#5 - 메모리의 점진적인 누수
파티클의 갯수 4000개 epochs 100회 기준 최종적으로 150GB 의 메모리 사용량을 보인다
하지만 초기의 메모리는 26GB 로 점진적으로 메모리의 사용량이 증가하는것으로 볼 수 있다
This commit is contained in:
jung-geun
2023-09-04 14:07:22 +09:00
parent e5f364c3b2
commit 727ae8c604
5 changed files with 15661 additions and 19 deletions

View File

@@ -210,6 +210,9 @@ best_score = pso_mnist.fit(
![mnist_acc](./history_plt/mnist_63.84_acc.png)
![mnist_loss](./history_plt/mnist_63.84_loss.png)
63%의 정확도가 나타나는 것으로 보아 최적화가 되어가고 있다고 볼 수 있을 것 같습니다.
하지만 정확도가 더 이상 올라가지 않고 정체되는 것으로 보아 조기 수렴하는 문제가 발생하고 있다고 생각합니다.
## Trouble Shooting
> 1. 딥러닝 알고리즘 특성상 weights는 처음 컴파일시 무작위하게 생성된다. weights의 각 지점의 중요도는 매번 무작위로 정해지기에 전역 최적값으로 찾아갈 때 값이 높은 loss를 향해서 상승하는 현상이 나타난다.</br>
@@ -226,9 +229,14 @@ best_score = pso_mnist.fit(
-> keras 모델을 사용할때 predict, evaluate 함수를 사용하면 메모리 누수가 발생하는 문제를 찾았습니다. 해결방법을 추가로 찾아보는중 입니다. -> 메모리 누수를 획기적으로 줄여 현재는 파티클의 수를 500개에서 1000개까지 증가시켜도 문제가 없습니다.</br>
-> 추가로 파티클의 수가 적을때에도 전역 최적해를 쉽게 찾는 방법을 찾는중 입니다</br>
> 4. 모델의 크기가 커지면 수렴이 늦어지고 정확도가 떨어지는 현상이 발견되었다. 모델의 크기에 맞는 파라미터를 찾아야할 것 같다.
> 4. 현재 tensorboard 로 로그 저장시 994개 이상 저장이 안되는 문제가 발생하고 있습니다.
> 5. EBPSO 의 방식을 추가로 적용을 하였으나 수식을 잘못 적용을 한것인지 기본 pso 보다 더 떨어지는 정확도를 보이고 있다. (현재 수정중)
-> csv 파일로 저장할 경우 갯수에는 문제가 발생하지 않습니다.
-> 수가 적을때 한 파티클이 지역 최적해에서 머무를 경우 파티클을 초기화 하는 방법이 필요해 보입니다.
> 5. 모델의 크기가 커지면 수렴이 늦어지고 정확도가 떨어지는 현상이 발견되었다. 모델의 크기에 맞는 파라미터를 찾아야할 것 같다.
> 6. EBPSO 의 방식을 추가로 적용을 하였으나 수식을 잘못 적용을 한것인지 기본 pso 보다 더 떨어지는 정확도를 보이고 있다. (현재 수정중)
### 개인적인 생각