조기 수렴 시 파티클 리셋 적용
모델의 초기화 수정 => 랜덤값은 문제가 많음
미니배치 초기화 시 자동 shuffle 적용
negative 파티클 특정 수치마다 초기화
This commit is contained in:
jung-geun
2023-10-20 05:47:25 +09:00
parent 6c6aa221f8
commit 6e838ddfd5
7 changed files with 167 additions and 73 deletions

View File

@@ -1,7 +1,7 @@
from .optimizer import Optimizer as optimizer
from .particle import Particle as particle
__version__ = "0.1.9"
__version__ = "1.0.0"
__all__ = [
"optimizer",

View File

@@ -39,8 +39,12 @@ class Optimizer:
np_seed: int = None,
tf_seed: int = None,
random_state: tuple = None,
particle_min: float = -5,
particle_max: float = 5,
particle_min: float = -0.3,
particle_max: float = 0.3,
convergence_reset: bool = False,
convergence_reset_patience: int = 10,
convergence_reset_min_delta: float = 0.0001,
convergence_reset_monitor: str = "loss",
):
"""
particle swarm optimization
@@ -59,6 +63,10 @@ class Optimizer:
tf_seed (int, optional): tensorflow seed. Defaults to None.
particle_min (float, optional): 가중치 초기화 최소값. Defaults to -5.
particle_max (float, optional): 가중치 초기화 최대값. Defaults to 5.
convergence_reset (bool, optional): early stopping 사용 여부. Defaults to False.
convergence_reset_patience (int, optional): early stopping 사용시 얼마나 기다릴지. Defaults to 10.
convergence_reset_min_delta (float, optional): early stopping 사용시 얼마나 기다릴지. Defaults to 0.0001.
convergence_reset_monitor (str, optional): early stopping 사용시 어떤 값을 기준으로 할지. Defaults to "loss".
"""
if np_seed is not None:
np.random.seed(np_seed)
@@ -95,36 +103,36 @@ class Optimizer:
self.day = datetime.now().strftime("%Y%m%d-%H%M%S")
self.empirical_balance = False
negative_count = 0
self.train_summary_writer = [None] * self.n_particles
try:
print(f"start running time : {self.day}")
for i in tqdm(range(self.n_particles), desc="Initializing Particles"):
model_ = keras.models.model_from_json(model.to_json())
w_, sh_, len_ = self._encode(model_.get_weights())
w_ = np.random.uniform(particle_min, particle_max, len(w_))
model_.set_weights(self._decode(w_, sh_, len_))
model_.compile(
loss=self.loss,
optimizer="sgd",
metrics=["accuracy"]
)
self.particles[i] = Particle(
model_,
loss,
negative=True if i < negative_swarm * self.n_particles else False,
mutation=mutation_swarm,
model,
self.loss,
negative=True if i < self.negative_swarm * self.n_particles else False,
mutation=self.mutation_swarm,
converge_reset=convergence_reset,
converge_reset_patience=convergence_reset_patience,
converge_reset_monitor=convergence_reset_monitor,
converge_reset_min_delta=convergence_reset_min_delta,
)
if i < negative_swarm * self.n_particles:
if i < self.negative_swarm * self.n_particles:
negative_count += 1
# del m, init_weights, w_, sh_, len_
gc.collect()
tf.keras.backend.reset_uids()
tf.keras.backend.clear_session()
print(f"negative swarm : {negative_count} / {self.n_particles}")
# del model_
print(f"negative swarm : {negative_count} / {n_particles}")
print(f"mutation swarm : {mutation_swarm * 100}%")
gc.collect()
@@ -240,6 +248,7 @@ class Optimizer:
self.index += 1
if self.index >= self.max_index:
self.index = 0
self.__getBatchSlice__(self.batch_size)
return self.dataset[self.index][0], self.dataset[self.index][1]
def getMaxIndex(self):
@@ -259,12 +268,15 @@ class Optimizer:
if self.batch_size > len(self.x):
self.batch_size = len(self.x)
print(f"batch size : {self.batch_size}")
self.dataset = list(
tf.data.Dataset.from_tensor_slices(
(self.x, self.y)).batch(batch_size)
)
self.dataset = self.__getBatchSlice__(self.batch_size)
self.max_index = len(self.dataset)
def __getBatchSlice__(self, batch_size):
return list(
tf.data.Dataset.from_tensor_slices(
(self.x, self.y)).shuffle(len(self.x)).batch(batch_size)
)
def getDataset(self):
return self.dataset
@@ -281,7 +293,8 @@ class Optimizer:
empirical_balance: bool = False,
dispersion: bool = False,
check_point: int = None,
batch_size: int = 128,
batch_size: int = None,
validate_data: any = None,
):
"""
# Args:
@@ -295,12 +308,35 @@ class Optimizer:
empirical_balance : bool - True : EBPSO, False : PSO,
dispersion : bool - True : g_best 의 값을 분산시켜 전역해를 찾음, False : g_best 의 값만 사용
check_point : int - 저장할 위치 - None : 저장 안함
batch_size : int - batch size default : 128
batch_size : int - batch size default : None => len(x) // 10
batch_size > len(x) : auto max batch size
"""
try:
if x.shape[0] != y.shape[0]:
raise ValueError("x, y shape error")
if log not in [0, 1, 2]:
raise ValueError("log not in [0, 1, 2]")
if save_info and save_path is None:
raise ValueError("save_path is None")
if renewal not in ["acc", "loss", "both"]:
raise ValueError("renewal not in ['acc', 'loss', 'both']")
if check_point is not None and save_path is None:
raise ValueError("save_path is None")
except ValueError as ve:
sys.exit(ve)
self.save_path = save_path
self.empirical_balance = empirical_balance
self.dispersion = dispersion
if batch_size is None:
batch_size = len(x) // 10
self.renewal = renewal
particle_sum = 0 # x_j
try:
@@ -326,7 +362,7 @@ class Optimizer:
model_ = keras.models.model_from_json(self.model.to_json())
model_.compile(loss=self.loss, optimizer="adam", metrics=["accuracy"])
model_.fit(x, y, epochs=1, batch_size=64, verbose=0)
model_.fit(x, y, epochs=1, verbose=0)
score = model_.evaluate(x, y, verbose=1)
if renewal == "acc":

View File

@@ -15,29 +15,51 @@ class Particle:
"""
def __init__(
self, model: keras.models, loss, negative: bool = False, mutation: float = 0
self,
model: keras.models,
loss,
negative: bool = False,
mutation: float = 0,
converge_reset: bool = False,
converge_reset_patience: int = 10,
converge_reset_monitor: str = "loss",
converge_reset_min_delta: float = 0.0001,
):
"""
Args:
model (keras.models): 학습 및 검증을 위한 모델
loss (str|): 손실 함수
negative (bool, optional): 음의 가중치 사용 여부 - 전역 탐색 용도(조기 수렴 방지). Defaults to False.
mutation (float, optional): 돌연변이 확률. Defaults to 0.
converge_reset (bool, optional): 조기 종료 사용 여부. Defaults to False.
converge_reset_patience (int, optional): 조기 종료를 위한 기다리는 횟수. Defaults to 10.
"""
self.model = model
self.loss = loss
init_weights = self.model.get_weights()
i_w_, i_s, i_l = self._encode(init_weights)
i_w_ = np.random.uniform(-0.5, 0.5, len(i_w_))
self.velocities = self._decode(i_w_, i_s, i_l)
try:
if converge_reset and converge_reset_monitor not in ["acc", "accuracy", "loss"]:
raise ValueError(
"converge_reset_monitor must be 'acc' or 'accuracy' or 'loss'"
)
if converge_reset and converge_reset_min_delta < 0:
raise ValueError("converge_reset_min_delta must be positive")
if converge_reset and converge_reset_patience < 0:
raise ValueError("converge_reset_patience must be positive")
except ValueError as e:
print(e)
exit(1)
self.reset_particle()
self.negative = negative
self.mutation = mutation
self.best_score = 0
self.best_weights = init_weights
self.before_best = init_weights
self.before_w = 0
del i_w_, i_s, i_l
del init_weights
self.score_history = []
self.converge_reset = converge_reset
self.converge_reset_patience = converge_reset_patience
self.converge_reset_monitor = converge_reset_monitor
self.converge_reset_min_delta = converge_reset_min_delta
def __del__(self):
del self.model
@@ -89,6 +111,7 @@ class Particle:
w_ = np.reshape(w_, shape[i])
weights.append(w_)
start = end
del start, end, w_
del shape, length
del weight
@@ -119,6 +142,42 @@ class Particle:
return score
def __check_converge_reset__(self, score, monitor="loss", patience: int = 10, min_delta: float = 0.0001):
"""
early stop을 구현한 함수
Args:
score (float): 현재 점수 [0] - loss, [1] - acc
monitor (str, optional): 감시할 점수. Defaults to "loss".
patience (int, optional): early stop을 위한 기다리는 횟수. Defaults to 10.
min_delta (float, optional): early stop을 위한 최소 변화량. Defaults to 0.0001.
"""
if monitor in ["acc", "accuracy"]:
self.score_history.append(score[1])
elif monitor in ["loss"]:
self.score_history.append(score[0])
if len(self.score_history) > patience:
last_scores = self.score_history[-patience:]
if max(last_scores) - min(last_scores) < min_delta:
return True
return False
def reset_particle(self):
self.model = keras.models.model_from_json(self.model.to_json())
self.model.compile(optimizer="adam", loss=self.loss,
metrics=["accuracy"])
init_weights = self.model.get_weights()
i_w_, i_s, i_l = self._encode(init_weights)
i_w_ = np.random.uniform(-0.05, 0.05, len(i_w_))
self.velocities = self._decode(i_w_, i_s, i_l)
self.best_weights = init_weights
self.before_best = init_weights
del init_weights, i_w_, i_s, i_l
self.score_history = []
def _update_velocity(self, local_rate, global_rate, w, g_best):
"""
현재 속도 업데이트
@@ -140,7 +199,7 @@ class Particle:
r_1 = np.random.rand()
if not np.array_equal(encode_before, encode_g, equal_nan=True):
self.before_w = w * 0.6
self.before_w = w * 0.5
w = w + self.before_w
else:
self.before_w *= 0.75
@@ -152,6 +211,9 @@ class Particle:
+ local_rate * r_0 * (encode_p - encode_w)
+ -1 * global_rate * r_1 * (encode_g - encode_w)
)
if len(self.score_history) > 10 and max(self.score_history[-10:]) - min(self.score_history[-10:]) < 0.01:
self.reset_particle()
else:
new_v = (
w * encode_v
@@ -160,7 +222,7 @@ class Particle:
)
if np.random.rand() < self.mutation:
m_v = np.random.uniform(-0.2, 0.2, len(encode_v))
m_v = np.random.uniform(-0.1, 0.1, len(encode_v))
new_v = m_v
self.velocities = self._decode(new_v, w_sh, w_len)
@@ -196,7 +258,7 @@ class Particle:
r_1 = np.random.rand()
if not np.array_equal(encode_before, encode_g, equal_nan=True):
self.before_w = w * 0.6
self.before_w = w * 0.5
w = w + self.before_w
else:
self.before_w *= 0.75
@@ -258,7 +320,13 @@ class Particle:
self._update_velocity(local_rate, global_rate, w, g_best)
self._update_weights()
return self.get_score(x, y, renewal)
score = self.get_score(x, y, renewal)
if self.converge_reset and self.__check_converge_reset__(
score, self.converge_reset_monitor, self.converge_reset_patience, self.converge_reset_min_delta):
self.reset_particle()
return score
def step_w(
self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal: str = "acc"