dev container 설정 - tqdm + tensorflow 자동 설치 env name = pso 로 자동 생성
This commit is contained in:
jung-geun
2023-07-07 18:30:08 +09:00
parent c163de6cb6
commit 7410ed9e04
12 changed files with 124 additions and 135 deletions

View File

@@ -7,19 +7,19 @@ results with a number of independent runs of standard Backpropagation algorithm
@author Mike Holcomb (mjh170630@utdallas.edu)
"""
import tensorflow as tf
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from psokeras import Optimizer
N = 50 # number of particles
STEPS = 500 # number of steps
LOSS = 'mse' # Loss function
BATCH_SIZE = 32 # Size of batches to train on
N = 50 # number of particles
STEPS = 500 # number of steps
LOSS = "mse" # Loss function
BATCH_SIZE = 32 # Size of batches to train on
def build_model(loss):
@@ -30,12 +30,11 @@ def build_model(loss):
:return: Keras dense model of predefined structure
"""
model = Sequential()
model.add(Dense(4, activation='sigmoid', input_dim=4, use_bias=True))
model.add(Dense(4, activation='sigmoid', use_bias=True))
model.add(Dense(3, activation='softmax', use_bias=True))
model.add(Dense(4, activation="sigmoid", input_dim=4, use_bias=True))
model.add(Dense(4, activation="sigmoid", use_bias=True))
model.add(Dense(3, activation="softmax", use_bias=True))
model.compile(loss=loss,
optimizer='adam')
model.compile(loss=loss, optimizer="adam")
return model
@@ -52,11 +51,10 @@ def vanilla_backpropagation(x_train, y_train):
for i in range(N):
model_s = build_model(LOSS)
model_s.fit(x_train, y_train,
epochs=STEPS,
batch_size=BATCH_SIZE,
verbose=0)
train_score = model_s.evaluate(x_train, y_train, batch_size=BATCH_SIZE, verbose=0)
model_s.fit(x_train, y_train, epochs=STEPS, batch_size=BATCH_SIZE, verbose=0)
train_score = model_s.evaluate(
x_train, y_train, batch_size=BATCH_SIZE, verbose=0
)
if train_score < best_score:
best_model = model_s
best_score = train_score
@@ -66,11 +64,13 @@ def vanilla_backpropagation(x_train, y_train):
if __name__ == "__main__":
# Section I: Build the data set
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data,
keras.utils.to_categorical(iris.target, num_classes=None),
test_size=0.5,
random_state=0,
stratify=iris.target)
x_train, x_test, y_train, y_test = train_test_split(
iris.data,
keras.utils.to_categorical(iris.target, num_classes=None),
test_size=0.5,
random_state=0,
stratify=iris.target,
)
# Section II: First run the backpropagation simulation
model_s = vanilla_backpropagation(x_train=x_train, y_train=y_train)
@@ -84,13 +84,14 @@ if __name__ == "__main__":
model_p = build_model(LOSS)
# Instantiate optimizer with model, loss function, and hyperparameters
pso = Optimizer(model=model_p,
loss=LOSS,
n=N, # Number of particles
acceleration=1.0, # Contribution of recursive particle velocity (acceleration)
local_rate=0.6, # Contribution of locally best weights to new velocity
global_rate=0.4 # Contribution of globally best weights to new velocity
)
pso = Optimizer(
model=model_p,
loss=LOSS,
n=N, # Number of particles
acceleration=1.0, # Contribution of recursive particle velocity (acceleration)
local_rate=0.6, # Contribution of locally best weights to new velocity
global_rate=0.4, # Contribution of globally best weights to new velocity
)
# Train model on provided data
pso.fit(x_train, y_train, steps=STEPS, batch_size=BATCH_SIZE)