단순 업데이트
This commit is contained in:
jung-geun
2023-06-28 23:29:27 +09:00
parent 983913f2d2
commit 544a818940
7 changed files with 140884 additions and 67 deletions

BIN
history_plt/iris_0624_1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 292 KiB

12
iris.py
View File

@@ -1,22 +1,24 @@
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.random.set_seed(777) # for reproducibility
import numpy as np
np.random.seed(777)
import gc
from pso import Optimizer
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from pso import Optimizer
import gc
def make_model():
model = Sequential()
@@ -45,7 +47,7 @@ loss = ['categorical_crossentropy']
pso_iris = Optimizer(
model,
loss=loss[0],
n_particles=75,
n_particles=100,
c0=0.4,
c1=0.8,
w_min=0.7,

View File

@@ -59,8 +59,6 @@ def make_model():
return model
# %%
# %%
model = make_model()
x_test, y_test = get_data_test()
@@ -73,12 +71,12 @@ if __name__ == "__main__":
model,
loss=loss[0],
n_particles=75,
c0=0.35,
c1=0.8,
w_min=0.7,
w_max=1.15,
c0=0.3,
c1=0.7,
w_min=0.6,
w_max=0.9,
negative_swarm=0.25,
momentun_swarm=0.25,
momentun_swarm=0,
)
best_score = pso_mnist.fit(
@@ -87,13 +85,12 @@ if __name__ == "__main__":
epochs=200,
save=True,
save_path="./result/mnist",
renewal="loss",
renewal="acc",
empirical_balance=False,
Dispersion=False,
check_point=25
)
except Exception as e:
print(e)
# pso_mnist.model_save("./result/mnist")
# pso_mnist.save_info("./result/mnist")
finally:
gc.collect()

140884
plt.ipynb

File diff suppressed because one or more lines are too long

View File

@@ -12,8 +12,6 @@ from tqdm import tqdm
# import cupy as cp
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
try:
@@ -37,6 +35,8 @@ class Optimizer:
momentun_swarm: float = 0,
):
"""
particle swarm optimization
Args:
model (keras.models): 모델 구조
loss (str): 손실함수
@@ -67,7 +67,8 @@ class Optimizer:
m = keras.models.model_from_json(model.to_json())
init_weights = m.get_weights()
w_, sh_, len_ = self._encode(init_weights)
w_ = np.random.uniform(-1.5, 1.5, len(w_))
w_ = np.random.rand(len(w_)) * 4 - 2
# w_ = np.random.uniform(-1.5, 1.5, len(w_))
m.set_weights(self._decode(w_, sh_, len_))
m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
self.particles[i] = Particle(m, loss, negative=True if i < negative_swarm * self.n_particles else False, momentun=True if i > self.n_particles * (1 - self.momentun_swarm) else False)
@@ -309,15 +310,21 @@ class Optimizer:
if renewal == "acc":
if score[1] >= self.g_best_score[0]:
if score[1] > self.g_best_score[0]:
self.g_best_score[0] = score[1]
if score[0] <= self.g_best_score[1]:
self.g_best = self.particles[i].get_best_weights()
else:
if score[0] < self.g_best_score[1]:
self.g_best_score[1] = score[0]
self.g_best = self.particles[i].get_best_weights()
epochs_pbar.set_description(f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}")
elif renewal == "loss":
if score[0] <= self.g_best_score[1]:
if score[0] < self.g_best_score[1]:
self.g_best_score[1] = score[0]
if score[1] >= self.g_best_score[0]:
self.g_best = self.particles[i].get_best_weights()
else:
if score[1] > self.g_best_score[0]:
self.g_best_score[0] = score[1]
self.g_best = self.particles[i].get_best_weights()
epochs_pbar.set_description(f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}")
@@ -420,6 +427,7 @@ class Optimizer:
"empirical_balance": self.empirical_balance,
"Dispersion": self.Dispersion,
"negative_swarm": self.negative_swarm,
"momentun_swarm": self.momentun_swarm,
"renewal": self.renewal,
}

View File

@@ -114,6 +114,8 @@ class Particle:
self.best_score = score[1]
self.best_weights = self.model.get_weights()
elif renewal == "loss":
if score[0] == 'nan':
score[0] = np.inf
if score[0] < self.best_score:
self.best_score = score[0]
self.best_weights = self.model.get_weights()

View File

@@ -147,7 +147,7 @@ best_score = pso_iris.fit(
```
위의 파라미터 기준 2 세대에 94%의 정확도를, 7 세대에 96%, 106 세대에 99.16%의 정확도를 보였습니다
![iris](./history_plt/iris_relu_acc_200.png)
![iris](./history_plt/iris_0624_1.png)
3. mnist 문제