dev container 설정 - tqdm + tensorflow 자동 설치 env name = pso 로 자동 생성
This commit is contained in:
jung-geun
2023-07-07 18:30:08 +09:00
parent c163de6cb6
commit 7410ed9e04
12 changed files with 124 additions and 135 deletions

View File

@@ -1,5 +1,6 @@
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
@@ -10,23 +11,23 @@ if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True)
except RuntimeError as e:
print(e)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
def make_model():
model = Sequential()
model.add(layers.Dense(10, activation='relu', input_shape=(4,)))
model.add(layers.Dense(10, activation='relu'))
model.add(layers.Dense(3, activation='softmax'))
model.add(layers.Dense(10, activation="relu", input_shape=(4,)))
model.add(layers.Dense(10, activation="relu"))
model.add(layers.Dense(3, activation="softmax"))
return model
def load_data():
iris = load_iris()
x = iris.data
@@ -34,18 +35,21 @@ def load_data():
y = keras.utils.to_categorical(y, 3)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, shuffle=True, stratify=y)
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.2, shuffle=True, stratify=y
)
return x_train, x_test, y_train, y_test
if __name__ == "__main__":
model = make_model()
x_train, x_test, y_train, y_test = load_data()
print(x_train.shape, y_train.shape)
loss = ['categorical_crossentropy', 'accuracy','mse']
metrics = ['accuracy']
model.compile(optimizer='sgd', loss=loss[0], metrics=metrics[0])
loss = ["categorical_crossentropy", "accuracy", "mse"]
metrics = ["accuracy"]
model.compile(optimizer="sgd", loss=loss[0], metrics=metrics[0])
model.fit(x_train, y_train, epochs=200, batch_size=32, validation_split=0.2)
model.evaluate(x_test, y_test, batch_size=32)
model.evaluate(x_test, y_test, batch_size=32)