조기 수렴 시 파티클 리셋 적용
모델의 초기화 수정 => 랜덤값은 문제가 많음
미니배치 초기화 시 자동 shuffle 적용
negative 파티클 특정 수치마다 초기화
This commit is contained in:
jung-geun
2023-10-20 05:47:25 +09:00
parent 6c6aa221f8
commit 6e838ddfd5
7 changed files with 167 additions and 73 deletions

View File

@@ -15,29 +15,51 @@ class Particle:
"""
def __init__(
self, model: keras.models, loss, negative: bool = False, mutation: float = 0
self,
model: keras.models,
loss,
negative: bool = False,
mutation: float = 0,
converge_reset: bool = False,
converge_reset_patience: int = 10,
converge_reset_monitor: str = "loss",
converge_reset_min_delta: float = 0.0001,
):
"""
Args:
model (keras.models): 학습 및 검증을 위한 모델
loss (str|): 손실 함수
negative (bool, optional): 음의 가중치 사용 여부 - 전역 탐색 용도(조기 수렴 방지). Defaults to False.
mutation (float, optional): 돌연변이 확률. Defaults to 0.
converge_reset (bool, optional): 조기 종료 사용 여부. Defaults to False.
converge_reset_patience (int, optional): 조기 종료를 위한 기다리는 횟수. Defaults to 10.
"""
self.model = model
self.loss = loss
init_weights = self.model.get_weights()
i_w_, i_s, i_l = self._encode(init_weights)
i_w_ = np.random.uniform(-0.5, 0.5, len(i_w_))
self.velocities = self._decode(i_w_, i_s, i_l)
try:
if converge_reset and converge_reset_monitor not in ["acc", "accuracy", "loss"]:
raise ValueError(
"converge_reset_monitor must be 'acc' or 'accuracy' or 'loss'"
)
if converge_reset and converge_reset_min_delta < 0:
raise ValueError("converge_reset_min_delta must be positive")
if converge_reset and converge_reset_patience < 0:
raise ValueError("converge_reset_patience must be positive")
except ValueError as e:
print(e)
exit(1)
self.reset_particle()
self.negative = negative
self.mutation = mutation
self.best_score = 0
self.best_weights = init_weights
self.before_best = init_weights
self.before_w = 0
del i_w_, i_s, i_l
del init_weights
self.score_history = []
self.converge_reset = converge_reset
self.converge_reset_patience = converge_reset_patience
self.converge_reset_monitor = converge_reset_monitor
self.converge_reset_min_delta = converge_reset_min_delta
def __del__(self):
del self.model
@@ -89,6 +111,7 @@ class Particle:
w_ = np.reshape(w_, shape[i])
weights.append(w_)
start = end
del start, end, w_
del shape, length
del weight
@@ -119,6 +142,42 @@ class Particle:
return score
def __check_converge_reset__(self, score, monitor="loss", patience: int = 10, min_delta: float = 0.0001):
"""
early stop을 구현한 함수
Args:
score (float): 현재 점수 [0] - loss, [1] - acc
monitor (str, optional): 감시할 점수. Defaults to "loss".
patience (int, optional): early stop을 위한 기다리는 횟수. Defaults to 10.
min_delta (float, optional): early stop을 위한 최소 변화량. Defaults to 0.0001.
"""
if monitor in ["acc", "accuracy"]:
self.score_history.append(score[1])
elif monitor in ["loss"]:
self.score_history.append(score[0])
if len(self.score_history) > patience:
last_scores = self.score_history[-patience:]
if max(last_scores) - min(last_scores) < min_delta:
return True
return False
def reset_particle(self):
self.model = keras.models.model_from_json(self.model.to_json())
self.model.compile(optimizer="adam", loss=self.loss,
metrics=["accuracy"])
init_weights = self.model.get_weights()
i_w_, i_s, i_l = self._encode(init_weights)
i_w_ = np.random.uniform(-0.05, 0.05, len(i_w_))
self.velocities = self._decode(i_w_, i_s, i_l)
self.best_weights = init_weights
self.before_best = init_weights
del init_weights, i_w_, i_s, i_l
self.score_history = []
def _update_velocity(self, local_rate, global_rate, w, g_best):
"""
현재 속도 업데이트
@@ -140,7 +199,7 @@ class Particle:
r_1 = np.random.rand()
if not np.array_equal(encode_before, encode_g, equal_nan=True):
self.before_w = w * 0.6
self.before_w = w * 0.5
w = w + self.before_w
else:
self.before_w *= 0.75
@@ -152,6 +211,9 @@ class Particle:
+ local_rate * r_0 * (encode_p - encode_w)
+ -1 * global_rate * r_1 * (encode_g - encode_w)
)
if len(self.score_history) > 10 and max(self.score_history[-10:]) - min(self.score_history[-10:]) < 0.01:
self.reset_particle()
else:
new_v = (
w * encode_v
@@ -160,7 +222,7 @@ class Particle:
)
if np.random.rand() < self.mutation:
m_v = np.random.uniform(-0.2, 0.2, len(encode_v))
m_v = np.random.uniform(-0.1, 0.1, len(encode_v))
new_v = m_v
self.velocities = self._decode(new_v, w_sh, w_len)
@@ -196,7 +258,7 @@ class Particle:
r_1 = np.random.rand()
if not np.array_equal(encode_before, encode_g, equal_nan=True):
self.before_w = w * 0.6
self.before_w = w * 0.5
w = w + self.before_w
else:
self.before_w *= 0.75
@@ -258,7 +320,13 @@ class Particle:
self._update_velocity(local_rate, global_rate, w, g_best)
self._update_weights()
return self.get_score(x, y, renewal)
score = self.get_score(x, y, renewal)
if self.converge_reset and self.__check_converge_reset__(
score, self.converge_reset_monitor, self.converge_reset_patience, self.converge_reset_min_delta):
self.reset_particle()
return score
def step_w(
self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal: str = "acc"