함수 실행마다 사용안하는 변수 delete 및 gc.collect() 를 실행하여 메모리 문제 해결을 위해 변경
This commit is contained in:
jung-geun
2023-06-01 18:10:57 +09:00
parent 89449048c4
commit 4ffc6cc6e5
6 changed files with 164 additions and 90 deletions

View File

@@ -16,7 +16,7 @@ class PSO(object):
"""
self.func = func
self.n_particles = n_particles
self.init_pos = init_pos # 곰샥헐 차원
self.init_pos = init_pos # 검색할 차원
self.particle_dim = len(init_pos) # 검색할 차원의 크기
self.particles_pos = np.random.uniform(size=(n_particles, self.particle_dim)) \
* self.init_pos

View File

@@ -79,9 +79,9 @@ loss = 'huber_loss'
# loss = 'mean_squared_error'
pso_mnist = Optimizer(model, loss=loss, n_particles=75, c0=0.4, c1=0.8, w_min=0.6, w_max=0.95, random=0.3)
pso_mnist = Optimizer(model, loss=loss, n_particles=50, c0=0.4, c1=0.8, w_min=0.4, w_max=0.95, negative_swarm=0.3)
weight, score = pso_mnist.fit(
x_test, y_test, epochs=500, save=True, save_path="./result/mnist", renewal="acc", empirical_balance=False, Dispersion=False, check_point=10)
x_test, y_test, epochs=500, save=True, save_path="./result/mnist", renewal="acc", empirical_balance=True, Dispersion=False, check_point=10)
# pso_mnist.model_save("./result/mnist")
# pso_mnist.save_info("./result/mnist")

File diff suppressed because one or more lines are too long

View File

@@ -12,11 +12,11 @@ from tqdm import tqdm
from datetime import datetime
import json
import gc
from copy import copy, deepcopy
from pso.particle import Particle
class Optimizer:
"""
Args:
@@ -27,18 +27,19 @@ class Optimizer:
c1 (float): global rate - 전역 최적값 관성 수치
w_min (float): 최소 관성 수치
w_max (float): 최대 관성 수치
random (float): 랜덤 파티클 비율 - 0 ~ 1 사이의 값
nefative_swarm (float): 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
"""
def __init__(
self,
model: keras.models,
loss = "mse",
loss="mse",
n_particles: int = 10,
c0=0.5,
c1=1.5,
w_min=0.5,
w_max=1.5,
random:float = 0,
negative_swarm: float = 0,
):
self.model = model # 모델 구조
self.loss = loss # 손실함수
@@ -61,10 +62,11 @@ class Optimizer:
w_ = np.random.uniform(-1.5, 1.5, len(w_))
m.set_weights(self._decode(w_, sh_, len_))
m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
if i < random * self.n_particles:
self.particles[i] = Particle(m, loss, random=True)
if i < negative_swarm * self.n_particles:
self.particles[i] = Particle(m, loss, negative=True)
else:
self.particles[i] = Particle(m, loss, random=False)
self.particles[i] = Particle(m, loss, negative=False)
gc.collect()
"""
Args:
@@ -74,6 +76,7 @@ class Optimizer:
(list) : 가중치의 원본 shape
(list) : 가중치의 원본 shape의 길이
"""
def _encode(self, weights):
# w_gpu = cp.array([])
w_gpu = np.array([])
@@ -86,6 +89,8 @@ class Optimizer:
# w_gpu = cp.append(w_gpu, w_)
w_gpu = np.append(w_gpu, w_)
del weights
gc.collect()
return w_gpu, shape, lenght
"""
@@ -119,6 +124,8 @@ class Optimizer:
self.model.set_weights(weights)
self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
score = self.model.evaluate(x, y, verbose=0)[1]
gc.collect()
if score > 0:
return 1 / (1 + score)
else:
@@ -136,6 +143,7 @@ class Optimizer:
Dispersion : bool - True : g_best 의 값을 분산시켜 전역해를 찾음, False : g_best 의 값만 사용
check_point : int - 저장할 위치 - None : 저장 안함
"""
def fit(
self,
x,
@@ -149,24 +157,27 @@ class Optimizer:
check_point: int = None,
):
self.save_path = save_path
self.renewal = renewal
if renewal == "acc":
self.g_best_score = 0
elif renewal == "loss":
self.g_best_score = np.inf
if save:
if save_path is None:
raise ValueError("save_path is None")
else:
self.save_path = save_path
os.makedirs(save_path, exist_ok=True)
self.day = datetime.now().strftime("%m-%d-%H-%M")
try:
if save:
if save_path is None:
raise ValueError("save_path is None")
else:
self.save_path = save_path
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
self.day = datetime.now().strftime("%m-%d-%H-%M")
except ValueError as e:
print(e)
sys.exit(1)
# for i, p in enumerate(self.particles):
for i in tqdm(range(self.n_particles), desc="Initializing Particles"):
p = self.particles[i]
p = copy(self.particles[i])
local_score = p.get_score(x, y, renewal=renewal)
if renewal == "acc":
@@ -179,9 +190,12 @@ class Optimizer:
self.g_best_score = local_score[0]
self.g_best = p.get_best_weights()
self.g_best_ = p.get_best_weights()
del local_score
del p
gc.collect()
print(f"initial g_best_score : {self.g_best_score}")
try:
for _ in range(epochs):
print(f"epoch {_ + 1}/{epochs}")
@@ -192,6 +206,12 @@ class Optimizer:
min_loss = np.inf
max_loss = 0
ts = self.c0 + np.random.rand() * (self.c1 - self.c0)
g_, g_sh, g_len = self._encode(self.g_best)
decrement = (epochs - (_) + 1) / epochs
g_ = (1 - decrement) * g_ + decrement * ts
self.g_best_ = self._decode(g_, g_sh, g_len)
# for i in tqdm(range(len(self.particles)), desc=f"epoch {_ + 1}/{epochs}", ascii=True):
for i in range(len(self.particles)):
w = self.w_max - (self.w_max - self.w_min) * _ / epochs
@@ -215,11 +235,19 @@ class Optimizer:
g_a = self.avg_score
l_b = p_b - g_a
l_b = np.sqrt(np.power(l_b, 2))
p_ = 1 / (self.n_particles * np.linalg.norm(self.c1 - self.c0)) * l_b
p_ = (
1
/ (self.n_particles * np.linalg.norm(self.c1 - self.c0))
* l_b
)
p_ = np.exp(-1 * p_)
w_p = p_
w_g = 1 - p_
del p_b
del g_a
del l_b
del p_
score = self.particles[i].step_w(
x, y, self.c0, self.c1, w, g_best, w_p, w_g, renewal=renewal
)
@@ -238,8 +266,8 @@ class Optimizer:
self.g_best_score = score[0]
self.g_best = self.particles[i].get_best_weights()
loss += score[0]
acc += score[1]
loss = loss + score[0]
acc = acc + score[1]
if score[0] < min_loss:
min_loss = score[0]
if score[0] > max_loss:
@@ -258,19 +286,8 @@ class Optimizer:
f.write(f"{score[0]}, {score[1]}")
if i != self.n_particles - 1:
f.write(", ")
TS = self.c0 + np.random.rand() * (self.c1 - self.c0)
g_, g_sh, g_len = self._encode(self.g_best)
decrement = (epochs - (_) + 1) / epochs
g_ = (1 - decrement) * g_ + decrement * TS
self.g_best_ = self._decode(g_, g_sh, g_len)
if save:
with open(
f"./{save_path}/{self.day}_{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv",
"a",
) as f:
f.write("\n")
else:
f.write("\n")
# print(f"loss min : {min_loss} | loss max : {max_loss} | acc min : {min_score} | acc max : {max_score}")
# print(f"loss avg : {loss/self.n_particles} | acc avg : {acc/self.n_particles} | Best {renewal} : {self.g_best_score}")
@@ -279,12 +296,13 @@ class Optimizer:
)
gc.collect()
if check_point is not None:
if _ % check_point == 0:
os.makedirs(f"./{save_path}/{self.day}", exist_ok=True)
self._check_point_save(f"./{save_path}/{self.day}/ckpt-{_}")
self.avg_score = acc/self.n_particles
self.avg_score = acc / self.n_particles
except KeyboardInterrupt:
print("Ctrl + C : Stop Training")
except MemoryError:
@@ -296,8 +314,8 @@ class Optimizer:
print("model save")
self.save_info(save_path)
print("save info")
return self.g_best, self.g_best_score
def get_best_model(self):
model = keras.models.model_from_json(self.model.to_json())
@@ -329,12 +347,11 @@ class Optimizer:
"a",
) as f:
json.dump(json_save, f, indent=4)
f.write(",\n")
def _check_point_save(self, save_path: str = f"./result/check_point"):
model = self.get_best_model()
model.save_weights(save_path)
def model_save(self, save_path: str = "./result"):
model = self.get_best_model()
model.save(

View File

@@ -1,21 +1,26 @@
import tensorflow as tf
from tensorflow import keras
# import cupy as cp
import numpy as np
import gc
class Particle:
def __init__(self, model:keras.models, loss, random:bool = False):
def __init__(self, model: keras.models, loss, negative: bool = False):
self.model = model
self.loss = loss
self.init_weights = self.model.get_weights()
i_w_,s_,l_ = self._encode(self.init_weights)
init_weights = self.model.get_weights()
i_w_, s_, l_ = self._encode(init_weights)
i_w_ = np.random.rand(len(i_w_)) / 5 - 0.10
self.velocities = self._decode(i_w_,s_,l_)
self.random = random
self.velocities = self._decode(i_w_, s_, l_)
self.negative = negative
self.best_score = 0
self.best_weights = self.init_weights
self.best_weights = init_weights
del i_w_, s_, l_
del init_weights
gc.collect()
"""
Returns:
@@ -23,7 +28,8 @@ class Particle:
(list) : 가중치의 원본 shape
(list) : 가중치의 원본 shape의 길이
"""
def _encode(self, weights:list):
def _encode(self, weights: list):
# w_gpu = cp.array([])
w_gpu = np.array([])
lenght = []
@@ -34,6 +40,7 @@ class Particle:
lenght.append(len(w_))
# w_gpu = cp.append(w_gpu, w_)
w_gpu = np.append(w_gpu, w_)
gc.collect()
return w_gpu, shape, lenght
"""
@@ -41,7 +48,7 @@ class Particle:
(list) : 가중치 원본 shape으로 복원
"""
def _decode(self, weight:list, shape, lenght):
def _decode(self, weight: list, shape, lenght):
weights = []
start = 0
for i in range(len(shape)):
@@ -52,10 +59,13 @@ class Particle:
# w_ = w_.reshape(shape[i])
weights.append(w_)
start = end
del start, end, w_
del shape, lenght
del weight
gc.collect()
return weights
def get_score(self, x, y, renewal:str = "acc"):
def get_score(self, x, y, renewal: str = "acc"):
self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
score = self.model.evaluate(x, y, verbose=0)
# print(score)
@@ -67,56 +77,97 @@ class Particle:
if score[0] < self.best_score:
self.best_score = score[0]
self.best_weights = self.model.get_weights()
gc.collect()
return score
def _update_velocity(self, local_rate, global_rate, w, g_best):
encode_w, w_sh, w_len = self._encode(weights = self.model.get_weights())
encode_v, _, _ = self._encode(weights = self.velocities)
encode_p, _, _ = self._encode(weights = self.best_weights)
encode_g, _, _ = self._encode(weights = g_best)
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
encode_p, p_sh, p_len = self._encode(weights=self.best_weights)
encode_g, g_sh, g_len = self._encode(weights=g_best)
r0 = np.random.rand()
r1 = np.random.rand()
new_v = w * encode_v + local_rate * r0 * (encode_p - encode_w) + global_rate * r1 * (encode_g - encode_w)
if self.negative:
new_v = (
w * encode_v
+ -1 * local_rate * r0 * (encode_p - encode_w)
+ -1 * global_rate * r1 * (encode_g - encode_w)
)
else:
new_v = (
w * encode_v
+ local_rate * r0 * (encode_p - encode_w)
+ global_rate * r1 * (encode_g - encode_w)
)
self.velocities = self._decode(new_v, w_sh, w_len)
del encode_w, w_sh, w_len
del encode_v, v_sh, v_len
del encode_p, p_sh, p_len
del encode_g, g_sh, g_len
del r0, r1
gc.collect()
def _update_velocity_w(self, local_rate, global_rate, w, w_p, w_g, g_best):
encode_w, w_sh, w_len = self._encode(weights = self.model.get_weights())
encode_v, _, _ = self._encode(weights = self.velocities)
encode_p, _, _ = self._encode(weights = self.best_weights)
encode_g, _, _ = self._encode(weights = g_best)
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
encode_p, p_sh, p_len = self._encode(weights=self.best_weights)
encode_g, g_sh, g_len = self._encode(weights=g_best)
r0 = np.random.rand()
r1 = np.random.rand()
new_v = w * encode_v + local_rate * r0 * (w_p * encode_p - encode_w) + global_rate * r1 * (w_g * encode_g - encode_w)
if self.negative:
new_v = (
w * encode_v
+ -1 * local_rate * r0 * (w_p * encode_p - encode_w)
+ -1 * global_rate * r1 * (w_g * encode_g - encode_w)
)
else:
new_v = (
w * encode_v
+ local_rate * r0 * (w_p * encode_p - encode_w)
+ global_rate * r1 * (w_g * encode_g - encode_w)
)
self.velocities = self._decode(new_v, w_sh, w_len)
del encode_w, w_sh, w_len
del encode_v, v_sh, v_len
del encode_p, p_sh, p_len
del encode_g, g_sh, g_len
del r0, r1
gc.collect()
def _update_weights(self):
encode_w, w_sh, w_len = self._encode(weights = self.model.get_weights())
encode_v, _, _ = self._encode(weights = self.velocities)
if self.random:
encode_v = -0.5 * encode_v
encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights())
encode_v, v_sh, v_len = self._encode(weights=self.velocities)
new_w = encode_w + encode_v
self.model.set_weights(self._decode(new_w, w_sh, w_len))
del encode_w, w_sh, w_len
del encode_v, v_sh, v_len
gc.collect()
def f(self, x, y, weights):
self.model.set_weights(weights)
score = self.model.evaluate(x, y, verbose = 0)[1]
score = self.model.evaluate(x, y, verbose=0)[1]
gc.collect()
if score > 0:
return 1 / (1 + score)
else:
return 1 + np.abs(score)
def step(self, x, y, local_rate, global_rate, w, g_best, renewal:str = "acc"):
def step(self, x, y, local_rate, global_rate, w, g_best, renewal: str = "acc"):
self._update_velocity(local_rate, global_rate, w, g_best)
self._update_weights()
gc.collect()
return self.get_score(x, y, renewal)
def step_w(self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal:str = "acc"):
def step_w(
self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal: str = "acc"
):
self._update_velocity_w(local_rate, global_rate, w, w_p, w_g, g_best)
self._update_weights()
gc.collect()
return self.get_score(x, y, renewal)
def get_best_score(self):
return self.best_score
def get_best_weights(self):
return self.best_weights
return self.best_weights

View File

@@ -72,7 +72,7 @@ pso 알고리즘을 이용하여 오차역전파 함수를 최적화 하는 방
<br>
위의 아이디어는 원래의 목표와 다른 방향으로 가고 있습니다. 따라서 다른 방법을 모색해야할 것 같습니다
<br><br>
<br>
### Trouble Shooting
@@ -89,5 +89,11 @@ pso 알고리즘을 이용하여 오차역전파 함수를 최적화 하는 방
>
> > pso 와 random forest 방식이 매우 유사하다고 생각하여 학습할 때 뿐만 아니라 예측 할 때도 이러한 방식으로 사용할 수 있을 것 같습니다
이곳의 코드를 참고하여 좀더 효율적인 코드로 수정하였습니다
> <https://github.com/mike-holcomb/PSOkeras>
# 참고 자료
> A partilce swarm optimization algorithm with empirical balance stategy - <https://www.sciencedirect.com/science/article/pii/S2590054422000185#bib0005> <br>
> psokeras - <https://github.com/mike-holcomb/PSOkeras> <br>
> PSO의 다양한 영역 탐색과
지역적 미니멈 인식을 위한 전략 - <https://koreascience.kr/article/JAKO200925836515680.pdf> <br>
> PC 클러스터 기반의 Multi-HPSO를 이용한 안전도 제약의 경제 급전 - <https://koreascience.kr/article/JAKO200932056732373.pdf> <br>
> Particle 2-Swarm Optimization for Robust Search - <https://s-space.snu.ac.kr/bitstream/10371/29949/3/management_information_v18_01_p01.pdf> <br>