)
+ -1 * global_rate * r1 * (encode_g - encode_w)
)
else:
new_v = (
w * encode_v
+ local_rate * r0 * (encode_p - encode_w)
+ global_rate * r1 * (encode_g - encode_w)
)
self.velocities = self._decode(new_v, w_sh, w_len)
del encode_w, w_sh, w_len
del encode_v, v_sh, v_len
del encode_p, p_sh, p_len
del encode_g, g_sh, g_len
del r0, r1
gc.collect()
def _update_velocity_w(self, local_rate, global_rate, w, w_p, w_g, g_best):
encode_w, w_sh, w_len = self._encode(weights = self.model.get_weights())
encode_v, _, _ = self._encode(weights = self.velocities)
encode_p, _, _ = self._encode(weights = self.best_weights)
encode_g, _, _ = self._encode(weights = g_best)
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
encode_p, p_sh, p_len = self._encode(weights=self.best_weights)
encode_g, g_sh, g_len = self._encode(weights=g_best)
r0 = np.random.rand()
r1 = np.random.rand()
new_v = w * encode_v + local_rate * r0 * (w_p * encode_p - encode_w) + global_rate * r1 * (w_g * encode_g - encode_w)
if self.negative:
new_v = (
w * encode_v
+ -1 * local_rate * r0 * (w_p * encode_p - encode_w)
+ -1 * global_rate * r1 * (w_g * encode_g - encode_w)
)
else:
new_v = (
w * encode_v
+ local_rate * r0 * (w_p * encode_p - encode_w)
+ global_rate * r1 * (w_g * encode_g - encode_w)
)
self.velocities = self._decode(new_v, w_sh, w_len)
del encode_w, w_sh, w_len
del encode_v, v_sh, v_len
del encode_p, p_sh, p_len
del encode_g, g_sh, g_len
del r0, r1
gc.collect()
def _update_weights(self):
encode_w, w_sh, w_len = self._encode(weights = self.model.get_weights())
encode_v, _, _ = self._encode(weights = self.velocities)
if self.random:
encode_v = -0.5 * encode_v
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
new_w = encode_w + encode_v
self.model.set_weights(self._decode(new_w, w_sh, w_len))
del encode_w, w_sh, w_len
del encode_v, v_sh, v_len
gc.collect()
def f(self, x, y, weights):
self.model.set_weights(weights)
score = self.model.evaluate(x, y, verbose = 0)[1]
score = self.model.evaluate(x, y, verbose=0)[1]
gc.collect()
if score > 0:
return 1 / (1 + score)
else:
return 1 + np.abs(score)
def step(self, x, y, local_rate, global_rate, w, g_best, renewal:str = "acc"):
def step(self, x, y, local_rate, global_rate, w, g_best, renewal: str = "acc"):
self._update_velocity(local_rate, global_rate, w, g_best)
self._update_weights()
gc.collect()
return self.get_score(x, y, renewal)
def step_w(self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal:str = "acc"):
def step_w(
self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal: str = "acc"
):
self._update_velocity_w(local_rate, global_rate, w, w_p, w_g, g_best)
self._update_weights()
gc.collect()
return self.get_score(x, y, renewal)
def get_best_score(self):
return self.best_score
def get_best_weights(self):
return self.best_weights
return self.best_weights