From 768d3ccee746fe408f249ea2442705e25f21ec3d Mon Sep 17 00:00:00 2001 From: jung-geun Date: Thu, 13 Jul 2023 21:39:40 +0900 Subject: [PATCH] =?UTF-8?q?23-07-13=20mnist=20=ED=8C=8C=ED=8B=B0=ED=81=B4?= =?UTF-8?q?=20=EA=B0=9C=EC=88=98=2075=20->=20150=20=EC=9C=BC=EB=A1=9C=20?= =?UTF-8?q?=EC=A1=B0=EC=A0=95=20tensorboard=20=EB=A1=9C=20log=20=EB=B6=84?= =?UTF-8?q?=EC=84=9D=ED=95=A0=20=EC=88=98=20=EC=9E=88=EA=B2=8C=20=EC=88=98?= =?UTF-8?q?=EC=A0=95=20pypi=20=ED=8C=A8=ED=82=A4=EC=A7=80=20=ED=8C=8C?= =?UTF-8?q?=EC=9D=BC=20=EC=A0=9C=EA=B1=B0=20conda=20env=20=ED=8C=8C?= =?UTF-8?q?=EC=9D=BC=20tensorflow=202.12=20->=202.11?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .gitignore | 6 + README.md | 9 +- build/lib/pso/__init__.py | 11 - build/lib/pso/optimizer.py | 543 ------------------------ build/lib/pso/optimizer_target.py | 524 ----------------------- build/lib/pso/particle.py | 307 -------------- conda_env/environment.yaml | 19 +- dist/pso2keras-0.1.0-py3-none-any.whl | Bin 15668 -> 0 bytes dist/pso2keras-0.1.0.tar.gz | Bin 13212 -> 0 bytes metacode/optimizer_target.py | 2 +- mnist.py | 21 +- plt.ipynb | 140 +----- pso/__init__.py | 10 +- pso/optimizer.py | 111 ++--- pso2keras.egg-info/PKG-INFO | 222 ---------- pso2keras.egg-info/SOURCES.txt | 12 - pso2keras.egg-info/dependency_links.txt | 1 - pso2keras.egg-info/not-zip-safe | 1 - pso2keras.egg-info/requires.txt | 4 - pso2keras.egg-info/top_level.txt | 1 - setup.py | 31 +- test.ipynb | 48 ++- 22 files changed, 157 insertions(+), 1866 deletions(-) delete mode 100644 build/lib/pso/__init__.py delete mode 100644 build/lib/pso/optimizer.py delete mode 100644 build/lib/pso/optimizer_target.py delete mode 100644 build/lib/pso/particle.py delete mode 100644 dist/pso2keras-0.1.0-py3-none-any.whl delete mode 100644 dist/pso2keras-0.1.0.tar.gz delete mode 100644 pso2keras.egg-info/PKG-INFO delete mode 100644 pso2keras.egg-info/SOURCES.txt delete mode 100644 pso2keras.egg-info/dependency_links.txt delete mode 100644 pso2keras.egg-info/not-zip-safe delete mode 100644 pso2keras.egg-info/requires.txt delete mode 100644 pso2keras.egg-info/top_level.txt diff --git a/.gitignore b/.gitignore index 9dd6883..0412781 100644 --- a/.gitignore +++ b/.gitignore @@ -5,11 +5,17 @@ __pycache__/ .ipynb_checkpoints/ +# pypi +dist/ +build/ +pso2keras.egg-info/ + # 테스트용 파일 test.ipynb # 결과 저장용 디렉토리 result/ +logs/ # 논문 관련 파일 *.pdf diff --git a/README.md b/README.md index 59c20ff..d1a7f48 100644 --- a/README.md +++ b/README.md @@ -98,7 +98,7 @@ pso_xor = Optimizer( mutation_swarm=0.2, particle_min=-3, particle_max=3, - ) +) best_score = pso_xor.fit( x_test, @@ -110,8 +110,7 @@ best_score = pso_xor.fit( empirical_balance=False, Dispersion=False, check_point=25, - ) - +) ``` 위의 파라미터 기준 10 세대 근처부터 정확도가 100%가 나오는 것을 확인하였습니다 @@ -181,7 +180,7 @@ best_score = pso_mnist.fit( empirical_balance=False, Dispersion=False, check_point=25 - ) +) ``` 위의 파라미터 기준 현재 정확도 43.38%를 보이고 있습니다 @@ -196,6 +195,8 @@ best_score = pso_mnist.fit( > 2. 지역최적값에 계속 머무르는 조기 수렴 현상이 나타난다. - 30% 정도의 정확도를 가진다 +-> 지역최적값에 머무르는 것을 방지하기 위해 negative_swarm, mutation_swarm 파라미터를 추가하였습니다 - 현재 43% 정도의 정확도를 보이고 있습니다 + ### 개인적인 생각 > 머신러닝 분류 방식에 존재하는 random forest 방식을 이용하여, 오차역전파 함수를 최적화 하는 방법이 있을것 같습니다 diff --git a/build/lib/pso/__init__.py b/build/lib/pso/__init__.py deleted file mode 100644 index 35ee70a..0000000 --- a/build/lib/pso/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -from .optimizer import Optimizer -from .particle import Particle -# from .optimizer_target import Optimizer_Target - -__version__ = '0.1.0' - -__all__ = [ - 'Optimizer', - 'Particle', - # 'Optimizer_Target' -] \ No newline at end of file diff --git a/build/lib/pso/optimizer.py b/build/lib/pso/optimizer.py deleted file mode 100644 index 740d6c1..0000000 --- a/build/lib/pso/optimizer.py +++ /dev/null @@ -1,543 +0,0 @@ -import gc -import json -import os -import sys -from datetime import datetime - -import numpy as np -import tensorflow as tf -from tensorflow import keras -from tqdm import tqdm - -from .particle import Particle - -gpus = tf.config.experimental.list_physical_devices("GPU") -if gpus: - try: - # tf.config.experimental.set_visible_devices(gpus[0], "GPU") - # print(tf.config.experimental.get_visible_devices("GPU")) - tf.config.experimental.set_memory_growth(gpus[0], True) - # print("set memory growth") - except RuntimeError as e: - print(e) - - -class Optimizer: - """ - particle swarm optimization - PSO 실행을 위한 클래스 - """ - - def __init__( - self, - model: keras.models, - loss="mse", - n_particles: int = 10, - c0=0.5, - c1=1.5, - w_min=0.5, - w_max=1.5, - negative_swarm: float = 0, - mutation_swarm: float = 0, - np_seed: int = None, - tf_seed: int = None, - particle_min: float = -5, - particle_max: float = 5, - ): - """ - particle swarm optimization - - Args: - model (keras.models): 모델 구조 - loss (str): 손실함수 - n_particles (int): 파티클 개수 - c0 (float): local rate - 지역 최적값 관성 수치 - c1 (float): global rate - 전역 최적값 관성 수치 - w_min (float): 최소 관성 수치 - w_max (float): 최대 관성 수치 - negative_swarm (float): 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값 - mutation_swarm (float): 돌연변이가 일어날 확률 - np_seed (int, optional): numpy seed. Defaults to None. - tf_seed (int, optional): tensorflow seed. Defaults to None. - """ - if np_seed is not None: - np.random.seed(np_seed) - if tf_seed is not None: - tf.random.set_seed(tf_seed) - - self.random_state = np.random.get_state() - - self.model = model # 모델 구조 - self.loss = loss # 손실함수 - self.n_particles = n_particles # 파티클 개수 - self.particles = [None] * n_particles # 파티클 리스트 - self.c0 = c0 # local rate - 지역 최적값 관성 수치 - self.c1 = c1 # global rate - 전역 최적값 관성 수치 - self.w_min = w_min # 최소 관성 수치 - self.w_max = w_max # 최대 관성 수치 - self.negative_swarm = negative_swarm # 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값 - self.mutation_swarm = mutation_swarm # 관성을 추가로 사용할 파티클 비율 - 0 ~ 1 사이의 값 - self.g_best_score = [0, np.inf] # 최고 점수 - 시작은 0으로 초기화 - self.g_best = None # 최고 점수를 받은 가중치 - self.g_best_ = None # 최고 점수를 받은 가중치 - 값의 분산을 위한 변수 - self.avg_score = 0 # 평균 점수 - - self.save_path = None # 저장 위치 - self.renewal = "acc" - self.Dispersion = False - self.day = datetime.now().strftime("%m-%d-%H-%M") - self.empirical_balance = False - - negative_count = 0 - - for i in tqdm(range(self.n_particles), desc="Initializing Particles"): - m = keras.models.model_from_json(model.to_json()) - init_weights = m.get_weights() - w_, sh_, len_ = self._encode(init_weights) - w_ = np.random.uniform(particle_min, particle_max, len(w_)) - m.set_weights(self._decode(w_, sh_, len_)) - m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"]) - self.particles[i] = Particle( - m, - loss, - negative=True if i < negative_swarm * self.n_particles else False, - mutation=mutation_swarm, - ) - if i < negative_swarm * self.n_particles: - negative_count += 1 - - print(f"negative swarm : {negative_count} / {self.n_particles}") - print( - f"mutation swarm : {mutation_swarm * self.n_particles} / {self.n_particles}" - ) - - gc.collect() - - def __del__(self): - del self.model - del self.loss - del self.n_particles - del self.particles - del self.c0 - del self.c1 - del self.w_min - del self.w_max - del self.negative_swarm - del self.g_best_score - del self.g_best - del self.g_best_ - del self.avg_score - gc.collect() - - def _encode(self, weights): - """ - 가중치를 1차원으로 풀어서 반환 - - Args: - weights (list) : keras model의 가중치 - Returns: - (numpy array) : 가중치 - 1차원으로 풀어서 반환 - (list) : 가중치의 원본 shape - (list) : 가중치의 원본 shape의 길이 - """ - w_gpu = np.array([]) - length = [] - shape = [] - for layer in weights: - shape.append(layer.shape) - w_ = layer.reshape(-1) - length.append(len(w_)) - w_gpu = np.append(w_gpu, w_) - - del weights - - return w_gpu, shape, length - - def _decode(self, weight, shape, length): - """ - _encode 로 인코딩된 가중치를 원본 shape으로 복원 - 파라미터는 encode의 리턴값을 그대로 사용을 권장 - - Args: - weight (numpy array): 가중치 - 1차원으로 풀어서 반환 - shape (list): 가중치의 원본 shape - length (list): 가중치의 원본 shape의 길이 - Returns: - (list) : 가중치 원본 shape으로 복원 - """ - weights = [] - start = 0 - for i in range(len(shape)): - end = start + length[i] - w_ = weight[start:end] - w_ = np.reshape(w_, shape[i]) - weights.append(w_) - start = end - - del weight - del shape - del length - - return weights - - def f(self, x, y, weights): - """ - EBPSO의 목적함수 (예상) - - Args: - x (list): 입력 데이터 - y (list): 출력 데이터 - weights (list): 가중치 - - Returns: - (float): 목적 함수 값 - """ - self.model.set_weights(weights) - self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"]) - score = self.model.evaluate(x, y, verbose=0)[1] - if score > 0: - return 1 / (1 + score) - else: - return 1 + np.abs(score) - - def fit( - self, - x, - y, - epochs: int = 100, - save: bool = False, - save_path: str = "./result", - renewal: str = "acc", - empirical_balance: bool = False, - Dispersion: bool = False, - check_point: int = None, - ): - """ - Args: - x_test : numpy array, - y_test : numpy array, - epochs : int, - save : bool - True : save, False : not save - save_path : str ex) "./result", - renewal : str ex) "acc" or "loss" or "both", - empirical_balance : bool - True : - Dispersion : bool - True : g_best 의 값을 분산시켜 전역해를 찾음, False : g_best 의 값만 사용 - check_point : int - 저장할 위치 - None : 저장 안함 - """ - self.save_path = save_path - self.empirical_balance = empirical_balance - self.Dispersion = Dispersion - - self.renewal = renewal - - try: - if save: - if save_path is None: - raise ValueError("save_path is None") - else: - self.save_path = save_path - if not os.path.exists(save_path): - os.makedirs(save_path, exist_ok=True) - except ValueError as e: - print(e) - sys.exit(1) - - for i in tqdm(range(self.n_particles), desc="Initializing velocity"): - p = self.particles[i] - local_score = p.get_score(x, y, renewal=renewal) - - if renewal == "acc": - if local_score[1] > self.g_best_score[0]: - self.g_best_score[0] = local_score[1] - self.g_best = p.get_best_weights() - self.g_best_ = p.get_best_weights() - elif renewal == "loss": - if local_score[0] < self.g_best_score[1]: - self.g_best_score[1] = local_score[0] - self.g_best = p.get_best_weights() - self.g_best_ = p.get_best_weights() - elif renewal == "both": - if local_score[1] > self.g_best_score[0]: - self.g_best_score[0] = local_score[1] - self.g_best_score[1] = local_score[0] - self.g_best = p.get_best_weights() - self.g_best_ = p.get_best_weights() - - if local_score[0] == None: - local_score[0] = np.inf - - if local_score[1] == None: - local_score[1] = 0 - - if save: - with open( - f"./{save_path}/{self.day}_{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv", - "a", - ) as f: - f.write(f"{local_score[0]}, {local_score[1]}") - if i != self.n_particles - 1: - f.write(", ") - else: - f.write("\n") - - del local_score - gc.collect() - - print( - f"initial g_best_score : {self.g_best_score[0] if self.renewal == 'acc' else self.g_best_score[1]}" - ) - - try: - epochs_pbar = tqdm( - range(epochs), - desc=f"best {self.g_best_score[0]:.4f}|{self.g_best_score[1]:.4f}", - ascii=True, - leave=True, - ) - for epoch in epochs_pbar: - acc = 0 - loss = 0 - min_score = np.inf - max_score = 0 - min_loss = np.inf - max_loss = 0 - - ts = self.c0 + np.random.rand() * (self.c1 - self.c0) - - part_pbar = tqdm( - range(len(self.particles)), - desc=f"acc : {max_score:.4f} loss : {min_loss:.4f}", - ascii=True, - leave=False, - ) - for i in part_pbar: - part_pbar.set_description( - f"acc : {max_score:.4f} loss : {min_loss:.4f}" - ) - w = self.w_max - (self.w_max - self.w_min) * epoch / epochs - - g_, g_sh, g_len = self._encode(self.g_best) - decrement = (epochs - (epoch) + 1) / epochs - g_ = (1 - decrement) * g_ + decrement * ts - self.g_best_ = self._decode(g_, g_sh, g_len) - - if Dispersion: - g_best = self.g_best_ - else: - g_best = self.g_best - - if empirical_balance: - if np.random.rand() < np.exp(-(epoch) / epochs): - w_p_ = self.f(x, y, self.particles[i].get_best_weights()) - w_g_ = self.f(x, y, self.g_best) - w_p = w_p_ / (w_p_ + w_g_) - w_g = w_p_ / (w_p_ + w_g_) - - del w_p_ - del w_g_ - - else: - p_b = self.particles[i].get_best_score() - g_a = self.avg_score - l_b = p_b - g_a - l_b = np.sqrt(np.power(l_b, 2)) - p_ = ( - 1 - / (self.n_particles * np.linalg.norm(self.c1 - self.c0)) - * l_b - ) - p_ = np.exp(-1 * p_) - w_p = p_ - w_g = 1 - p_ - - del p_b - del g_a - del l_b - del p_ - - score = self.particles[i].step_w( - x, y, self.c0, self.c1, w, g_best, w_p, w_g, renewal=renewal - ) - - else: - score = self.particles[i].step( - x, y, self.c0, self.c1, w, g_best, renewal=renewal - ) - - if renewal == "acc": - if score[1] >= self.g_best_score[0]: - if score[1] > self.g_best_score[0]: - self.g_best_score[0] = score[1] - self.g_best = self.particles[i].get_best_weights() - else: - if score[0] < self.g_best_score[1]: - self.g_best_score[1] = score[0] - self.g_best = self.particles[i].get_best_weights() - epochs_pbar.set_description( - f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}" - ) - elif renewal == "loss": - if score[0] <= self.g_best_score[1]: - if score[0] < self.g_best_score[1]: - self.g_best_score[1] = score[0] - self.g_best = self.particles[i].get_best_weights() - else: - if score[1] > self.g_best_score[0]: - self.g_best_score[0] = score[1] - self.g_best = self.particles[i].get_best_weights() - epochs_pbar.set_description( - f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}" - ) - elif renewal == "both": - if score[1] > self.g_best_score[0]: - self.g_best_score[0] = score[1] - self.g_best = self.particles[i].get_best_weights() - epochs_pbar.set_description( - f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}" - ) - if score[0] < self.g_best_score[1]: - self.g_best_score[1] = score[0] - self.g_best = self.particles[i].get_best_weights() - epochs_pbar.set_description( - f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}" - ) - if score[0] == None: - score[0] = np.inf - if score[1] == None: - score[1] = 0 - - loss = loss + score[0] - acc = acc + score[1] - - if score[0] < min_loss: - min_loss = score[0] - if score[0] > max_loss: - max_loss = score[0] - - if score[1] < min_score: - min_score = score[1] - if score[1] > max_score: - max_score = score[1] - - if save: - with open( - f"./{save_path}/{self.day}_{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv", - "a", - ) as f: - f.write(f"{score[0]}, {score[1]}") - if i != self.n_particles - 1: - f.write(", ") - else: - f.write("\n") - - if check_point is not None: - if epoch % check_point == 0: - os.makedirs(f"./{save_path}/{self.day}", exist_ok=True) - self._check_point_save(f"./{save_path}/{self.day}/ckpt-{epoch}") - self.avg_score = acc / self.n_particles - - gc.collect() - - except KeyboardInterrupt: - print("Ctrl + C : Stop Training") - except MemoryError: - print("Memory Error : Stop Training") - except Exception as e: - print(e) - finally: - self.model_save(save_path) - print("model save") - self.save_info(save_path) - print("save info") - - return self.g_best_score - - def get_best_model(self): - """ - 최고 점수를 받은 모델을 반환 - - Returns: - (keras.models): 모델 - """ - model = keras.models.model_from_json(self.model.to_json()) - model.set_weights(self.g_best) - model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"]) - return model - - def get_best_score(self): - """ - 최고 점수를 반환 - - Returns: - (float): 점수 - """ - return self.g_best_score - - def get_best_weights(self): - """ - 최고 점수를 받은 가중치를 반환 - - Returns: - (float): 가중치 - """ - return self.g_best - - def save_info(self, path: str = "./result"): - """ - 학습 정보를 저장 - - Args: - path (str, optional): 저장 위치. Defaults to "./result". - """ - json_save = { - "name": f"{self.day}_{self.n_particles}_{self.c0}_{self.c1}_{self.w_min}.h5", - "n_particles": self.n_particles, - "score": self.g_best_score, - "c0": self.c0, - "c1": self.c1, - "w_min": self.w_min, - "w_max": self.w_max, - "loss_method": self.loss, - "empirical_balance": self.empirical_balance, - "Dispersion": self.Dispersion, - "negative_swarm": self.negative_swarm, - "mutation_swarm": self.mutation_swarm, - "random_state_0": self.random_state[0], - "random_state_1": self.random_state[1].tolist(), - "random_state_2": self.random_state[2], - "random_state_3": self.random_state[3], - "random_state_4": self.random_state[4], - "renewal": self.renewal, - } - - with open( - f"./{path}/{self.day}/{self.loss}_{self.g_best_score}.json", - "a", - ) as f: - json.dump(json_save, f, indent=4) - - def _check_point_save(self, save_path: str = f"./result/check_point"): - """ - 중간 저장 - - Args: - save_path (str, optional): checkpoint 저장 위치 및 이름. Defaults to f"./result/check_point". - """ - model = self.get_best_model() - model.save_weights(save_path) - - def model_save(self, save_path: str = "./result"): - """ - 최고 점수를 받은 모델 저장 - - Args: - save_path (str, optional): 모델의 저장 위치. Defaults to "./result". - - Returns: - (keras.models): 모델 - """ - model = self.get_best_model() - model.save( - f"./{save_path}/{self.day}/{self.n_particles}_{self.c0}_{self.c1}_{self.w_min}.h5" - ) - return model diff --git a/build/lib/pso/optimizer_target.py b/build/lib/pso/optimizer_target.py deleted file mode 100644 index bc406db..0000000 --- a/build/lib/pso/optimizer_target.py +++ /dev/null @@ -1,524 +0,0 @@ -import gc -import json -import os -import sys -from datetime import datetime - -import numpy as np -import tensorflow as tf -from tensorflow import keras -from tqdm import tqdm - -from .particle import Particle - -gpus = tf.config.experimental.list_physical_devices("GPU") -if gpus: - try: - # tf.config.experimental.set_visible_devices(gpus[0], "GPU") - # print(tf.config.experimental.get_visible_devices("GPU")) - tf.config.experimental.set_memory_growth(gpus[0], True) - # print("set memory growth") - except RuntimeError as e: - print(e) - - -class Optimizer_Target: - """ - particle swarm optimization - PSO 실행을 위한 클래스 - """ - - def __init__( - self, - model: keras.models, - loss="mse", - n_particles: int = 10, - c0=0.5, - c1=1.5, - w_min=0.5, - w_max=1.5, - negative_swarm: float = 0, - mutation_swarm: float = 0, - np_seed: int = None, - tf_seed: int = None, - target_weights=None, - ): - """ - particle swarm optimization - - Args: - model (keras.models): 모델 구조 - loss (str): 손실함수 - n_particles (int): 파티클 개수 - c0 (float): local rate - 지역 최적값 관성 수치 - c1 (float): global rate - 전역 최적값 관성 수치 - w_min (float): 최소 관성 수치 - w_max (float): 최대 관성 수치 - negative_swarm (float): 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값 - mutation_swarm (float): 돌연변이가 일어날 확률 - np_seed (int, optional): numpy seed. Defaults to None. - tf_seed (int, optional): tensorflow seed. Defaults to None. - target_weights (list, optional): 목표 가중치. Defaults to None. - """ - if np_seed is not None: - np.random.seed(np_seed) - if tf_seed is not None: - tf.random.set_seed(tf_seed) - - self.model = model # 모델 구조 - self.loss = loss # 손실함수 - self.n_particles = n_particles # 파티클 개수 - self.particles = [None] * n_particles # 파티클 리스트 - self.c0 = c0 # local rate - 지역 최적값 관성 수치 - self.c1 = c1 # global rate - 전역 최적값 관성 수치 - self.w_min = w_min # 최소 관성 수치 - self.w_max = w_max # 최대 관성 수치 - self.negative_swarm = negative_swarm # 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값 - self.mutation_swarm = mutation_swarm # 관성을 추가로 사용할 파티클 비율 - 0 ~ 1 사이의 값 - self.g_best_score = [0, np.inf] # 최고 점수 - 시작은 0으로 초기화 - self.g_best = None # 최고 점수를 받은 가중치 - self.g_best_ = None # 최고 점수를 받은 가중치 - 값의 분산을 위한 변수 - self.target_weights = target_weights # 목표 가중치 - self.avg_score = 0 # 평균 점수 - - self.save_path = None # 저장 위치 - self.renewal = "acc" - self.Dispersion = False - self.day = datetime.now().strftime("%m-%d-%H-%M") - - negative_count = 0 - - for i in tqdm(range(self.n_particles), desc="Initializing Particles"): - m = keras.models.model_from_json(model.to_json()) - init_weights = m.get_weights() - w_, sh_, len_ = self._encode(init_weights) - w_ = np.random.uniform(-1, 2, len(w_)) - m.set_weights(self._decode(w_, sh_, len_)) - m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"]) - self.particles[i] = Particle( - m, - loss, - negative=True if i < negative_swarm * self.n_particles else False, - mutation=mutation_swarm, - ) - if i < negative_swarm * self.n_particles: - negative_count += 1 - - print(f"negative swarm : {negative_count} / {self.n_particles}") - print( - f"mutation swarm : {mutation_swarm * self.n_particles} / {self.n_particles}" - ) - - gc.collect() - - def __del__(self): - del self.model - del self.loss - del self.n_particles - del self.particles - del self.c0 - del self.c1 - del self.w_min - del self.w_max - del self.negative_swarm - del self.g_best_score - del self.g_best - del self.g_best_ - del self.avg_score - gc.collect() - - def _encode(self, weights): - """ - 가중치를 1차원으로 풀어서 반환 - - Args: - weights (list) : keras model의 가중치 - Returns: - (numpy array) : 가중치 - 1차원으로 풀어서 반환 - (list) : 가중치의 원본 shape - (list) : 가중치의 원본 shape의 길이 - """ - w_gpu = np.array([]) - length = [] - shape = [] - for layer in weights: - shape.append(layer.shape) - w_ = layer.reshape(-1) - length.append(len(w_)) - w_gpu = np.append(w_gpu, w_) - - del weights - - return w_gpu, shape, length - - def _decode(self, weight, shape, length): - """ - _encode 로 인코딩된 가중치를 원본 shape으로 복원 - 파라미터는 encode의 리턴값을 그대로 사용을 권장 - - Args: - weight (numpy array): 가중치 - 1차원으로 풀어서 반환 - shape (list): 가중치의 원본 shape - length (list): 가중치의 원본 shape의 길이 - Returns: - (list) : 가중치 원본 shape으로 복원 - """ - weights = [] - start = 0 - for i in range(len(shape)): - end = start + length[i] - w_ = weight[start:end] - w_ = np.reshape(w_, shape[i]) - weights.append(w_) - start = end - - del weight - del shape - del length - - return weights - - def f(self, x, y, weights): - """ - EBPSO의 목적함수 (예상) - - Args: - x (list): 입력 데이터 - y (list): 출력 데이터 - weights (list): 가중치 - - Returns: - (float): 목적 함수 값 - """ - self.model.set_weights(weights) - self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"]) - score = self.model.evaluate(x, y, verbose=0)[1] - if score > 0: - return 1 / (1 + score) - else: - return 1 + np.abs(score) - - def fit( - self, - x, - y, - epochs: int = 100, - save: bool = False, - save_path: str = "./result", - renewal: str = "acc", - empirical_balance: bool = False, - Dispersion: bool = False, - check_point: int = None, - ): - """ - Args: - x_test : numpy array, - y_test : numpy array, - epochs : int, - save : bool - True : save, False : not save - save_path : str ex) "./result", - renewal : str ex) "acc" or "loss" or "both", - empirical_balance : bool - True : - Dispersion : bool - True : g_best 의 값을 분산시켜 전역해를 찾음, False : g_best 의 값만 사용 - check_point : int - 저장할 위치 - None : 저장 안함 - """ - self.save_path = save_path - self.empirical_balance = empirical_balance - self.Dispersion = Dispersion - - self.renewal = renewal - - try: - if save: - if save_path is None: - raise ValueError("save_path is None") - else: - self.save_path = save_path - if not os.path.exists(save_path): - os.makedirs(save_path, exist_ok=True) - except ValueError as e: - print(e) - sys.exit(1) - - for i in tqdm(range(self.n_particles), desc="Initializing velocity"): - p = self.particles[i] - local_score = p.get_score(x, y, renewal=renewal) - - if renewal == "acc": - if local_score[1] > self.g_best_score[0]: - self.g_best_score[0] = local_score[1] - self.g_best = p.get_best_weights() - self.g_best_ = p.get_best_weights() - elif renewal == "loss": - if local_score[0] < self.g_best_score[1]: - self.g_best_score[1] = local_score[0] - self.g_best = p.get_best_weights() - self.g_best_ = p.get_best_weights() - - if local_score[0] == None: - local_score[0] = np.inf - - if local_score[1] == None: - local_score[1] = 0 - - if save: - with open( - f"./{save_path}/{self.day}_{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv", - "a", - ) as f: - f.write(f"{local_score[0]}, {local_score[1]}") - if i != self.n_particles - 1: - f.write(", ") - else: - f.write("\n") - - f.close() - del local_score - gc.collect() - - print( - f"initial g_best_score : {self.g_best_score[0] if self.renewal == 'acc' else self.g_best_score[1]}" - ) - - try: - epochs_pbar = tqdm( - range(epochs), - desc=f"best {self.g_best_score[0]:.4f}|{self.g_best_score[1]:.4f}", - ascii=True, - leave=True, - ) - for epoch in epochs_pbar: - acc = 0 - loss = 0 - min_score = np.inf - max_score = 0 - min_loss = np.inf - max_loss = 0 - - ts = self.c0 + np.random.rand() * (self.c1 - self.c0) - - part_pbar = tqdm( - range(len(self.particles)), - desc=f"acc : {max_score:.4f} loss : {min_loss:.4f}", - ascii=True, - leave=False, - ) - for i in part_pbar: - part_pbar.set_description( - f"acc : {max_score:.4f} loss : {min_loss:.4f}" - ) - w = self.w_max - (self.w_max - self.w_min) * epoch / epochs - - g_, g_sh, g_len = self._encode(self.g_best) - decrement = (epochs - (epoch) + 1) / epochs - g_ = (1 - decrement) * g_ + decrement * ts - self.g_best_ = self._decode(g_, g_sh, g_len) - - self.g_best = self.target_weights.get_weights() - - if Dispersion: - g_best = self.g_best_ - else: - g_best = self.g_best - - if empirical_balance: - if np.random.rand() < np.exp(-(epoch) / epochs): - w_p_ = self.f(x, y, self.particles[i].get_best_weights()) - w_g_ = self.f(x, y, self.g_best) - w_p = w_p_ / (w_p_ + w_g_) - w_g = w_p_ / (w_p_ + w_g_) - - del w_p_ - del w_g_ - - else: - p_b = self.particles[i].get_best_score() - g_a = self.avg_score - l_b = p_b - g_a - l_b = np.sqrt(np.power(l_b, 2)) - p_ = ( - 1 - / (self.n_particles * np.linalg.norm(self.c1 - self.c0)) - * l_b - ) - p_ = np.exp(-1 * p_) - w_p = p_ - w_g = 1 - p_ - - del p_b - del g_a - del l_b - del p_ - - score = self.particles[i].step_w( - x, y, self.c0, self.c1, w, g_best, w_p, w_g, renewal=renewal - ) - - else: - score = self.particles[i].step( - x, y, self.c0, self.c1, w, g_best, renewal=renewal - ) - - if renewal == "acc": - if score[1] >= self.g_best_score[0]: - if score[1] > self.g_best_score[0]: - self.g_best_score[0] = score[1] - self.g_best = self.particles[i].get_best_weights() - else: - if score[0] < self.g_best_score[1]: - self.g_best_score[1] = score[0] - self.g_best = self.particles[i].get_best_weights() - epochs_pbar.set_description( - f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}" - ) - elif renewal == "loss": - if score[0] <= self.g_best_score[1]: - if score[0] < self.g_best_score[1]: - self.g_best_score[1] = score[0] - self.g_best = self.particles[i].get_best_weights() - else: - if score[1] > self.g_best_score[0]: - self.g_best_score[0] = score[1] - self.g_best = self.particles[i].get_best_weights() - epochs_pbar.set_description( - f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}" - ) - - if score[0] == None: - score[0] = np.inf - if score[1] == None: - score[1] = 0 - - loss = loss + score[0] - acc = acc + score[1] - - if score[0] < min_loss: - min_loss = score[0] - if score[0] > max_loss: - max_loss = score[0] - - if score[1] < min_score: - min_score = score[1] - if score[1] > max_score: - max_score = score[1] - - if save: - with open( - f"./{save_path}/{self.day}_{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv", - "a", - ) as f: - f.write(f"{score[0]}, {score[1]}") - if i != self.n_particles - 1: - f.write(", ") - else: - f.write("\n") - f.close() - - if check_point is not None: - if epoch % check_point == 0: - os.makedirs(f"./{save_path}/{self.day}", exist_ok=True) - self._check_point_save(f"./{save_path}/{self.day}/ckpt-{epoch}") - self.avg_score = acc / self.n_particles - - gc.collect() - - except KeyboardInterrupt: - print("Ctrl + C : Stop Training") - except MemoryError: - print("Memory Error : Stop Training") - except Exception as e: - print(e) - finally: - self.model_save(save_path) - print("model save") - self.save_info(save_path) - print("save info") - - return self.g_best_score - - def get_best_model(self): - """ - 최고 점수를 받은 모델을 반환 - - Returns: - (keras.models): 모델 - """ - model = keras.models.model_from_json(self.model.to_json()) - model.set_weights(self.g_best) - model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"]) - return model - - def get_best_score(self): - """ - 최고 점수를 반환 - - Returns: - (float): 점수 - """ - return self.g_best_score - - def get_best_weights(self): - """ - 최고 점수를 받은 가중치를 반환 - - Returns: - (float): 가중치 - """ - return self.g_best - - def save_info(self, path: str = "./result"): - """ - 학습 정보를 저장 - - Args: - path (str, optional): 저장 위치. Defaults to "./result". - """ - json_save = { - "name": f"{self.day}_{self.n_particles}_{self.c0}_{self.c1}_{self.w_min}.h5", - "n_particles": self.n_particles, - "score": self.g_best_score, - "c0": self.c0, - "c1": self.c1, - "w_min": self.w_min, - "w_max": self.w_max, - "loss_method": self.loss, - "empirical_balance": self.empirical_balance, - "Dispersion": self.Dispersion, - "negative_swarm": self.negative_swarm, - "mutation_swarm": self.mutation_swarm, - "renewal": self.renewal, - } - - with open( - f"./{path}/{self.day}/{self.loss}_{self.g_best_score}.json", - "a", - ) as f: - json.dump(json_save, f, indent=4) - - f.close() - - def _check_point_save(self, save_path: str = f"./result/check_point"): - """ - 중간 저장 - - Args: - save_path (str, optional): checkpoint 저장 위치 및 이름. Defaults to f"./result/check_point". - """ - model = self.get_best_model() - model.save_weights(save_path) - - def model_save(self, save_path: str = "./result"): - """ - 최고 점수를 받은 모델 저장 - - Args: - save_path (str, optional): 모델의 저장 위치. Defaults to "./result". - - Returns: - (keras.models): 모델 - """ - model = self.get_best_model() - model.save( - f"./{save_path}/{self.day}/{self.n_particles}_{self.c0}_{self.c1}_{self.w_min}.h5" - ) - return model diff --git a/build/lib/pso/particle.py b/build/lib/pso/particle.py deleted file mode 100644 index f17f6b9..0000000 --- a/build/lib/pso/particle.py +++ /dev/null @@ -1,307 +0,0 @@ -import gc - -import numpy as np -from tensorflow import keras - - -class Particle: - """ - Particle Swarm Optimization의 Particle을 구현한 클래스 - 한 파티클의 life cycle은 다음과 같다. - 1. 초기화 - 2. 손실 함수 계산 - 3. 속도 업데이트 - 4. 가중치 업데이트 - 5. 2번으로 돌아가서 반복 - """ - - def __init__( - self, model: keras.models, loss, negative: bool = False, mutation: float = 0 - ): - """ - Args: - model (keras.models): 학습 및 검증을 위한 모델 - loss (str|): 손실 함수 - negative (bool, optional): 음의 가중치 사용 여부 - 전역 탐색 용도(조기 수렴 방지). Defaults to False. - """ - self.model = model - self.loss = loss - init_weights = self.model.get_weights() - i_w_, s_, l_ = self._encode(init_weights) - i_w_ = np.random.uniform(-0.5, 0.5, len(i_w_)) - self.velocities = self._decode(i_w_, s_, l_) - self.negative = negative - self.mutation = mutation - self.best_score = 0 - self.best_weights = init_weights - - del i_w_, s_, l_ - del init_weights - gc.collect() - - def __del__(self): - del self.model - del self.loss - del self.velocities - del self.negative - del self.best_score - del self.best_weights - gc.collect() - - def _encode(self, weights: list): - """ - 가중치를 1차원으로 풀어서 반환 - - Args: - weights (list) : keras model의 가중치 - Returns: - (numpy array) : 가중치 - 1차원으로 풀어서 반환 - (list) : 가중치의 원본 shape - (list) : 가중치의 원본 shape의 길이 - """ - w_gpu = np.array([]) - length = [] - shape = [] - for layer in weights: - shape.append(layer.shape) - w_ = layer.reshape(-1) - length.append(len(w_)) - w_gpu = np.append(w_gpu, w_) - - return w_gpu, shape, length - - def _decode(self, weight: list, shape, length): - """ - _encode 로 인코딩된 가중치를 원본 shape으로 복원 - 파라미터는 encode의 리턴값을 그대로 사용을 권장 - - Args: - weight (numpy array): 가중치 - 1차원으로 풀어서 반환 - shape (list): 가중치의 원본 shape - length (list): 가중치의 원본 shape의 길이 - Returns: - (list) : 가중치 원본 shape으로 복원 - """ - weights = [] - start = 0 - for i in range(len(shape)): - end = start + length[i] - w_ = weight[start:end] - w_ = np.reshape(w_, shape[i]) - weights.append(w_) - start = end - del start, end, w_ - del shape, length - del weight - - return weights - - def get_score(self, x, y, renewal: str = "acc"): - """ - 모델의 성능을 평가하여 점수를 반환 - - Args: - x (list): 입력 데이터 - y (list): 출력 데이터 - renewal (str, optional): 점수 갱신 방식. Defaults to "acc" | "acc" or "loss". - - Returns: - (float): 점수 - """ - self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"]) - score = self.model.evaluate(x, y, verbose=0) - if renewal == "acc": - if score[1] > self.best_score: - self.best_score = score[1] - self.best_weights = self.model.get_weights() - elif renewal == "loss": - if score[0] == "nan": - score[0] = np.inf - if score[0] < self.best_score: - self.best_score = score[0] - self.best_weights = self.model.get_weights() - - return score - - def _update_velocity(self, local_rate, global_rate, w, g_best): - """ - 현재 속도 업데이트 - - Args: - local_rate (float): 지역 최적해의 영향력 - global_rate (float): 전역 최적해의 영향력 - w (float): 현재 속도의 영향력 - 관성 | 0.9 ~ 0.4 이 적당 - g_best (list): 전역 최적해 - """ - encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights()) - encode_v, v_sh, v_len = self._encode(weights=self.velocities) - encode_p, p_sh, p_len = self._encode(weights=self.best_weights) - encode_g, g_sh, g_len = self._encode(weights=g_best) - r0 = np.random.rand() - r1 = np.random.rand() - if self.negative: - new_v = ( - w * encode_v - + -1 * local_rate * r0 * (encode_p - encode_w) - + -1 * global_rate * r1 * (encode_g - encode_w) - ) - else: - new_v = ( - w * encode_v - + local_rate * r0 * (encode_p - encode_w) - + global_rate * r1 * (encode_g - encode_w) - ) - - if np.random.rand() < self.mutation: - m_v = np.random.uniform(-0.1, 0.1, len(encode_v)) - new_v = m_v - - self.velocities = self._decode(new_v, w_sh, w_len) - - del encode_w, w_sh, w_len - del encode_v, v_sh, v_len - del encode_p, p_sh, p_len - del encode_g, g_sh, g_len - del r0, r1 - - def _update_velocity_w(self, local_rate, global_rate, w, w_p, w_g, g_best): - """ - 현재 속도 업데이트 - 기본 업데이트의 변형으로 지역 최적해와 전역 최적해를 분산시켜 조기 수렴을 방지 - - Args: - local_rate (float): 지역 최적해의 영향력 - global_rate (float): 전역 최적해의 영향력 - w (float): 현재 속도의 영향력 - 관성 | 0.9 ~ 0.4 이 적당 - w_p (float): 지역 최적해의 분산 정도 - w_g (float): 전역 최적해의 분산 정도 - g_best (list): 전역 최적해 - """ - encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights()) - encode_v, v_sh, v_len = self._encode(weights=self.velocities) - encode_p, p_sh, p_len = self._encode(weights=self.best_weights) - encode_g, g_sh, g_len = self._encode(weights=g_best) - r0 = np.random.rand() - r1 = np.random.rand() - - if self.negative: - new_v = ( - w * encode_v - + -1 * local_rate * r0 * (w_p * encode_p - encode_w) - + -1 * global_rate * r1 * (w_g * encode_g - encode_w) - ) - else: - new_v = ( - w * encode_v - + local_rate * r0 * (w_p * encode_p - encode_w) - + global_rate * r1 * (w_g * encode_g - encode_w) - ) - - if np.random.rand() < self.mutation: - m_v = np.random.uniform(-0.1, 0.1, len(encode_v)) - new_v = m_v - - self.velocities = self._decode(new_v, w_sh, w_len) - - del encode_w, w_sh, w_len - del encode_v, v_sh, v_len - del encode_p, p_sh, p_len - del encode_g, g_sh, g_len - del r0, r1 - - def _update_weights(self): - """ - 가중치 업데이트 - """ - encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights()) - encode_v, v_sh, v_len = self._encode(weights=self.velocities) - new_w = encode_w + encode_v - self.model.set_weights(self._decode(new_w, w_sh, w_len)) - - del encode_w, w_sh, w_len - del encode_v, v_sh, v_len - - def f(self, x, y, weights): - """ - EBPSO의 목적함수(예상) - - Args: - x (list): 입력 데이터 - y (list): 출력 데이터 - weights (list): 가중치 - - Returns: - float: 목적함수 값 - """ - self.model.set_weights(weights) - score = self.model.evaluate(x, y, verbose=0)[1] - - if score > 0: - return 1 / (1 + score) - else: - return 1 + np.abs(score) - - def step(self, x, y, local_rate, global_rate, w, g_best, renewal: str = "acc"): - """ - 파티클의 한 스텝을 진행합니다. - - Args: - x (list): 입력 데이터 - y (list): 출력 데이터 - local_rate (float): 지역최적해의 영향력 - global_rate (float): 전역최적해의 영향력 - w (float): 관성 - g_best (list): 전역최적해 - renewal (str, optional): 최고점수 갱신 방식. Defaults to "acc" | "acc" or "loss" - - Returns: - list: 현재 파티클의 점수 - """ - self._update_velocity(local_rate, global_rate, w, g_best) - self._update_weights() - - return self.get_score(x, y, renewal) - - def step_w( - self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal: str = "acc" - ): - """ - 파티클의 한 스텝을 진행합니다. - 기본 스텝의 변형으로, 지역최적해와 전역최적해의 분산 정도를 조정할 수 있습니다 - - Args: - x (list): 입력 데이터 - y (list): 출력 데이터 - local_rate (float): 지역 최적해의 영향력 - global_rate (float): 전역 최적해의 영향력 - w (float): 관성 - g_best (list): 전역 최적해 - w_p (float): 지역 최적해의 분산 정도 - w_g (float): 전역 최적해의 분산 정도 - renewal (str, optional): 최고점수 갱신 방식. Defaults to "acc" | "acc" or "loss" - - Returns: - float: 현재 파티클의 점수 - """ - self._update_velocity_w(local_rate, global_rate, w, w_p, w_g, g_best) - self._update_weights() - - return self.get_score(x, y, renewal) - - def get_best_score(self): - """ - 파티클의 최고점수를 반환합니다. - - Returns: - float: 최고점수 - """ - return self.best_score - - def get_best_weights(self): - """ - 파티클의 최고점수를 받은 가중치를 반환합니다 - - Returns: - list: 가중치 리스트 - """ - return self.best_weights diff --git a/conda_env/environment.yaml b/conda_env/environment.yaml index 220d04a..b76739f 100644 --- a/conda_env/environment.yaml +++ b/conda_env/environment.yaml @@ -1,17 +1,16 @@ name: pso channels: - conda-forge - - nvidia/label/cuda-11.8.0 - defaults dependencies: - - cuda-nvcc=11.8.89=0 - - cudatoolkit=11.8.0=h6a678d5_0 - - matplotlib=3.7.1=py39h06a4308_1 - - pandas=1.5.3=py39h417a72b_0 - - pip=23.0.1=py39h06a4308_0 - - python=3.9.16=h7a1cb2a_2 - - tqdm=4.65.0=py39hb070fc8_0 + - cudatoolkit=11.2 + - cudnn=8.1.0 + - matplotlib=3.7.1 + - pandas=1.5.3 + - pip=23.0.1 + - python=3.9.16 + - tqdm=4.65.0 - pip: - numpy==1.23.5 - - nvidia-cudnn-cu11==8.6.0.163 - - tensorflow==2.12.0 + - tensorflow==2.11.0 + - tensorboard==2.11.0 diff --git a/dist/pso2keras-0.1.0-py3-none-any.whl b/dist/pso2keras-0.1.0-py3-none-any.whl deleted file mode 100644 index 0f1a4566cb03991410edb9dbdbc9430f0d0718e8..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 15668 zcmaL8V~}NA)3#f-x@>gWwr$&0-L=ZLZFZr{wr$(CZQD4#_j}IS&$r|Ko)wWXWB$lH za;+IT*T`#(TR|EW3>63n2ntBX_e`yA`~IiXpS$Tlf%qqE9c<|J_06o!9QF0-Y~7@( zN2gS$$LJ|W#wW_9XqAS?X@}{l6t6>|Z43O+P)X2#8<8F5_wIvcd(r`dSX5AUrI90M zm8BWr!V!TZ9P9>$k_yn#Ob(9*hNzdRigAvyPO*vu0#O|7yM<nTA6j{=1V-?**M!u&X?nENb5N@fH7}fJiKZa(-QpBoqM%8lQ$?xHn zPYtEVDN%1<&dy_O?DJz!7_stIU7zah7P(={j9uzuTv1cU8*vj0XK%vpn&Qg2JF@3c z+M*wP*0aOctxGpP)-qfdZH8{bf~K}i@^^d+7u6w0L;t9%LZWbM9U`dqtO(N+bGXt= z4oXwjQWD0-`QX<5KCC7Z#}aAZQE$tbSI4n&M`qR@Z==fdPPkD>28&>T z6fMXRyd8fD!7?)P)I^*iXIE)T3L^((T3HUJ%s)140qq;iUq~5Zha2*d$eeKT zd=lA@J31w-KyB&s5w#?7b19zG^(lJu9EwUVo-{+k45`q}v!bc@p6Y>oYWePTr z;fbedpCoV2uE{fPfS617sCDiqz2*W(RGsDVIMb<$Q!KgW_#$*9bb|48RcgRz^_GXI z8vz{T>02~AEHNHf>ANl-RW1tVE$=BKWjTt11A&JUSE|*K3>7V*;w~T|nj~#2f_PQc zF}FYw;af_DL{;aHfNK|ODB$UmL*2=<+!k8DPreKzGHXdNd<25~urV=c z-#N^7Ajux5SXHI>o$BWapSazK_}!5-j3RbxC!GnHOF%sc?S)?ABCs9QGwOq@qx9&G`V?H zT;))4Wk_nZ946Igtc@Ne1W~)1h&wvKTZ(29jo4n8w$)q0v0R+!KL4=vuQ4WrA?q7 zW_co<^&D^?aeZUhBU)wZ=8Hjdzy{4{6u_PW3`9b)@8vL$iA{2Whj)FPyK!f@rlI!M(}XI|-$Z$1 zJn%#gy7Y6!RM&#d91wi?f9NOq+#j2)?SMVmRWxg!6)d?E~wK|9kWfesMWg;QO#1`5V_NuqN@_Lni|2 z+g@P(W17Q5wd=Edn%g&DTtp5i7E+pRZCulW9O9&; zYqvSkp#e46(`53DuJbZI=Bg>RVWc3LcGGCOR8&-p-&I8|y5V7{6Vk4aAKRa^Anzcv zCbsxzST)mlDjDyJ^aZRWA%*5%_Dt@+xVm__GP>@3ZEI;X-uCat@|e+E@M0tQGsYBB zMH|X5$KH@kXxSijGqSYPT54@cb=3-jW@$xgDH=Bz;88S%`cuOa1mn#iI9)B#Z%0y@ zcK3SlPsx^Uv@jvD!x+)}x=6)ffrHJU+qd8$S`akQks=!d3$CZ3GJVyCnDR6M@C^#$ zkzlKqhdFQdR*ltS4G1)|fhu!CWmvEte%UrQu|Itt2=sjRSPLh8-XkyI>@eilcX!qX zeA-vcls7k&tilm}*nDmoQ@)TJ=}ZjBv6uD09}gs%lRKFxVCriH_C{%t_p(BPi`PV* znpG)sz&phvE4n+fCDg4~P)F}G`8NiQ;IfK6ST-V=xz1hKAbx)e0*xqkNxr^L58NXX z-r7TEZ^D(IB7v?z1Zs~P+6Z+|DN;>9-xbckSU)tY^UjhWG$zb9$Hfd*9C58g?v<=h zoLE_Ew<3_m?mE{sK@2wVPW)bPTaHX5Y$jH9ue`!ado69OkVWc2hre`}gbQFm*@t)j zSp!KwH10Pp!emo<1^0+9WNU{!7_{k+O#B0=?7SOdv$}RnJV0eHeF4*z2e|t{!i8JS zkQzjtNbwLXy&`~XDvNE;vn<&3a?2v!d|C=WhmSDU>l-wIj)Qk->(-f77u(@)~eQs)a>WY|_@7O9_Ql-SRhz2k8nbgKP`g3Dhp-Vs@EEzy3* zj&L$_Xu5*ltYV5|d*va7ysfYi;I52eb2Tph;0nf{x?C{I;GNQ#;Pjo`^DzPg&?c;t zt1o1Uw~@*?Q+mNV2bbA*-*1(lj#&_TJ*zS^rS^q#3uW(z5$-ksnG8EAKAtEMQPYVz z&#KL6_H<~{u6kvQ6dm2E;L-^-SsTY&W+^Y&B-|?UtMvl*9+eaHj>R@m~h#em$}k8W=#v&HRAA5q_+qG z`rn*|t_K;<4adP~5*Y)L-U@JdHP(_Kfgm$e!0sR2G>F&yy<$1m2P%-9Vv{l4l6%uk7}ZRHsjgHH{ZT{s`fg`FqukSFvo~W-kB=O59PvW1af7o+*}L6_)oAT zQL4d0vrOudX zL^ROusJ5t{q8uh0yksfbI5#xN^e{dF+RywlW*^hajEdaC#Mt?$^sFF-*HFV~9;d!k z2wZ5OkDuSZE!5@*mJ2`720hA7Ujr6>F2?KGSRy)q0*jZDkYbzE!^xHp@tT|Ii&;8i zV=>QBMLDi?6s0a~4N|qHHJ91*?W@$EPgI|~N>WbLEazcz<4P9;)MLX>`{f#ByHFFC zKX42zqngj3(DRzBr^xEncoHEXj!AvV^q5PWb-UwS(;6>+lInEITM``f-;sX1YoAdo zELT7GK#NWC1(zN5PB^4{C%ZwA)h)h^OG207RL(PIryMgN>c?heJ8=c4J(2Aj&XRNg zrq|4n)a-m&z21M*AVkY3WM&LXm_#!_92n*e-7pYKLc1CS?!=(U01~LlGDZ`u>o14H zucf9tcSutd)-+cM6)p_*dTTgM%B{P@azn`6^F<~$m>+8!kkYgUc;l$#4Y#=MRN;~U zu2cf*quvK92g?K{kQV04VU3^m-MXY+a{#ZUaUNamu1Xfx;&~QieGWDn*4F}BI5c_r zrIr}<#&wILowvTi8&amr_Cy}R=D?Pr&*DV?NQ#MNO|BU z{{E!~aDxr;Y8%IAt1H>Z(B@P)@va-^Y@DvBjU(L%66(-BkY3}Y+q-6?&-du0+FBf~ z6KsjCe-IE$1czjOPd z|2AIgqKwTCqO$E)`4AioxtX^$9^nq1t0|m5Xz}f#*C9*l3m@5%r~`dn_Exphy76T0 zPO_J|BE{tuUgRw$sd?~*-qD8nac;&XH@)!0Ic|;4o?~ltj?%TqCf4az44-@-vV=g) zkVSDB^}chgGtA^ks64@ydj~@tUCHD3$2Myg>1A>x;}c6oMwY5NOv`)O8w1cc9YVSC4G7gaA9nA;Z%rL07Jf?u1=o>kI7CeH2SmR4HC5TH$r~Hxm51t8a>z&S z+{KuY3f|Ev1MRL4rAk{ZJ|JeBBrWDi`g{8lB(5*9K~xs`V?EjFvEhbyt#luE(>zab zCxrng(V%I%2mL6QyZCtLN9sW|Wy7V4iziJSF?+Z7V%H;B%#oXS%C5=bOYBD7W@GmK zYkE9Wf(i?LhtsTbb(v*;9q|bOJ}BnqQmg%UAF&K4e`*_x?P@~3W2+9O2w+@r0+Ne(HZj+#yP_dV5z(bt?apvCTL~|WK-N#s}|Lp#C_lRCP zKJCt7=~{Pi)z6J<0d)tD?c1%NK7HHq#2cV&)ut{X_7_LrmjY0Kx`~sGftQ6RNKuyV zBRE>Ye6n-N9!$0PoPSiTkm}Jua zfDarAARvr?^ACMTLwgf|;~xw%!Ts?EgE)1aRV6cV1bQ@ST|kV`_geX~*sWztSoK@` zC?bFjWa!p3Ni&f+#pM?N(q*+hhkf@`wof{agf-x9+{vYqb4J~s<(C-yAb8#M{KcG3 zJv)Nwd#tdg7nSN-5Tpsj(qF=`mH)ThbRU2Swl|IPKbnB2B!Ym~c z;He+~Yvz)Mlh9i%S48cAWpvk(C+ex1kHA4js=~KTT3H`1{>zaie&M-&u*@SY>(G#a zHpEA^y{bYsZX*&7*n>Va&yM3{<|D9BKr`WOZj)u)o_>XMxVJmYo!Ffo&h(JW=WCUp zJEOr?ruyj++b^yN@*Q}LJ@p#E@^l%b+00u&%GO`A&^1R2ViiOp*+=1mqaaID%n=MD z3X8_f6)^{D6F2DbA}891b3(@|X`2nX!wYpqbe#VNENg$ew*iH5_nRe3S%+Gy#-A7{ z-NK@0ev0YV93*>Z%Jj5jr-%U>;gkd6jTVDy?QRY$jI%l`giv?+bM>q$Zg(RFqw5oJ z^Bjn3LLM>4T10c{3a<^}%& z6N3#}qAiA)5_H1ZVemKlFNzx`De<^*pYT5j<3POWqXJ`-9 z*6ibRbIBuznPPt50D;Lg>i_!HWujJ{Z#^ZK(`YvqmWT%t< z&JGMVkY&yRffhZ&vZ?lqhf@;`8YKz_(fMWI!`anGKOk$1-`Z~}NQ&TiBrRetVt0ly zC5s=7=58x1cK2rBy+b@=jvVIg(1(k1k}tsQVWcY-m~!(KIXip^(XWc&l)6mPgmv+~ z<88oZ@<=`=XKUew5$?A9`C;Il7IS~*Xdq~#pMoe%YOvW>-p%cQCDw6FCt!cM<%(P3p~!CRvVl!2}& zmGi2Kz_+zp5O~jq-)B>he3LDRf);i+Avf~At(eh}rIYy3?cpA}eCDm2LZ{qiDm;dd z0-qq>+wL(k%KPSV;oxO=1{6nY2OD1IPCgTO$vebVDx)dR2@gyFe;k3F^XoO=^-Kra zZrW&(HP1L9*ok_;QJr0y3*>7v-w0j`)>}y08g}N*am_jvlH0rG&X-CG@J}Bd=!Gj6#U8Zu8Ao- zS|N1kXg&iQnH@~`KGX*v64FML^k)^E+(l`~iH@GACe40ENquyh?V*=s#C>feMVvq` z)+C+>blpak>CUe5KI?KWM#NxvSc%xWuML;fcC-+>yD6yDGlZqc7A+PyLmO%$$x%QT zku1G5{X3RWHbjmMi&J-5WZw+asE;-wd}AIFA)T9xY2(-?$i)EN9$p7N4t|5Rba_~; z0yUcG(smjUyzjh0v&oWyR!)6@Y@VAiXjQDuiC5itN*&#{BGH9(sa<_hoS$Y>I~Way zZ1+sYIp2mC3vaJMa3-&e9|ki09}Hx2UF+gXyLbkD%ToPAQ`zDteO(UA?HC6g9LyR4ikag1 zTgPlxHUi6Kr05EPneXIXQIf&yd!Qaly6ny^@-8|x%2T^!?U*bJ@y3P{ z4UxtQv_pfo3)NDn!~>P1h4Png;qfXMx6@&@95275DT_UpX^g6-C%BC)r3EB^PJnH= zlnmQb&g5VC;}@B{qHBVT;9vM7=nwu-oJJF-`cCB;OO?yI4dI8@E9)BSq51yO^WJlG z_cY}wxriPkJ^p^8uAsf^_w4xjyz<^fhe3XH=Yo$EohWLV<=w*3Vz9FY-SWCu5Lu*Y zI(FLGiC8mh?=(H|(o&ED3yU$UDyjvwF)N4O(@0&I^PRd{Lphd-PiXV7K{@l09!Cd(Q$~4i)`qi3an}@Js76lh6()8C(ZL%FH~!5wFNDX4 zVp>-cVm;Qd(2K3gT`hs8qzc<$Omh$Dl150xdQ|^>Y*^9y zOvt5OUnc!f_Pi&!BhUKvQf2UE5A2@nho@qopT!z*k}3EtyMYv0oh%jeLqtYkgSm9B zLI|4nnzh#q{E}3()qbtOpz!JagwE1Ur&Hm{v=z_9arw#;p6Vq4D9+`B?&M4vV~pQ- zcnr_imATqn0L}=9YyAg=2M&n$W10ety}V3w-Ktmg#engi)G?U^juRMfWpt8S|nI)?zXqIrYX6;Bp=ra++n|`^AX>V0x_6{@|vi)(@Q#%*vOF54T6L?w&X`5Pj)TzwK*x6*0rmmE zR~U-xa=v^fgIj6l57}|qG(x%3CB~X|amqtuY6@(!YjNs3kRm1Fh?-OQ`rbY3+ z>`5V+2!&wIgZhic97|(u+jLp%S`RemM~3;O)C#ny4gZS~r$dvAvmd$#+JJStiI#dB zD8nZ0`mm*-E=$O-zPLriD^#=w6qZ~;shdUodsKAbk{|MTNCSdJ-@EzvoJDGA7>Q04 zyrg@)P)Iy~9}93JmCIK2>BZ|z=UY1z8VnZ{dAV#^a z=w_v!G)JjA^4l#PaAu5=iz+{M{T4t@`3e*{W2ouo5CTMWaqNc%-aQe#0Sunb|h zazz_#caki-q4icHLMc!M#B!6W*f0i?*uU0jRZVqxo1yYXL!L<=n@n!s$OOpST|QfO z1K0SKe_mvE*=vJ*H8US{O82rDM{4q8-qHeqMH944ILL->V@}#(hWRolN#DB$S(s&6 zgfJ$Xu1`G=!<=Bw2IM%R6efdtrjDeYE;;*MS3?0Jo|IW28BjJ3vV(SAKa+Qm!D=>X zpX%yy;h&8em`zUrp(_7~%xT-FdOwp}6YGk^i z!*U=~4wae5pBVfuZE;wTQ7R_&OVXhoxxqx?NI!?g9h-{2KL)|E-@1 zM(YO17t~g4JP>qBXp||YIsJIozVM%@V|xBlBL$N#`hz_xSmH~J^tC7zZoHeuhwHa1 z?Ab^+3uHQU0r9JpbfA%JLDRo$M#bu9Ee)(itYnSHYDr3H$Ml(7Xd_rhXr;Al+tNjT z->c1Sj3IB-^62-r@wqzeY9}txG-pED1jn`5f`S$1;p?z_-{p1R=`6rk5G*HoGdG+< zo7KT_Mwt};K_B9y&-mXh1v|d|K_5KY8VvQGS-DoH;QFzy_-6wymgU9y zBkfZQ+a#^I51cx)ij=G4x5(4>A9&=3asEahc9G0`1T`_nD>*f2C^qEpDsGgG>dT0m zz#2P1?vZPkW*6@{tv3BH`gnM#YabJ!A4 zUYJiUk?$ueat7i;bDQomv=X){J`8=iMzI-C(4Y&$<>Bd$rL(j3ZLkw$1GG@`6dP+X zP`bC&f!;r`fvCzLOIuK4NRnR);(p?iOK9ZfEY@%l#`2b?a%ndpDo9P5H#E?_Lh{#2 zuer!aha!@eyH@x{Q@vP00W>WQ0>MK_&+^}kBfRE?B`aX#uzgl{WzXkuE+&zi67J}L zS>f}(McwW+Ev#v~>kRTqGvs1d?hiIB+LZusq>{)QAe9}Qyleey)iDm?qD=a(ZRM4{ z89c9QY`pk+XD$Rl!<_R7c?tEwH&k)t5W;9CoYCkLbW{S6x!)48M;|e_2RJDALPN^5 zW|Htt%0~ea$Sa`dM=Z0y$yR=be}VtQGe~R>)m*p{Z=0cjfL_V}IdNiZXzytD(-QE9 zV_aabS+9vb>gqF2qx>E&owp*OQUPyV-dI9k6YnE5b<0PR4g-Cvl>Aui?0OzmHmIlb$ zp?b~D(}cg*9Gk&;RZq=JlVv)0V8D8u-rt=+dusmxzGa)*DDtZH>es0Ly`gJk0(O=# zJZ*ug%8sdt(ZVfm)XdGZJhGsB3@E`_hpW=&d1e)z)Pd+f(pn>AN1% zX4EA<<8l3S-erpJS+knnqB&Sa)#fz1l*%%w)6#POw%D-JFz-Ce%$LMSmsAA7V?RXymy1ixdPfWpSfSEz-M3_n9=^*RP6-boJx2%d zdv=|<)!?7RL-$i9zuYnJr@emfEH4+q{m@cPw#V&;Tk3KDh!!^d79oV^;2Rfly%3!$ z&i0OF9$K|)j3$8^n{fk(vzd~sTA{IvL;mvjb?I{SV&4BDMGk#Ze22nwnBWj_Re{D!JorhB_Yd-XBCYE zUNVjVH_~wQ(AHK5$m}ud*cj!)TVyb5rh0fwza#rG$sbI){)^^2hpD{^u$GkM+Wv*W z1m=bi>WNZJ;q>2*z%&I%q3xnPSsFq33J$;XS0}?O0{uuk0KN2=hiDPGm)s)#Nutcd za&0D3As77fHf!i|55>iXu&vUlBD*+Kx0~t+G|HE|-O&fnqa(KM1M|hQ1h8>bq<7`X ziguSkH zPER=G2SmHQ85XU*4;HRD2m|NOxd$HI!kX^^`Oip1pL!$B$gueEq^mU5-@k#)CArnd zLY|Xdnoa`?k%J=x8q8U_NfY16B40$Vez$qaWUP6(5?G#JJmr}Adz-~HiXti8IeaFq zuMN+6T<$Q!aIJ4j2(5)q>me5AfooNJD_q_rOKgW!4NnrCEjkC=*A23W=|g61D`;w^ z)&-5@VwiN$ZyCzfK^`>D%);9$ZtL#A`_fbC$W*J2tUff*uq-Xt+?VQV7T(s=RV zc~V=tf=#;WGOwlvplxNIEo-q_=}^LK=tgD9lU7%k!xAzKjuoKYOSTvMQf$#u`a)Bh z66g^63Xe+eA1726p{ry_C|n#blo(YsT|S*yRlz6F*T2}sDaAw7>57e@GH7dnI8+T- zv?UJJd(Ocs1^>lUigQTyHRHEMwc#O!+Nb;HLCJQwPC_l2a`)WnJDxm*>c9=}6gEv= z4(E5B@NxzV{4NFu9_T)ymDmgmB{?C5DUOSGXa?!>*Puh^6WZ#2gH*ViGR%{8Idah? zbQV&y4hxHOxAh)T=VoDDb2;WF*?az=Vz2qYiSf`o_ULZ)ZX>HULfSX+j+7bsy3K;Vcn68GRyb)pb| z4mV7S6o$gIO7bdP`;~VKB9>Ya;-e?fiul%lHCgABEQd{P?xWU_R%L!wTCNzf7q~=c zJ^#d!FeiS;8k`ePeuMy;|H`hY$|yDAH0x zl~%eJ^diqK4`+re494NN9~|B<32^@zZ~ySxIkhAFgICK3;q z8H+-wfA@b-eG+Wc&wlr-@q*n!nhk8K0aES^IY5aXyE2@+f;jJ4to!zU{fKyC1($0c zVX6Pj{q=44+W5*jLhQ$AP?()Nxl5}{0+7Gb3mX$q;P&rBtgk#v0mj^&kMcw1MKzAY z;~q6F&NQd!?@9B#qPl@!hZ0g<0(U&(pIOKJRg&^uKe=dCaB>kgyu7927ZV?3k zOlKhSAZdnjWjXVOisG!m&Br9_g^BIoe46{draerI3G(wf*tUUUTk4oyF4sAq##`zL zN~7acaY=7e%vVy)Wa0vGlRgWNPe~}3jep2BplaXh5AHYP#?zrY>DHi=j|_z$n5MK# z(M?h(%JETgq*i_i+hx<+$?O&fTWK-7Ib@e4QYd;_3#?q+&<05Q4?H{+Mlt0qJ)L}X=rxF4U4#VRmufp6 zKrgR2AeNTvpLJc1l5Moe9zVjnH0)MhN?h((HMPhinj0Vtf;VQ9+u7i@yx}n>sEu73 zruEXqB(95F1hTDO!?A_7bxIz`l-1Yl%R?a8sM{Jm8KgLBYcnJ#p7~*2XFX`R^?ne3 zvwu-~4<~WrrhTdwj;5~@Gc6EP$FWRYz+3fA5+AQO5sst##caYStv^@WH>rISTQ!3E z;_n7Cr`y8%bu24jq00)E5g)= zxILDkmuwo5etgQ#blJCCHkM~WtQJpB20Uz2uDVjzsue1&&T{M(1AIpxQ&Wn4Zr@~U zP{K5T`;~r&InK@jKAjU{CSu#!SE0+=y&P<#2N*^(q;HAZI(+B6SlVJ*94d^kMVR#! z@@u|aT7mT$w-!H4x!WEAZ4XZl-xC{>{bdht@@PkNHR+{%*JG&%k3W+gySDXS=uX@V zCN?!;%$Ev~+mrPxMLeU4SsO?uiq_@*qP4{AQI?POROw550%KIUkjfs_h(_sdF$t6K zK81y>um$Sp63yJSpYgt^=+vG>{ZY`VVvEa@w#1H-jRj(#UE19jKfOuFG9(ao4eXVWvr zKyZK1IiL)lV2y3-YleqLHgFdCpVd%c$0jZSj1z+&yEJP{2XRd<)x-^W&#-B=A&McE z!Pl*bV}?G{9*5tKB&V)WdcR@sk3UC1We8u&$80#s8E+4L@OGm<>jg-R?dxD>u!7akF_EsIYjL-v&<`0ZK=)c*9>v=Mg>$Jn zoG106@RNR%>m~OYke$p%NmzOE>$_?EE(=1D$3PzWcloS>WwO@ zO=X_^I=Z;;iCl|W&+?x(kn8JWQwv`1GT4yc(wSI%*9nEZW573nM3GWI@<%kYPzKR& zC%5A;VBO}3zE1=~9pl#%_F(@0oV9DR=$K&g@MyaP#w!j}RN4k3uiI3E=Rjw2gA_dT zgMsqkOqJ!`B+wx@} zPP?A0yFX#X1JTeG6h)Q*LT}kS)MqmTWU=QNVsjD2%*3uL5gO5vRx%vQ;hJ3fdSF`f zqT?+u#FJ)X4w7z0q@=jQSPQ&=Q}7{z_Y;R2EP-yH$)V=%NRw@9h+YLj$eb$*^NBy* zfJ~`v1szh&QtmYV7DA&T<(lYg`w`HtiOe;*ap60DE}#;^i;QL1(Jh}1t&;yhR$RWl zoJi-Z$bbWk;fH4S@B;nVWJ6FFQw1*M7NAhov#n=FAb#F3_26Puf8G{oSji6TNksbX z8))dCj2v`WiatREfg^;#Sfkf-8-H)_>x@^)65D(t^O`aq+u6datoV<^*-_( zEW^%xPk+*4EVWF-)VT}$CnUF36vYr}ASx}N@dU5B{)}(X{XEY%!EaNnJ}~@*{;mwI z$<*4a%Tk`UHr_`?^i^=!JWmR=0&jB@n@@nmCwcZ9pQ_b;9({Pfr;FoyC%-Te9>Z?9 z{r5w%aNhoxCmaEXXNZ09Y1|E%?djFCjSVy$kU>a`*lGs2;7}Hj$Luj*H;TaMY3i!Z z8>~=|Ah=)eRuBf7eGd31zVW^uCgSNyJZe0mz$ZO51FHCCKMLB-))W-mOUlAy8@p(z z5>sW%5&>E^O!$&})s$6S>J^62DO!+PV_84>XSz{8cVfg=rG-4G(DtlSmQ`fr3j2j| z@dsb7Ug|5ct~pNmsbH1uIEiFRI0t4bOU(vfrfDbF9&-Dvq2HZnw$hTZqDUZddg@Ja zV)M-woM)W}>s2(;H41t1I6d89%^)}LCL?mT%zMViSCzw(HIgfIREzi;!p*Ot#$1ex zHh<+Q6k*)Sp`Lg4Y-yF|Oj5s;uqVifv6Q$2Biu*E$;(r_4Gb46`zYQvRzrw-`{`!{ zYBSfF8`J4Bu=b@$<-b2v=P3bUC8Jj#eHP78H!%<&Bjh{4NyEFqKVKvfmoH?|?W}c1 zh7bKP(KNQxg{K6XHY!?22Wn!rm67ym2D4~mq7gR{R8L;~(b}DqCYQg**kZ8XO}m}< z>xUcVdW~HbRJ-fB%6`-XF+G}?o=m1|)G#-+lMG9+p^4zh!5*EfEBJQK$xW*CqhR6p+Ul3exB&BgZ1DP+`I#fO-dyqI>3?4WB z`fu#2eZyJ0qvU#q9{WfJA-r zZO*w)sQb^~zkx6~vl8O>On6P%qc^lcdQ;8(Ttk*3%Xq z-#r);%YepaOdgv||Y5i>cs7X;wx7!MKUc(gY zyPa^aC7uke%{A=Y9dh#O=nq$GSA3`np`)PN7zB@vgn2HiMDt>QOC&R zQtD|S{g=v^ntdEQ1+2S=z`mnxW9T^{1EmtV?Q^~?d{0z>%BPi`WU3=l^s@4ub`G~s zHZq`&tse&)PKOr!Uk(FwbnvNgCzoGr%T2$`vB=GFYp4qDd_$kk^Fi`ItEWi#vLuWm zmsiQU3@^X5kS!mO^3_7>CLvTb;v6Zx0dYF+A+QOaVx*CE9UeTNz;Yu;GSUvlPE3eC zppPW}ykYR3Rfp(Ra31=*het;M?!1y~rZP?QK|_KA5owil{u%#5QF<~Zlp2lG_ZP5h z4;sEq?9|1=9d+}->)9hE5WIUjZ+}W5f;UGixv23}w`bm{tv3yMA5Y{VVQT74HJ9U! zwfEGjzcU+(Ene%mtN6b2GtD`@4V5%gjeif%#{L0*!Tq22qQ z{N}3QGXe9w#7xO$>V2`vyCiVNGo4bbYaV;zRr?2<%V%fy;k61^+KYm!plX zz9qmJU`glb>PSs7dGv3o*PIaVNZ>!;5d;W`@V`nai3-ariFi%7*yl0)u~G7Efrtzf z3dZ_#^MO7a*iAWv0xluzPw7aYuVF#KwMoOkY777z7pc|88;p^Em(h)cgH)`Iq7KKa>AA_v!zn0s+;1d=|IuUS_-}fDzY6{>_V0%MM{NARiv1t$`)|>Ix9&fp7@YsD!vASx Y1!?fVULk+n(NI9Vf0}=X>#w{22P5x?ZvX%Q diff --git a/dist/pso2keras-0.1.0.tar.gz b/dist/pso2keras-0.1.0.tar.gz deleted file mode 100644 index 8d1a046a97dc7a4f5e97fc45b6b5869c02edd764..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 13212 zcmcKAQ*dQbye|5rlXPs`w(WGRj%_C$qr(++Y}+#O;nbH2`RjPWCmgn?OcsxkWpa&&QEvo&`%c41^;Vr61say51ayYlsRA^4HN1DGi- zOT6>^Zo7>)ros|)Fwzi9t_3sc3|Ng>TQ1`~f9g!L)}F_6kk&%!Pk?BYCJ8zue75Vw z@8&m#*NEZt*pb?LAoNSuUfNoUO^-i>W~hm&6WG#EPF7E@9UmW8ELJ@Oc#CI({?;g* zRiEUHChuw1g4okP!(Q-nEgQ*$H(l(2ZKaM=%?i~}Q^MDZz(l<^)hY`-&aN~g>s)hI09L*gJr|U6nt`as&?d4zN7)AOs{H zi$2UX4K5u6DTq68;#tf%t1=!G03QxONeLiXApKkIVNV>$q4T}+(82FxVuhF+6dM!s z7zbLbm!}#91%FB(^QL%ae1f9JK`XARne+0DZ_V2__|fl>6U7bnJ2srYfo)BwE{16F zgVU4CHafP(fnE83AWsi zqBC;r`fFjiOf#mQCHVANC)3x))Y^W^fsC6CWHcVvyxybPYex(+I4$uQdxMmsTb0f^ zr^*!Tgw?3un;zZoqoKf{zIgQ~ zOBILw@>?bt3&X9b4eb~6Gtzx*^I>^1-aFGnx((87CYMa>O%ZNQo`=_gUolTh`X7}F z&7iHV>tnV?cOjGKWXy{R#*YVmi&}eaV#W~@|39@&U0suxFW2k2J7@NG>$zLW6|UU& ztC~F!JRViv_-ghifa=PN=jzyW-v?h?w;`P_%*Jbgo!j;L3l})S;)9W>j71k{w!MS8 zVjX{C`AZ*P=gn*G-79)+qr(xICC%+u_8LI{ZwvO;FxXxuy_OSb8?(8`1%hs4LYD}q zH&<5gE9Rgt;c|2B@=ePQ;4sqOGt$4cY4$u`($%g|UA5iNvUeo@?W#9yNU`xG7trB4 zmKKpo-55SmH3}?rJ-b5N9@vu6U@~8WuYv*`C>S6RQLlAA@Qa!|t5JpipxYyx5hjkj zdrtrA<4i+8r5WR%8kE4}F%7|}ZkNXHWjk$k0rQq+kbA!_ z`WQ>dPql|6VYdSrc*(Gl`=#k&iaj>b-qQ-W32k+|>bX+#xKeUAYDZt~;}>DUr(bs4 zUb@ovu0)TN8K`Tt+UcCSylK9io(E3nUR8$@ag+jAB4=aNjvFteotL|2@@OvvDReEq zu86my`F$W&Cv|q}n~Bl%(PC8eMekpC;FPy5iCfiD#B%<6Xo9&|FyFYXY{w4yfj)Lx zEFWz+HS8BlIZ9TT8=U1<CQ9*#WPTuX97w{zDu)oU9PRL`mWf212LaNQEv>OB%=QfdNtn7B(^higp-bpj_Y ziI=ODnoVxlLVoQ1ux?1VVY+pGK4$bj!NE%k?$}2dO-P_sU&t z9(#GGyS~QB`1@}kKWHmB#|wMACjw(UVFISJbMS--9UNq`$ZB&E52{EuJS)-o(Xnhq zoNS&>GDfm(_9SN?I_os^dL*=!_e1;sGmCPwMZ`umG}EA8By71=ua5zdlPP&xY3!nG zNO|8i>%8De3E{`|Sv4S&AtI;<^Z!Eeeelbz%6qt#b~MQqbTopCq=ndl_YYD*xI{uIB(}vCekO@&K%xWb9N!=Wrbw^C(xck1@oJKyG#c@O zschb?_hT{qXuekPa`@$e?Tn|?4l9q{&z;rAZbO9bfE^KsUhexz^bglDBygRs2&{0+ zZ?mJpeZ(o&sx_PP6DBl)v8eG=KW5^1Gx?Pg__0$qb1q5S-HNP?Gzt|2enw~h4x(gt zVQBTg8|i&dw1ZJ2|5o%(W9nB^W-_7N$f_Poq(w&sz-!xk6-6V%h~@O6^0@rR#8>~{B*tafwNzkCq? zB1pL7azgX_M%K%$j{nI{tw)a*RX50waNL8NPjA{mdho-rbuOhJXTMlU!30{d;t|DbBaF!7h@LU?Jhfm1C91NXqUi&8 zG-$x@zbL_+5KlZYp!Hz1ayQZ56Jjwff9AO={c@s@)yS;3DclOd9172{rZQDFa8>4AIfdO=o&{E{X|&|`lR17e)I=ND$z?llv+c_?&X0&bYbNxHA`)pC zu4SjP&@N~7`Olu6C*bEsM|iCJ8ei1#w+(k;~^j{H)$cN$mEM$49D2M9!2Ip1O4 z*Cm!RXHP#E)ZVQ5js-SP!RP@2{U zfj^8lt0#!KF559gi&FW5Y9VuhXPUGmV57qyNBkBviYbL>O1eTq^cM0<(hO73HlQfgg>6y&(;?KaGSVAjC4mS-H&Q zbv53ruEzd8S%Bl1GcquHG~N|ql{#C0h6|DlMUSL+Opx+Y)Y8XQ{I_$MZ;EDB$Lw-Y zj2r$GgbI>ov+<9Evl$#|_cbD649nXHDYNMMz(HKzbau(ltoR3);nO`{@`&9xu_GB6 zoxo2D*c`caQHh)ODoCgLcpo~zd8_#P25AqaGEY7cg_D<7#os41Q54sh_Rne!Q+Kql z4ff~|>qYwh)#hb~0~>Rzw<_ohA^j@)Et+M zMGJqf{ykjX+R+vzPl7c?i|+h2oqdS>`N$P0W_mN8;QJJyRj`{jAeaJhX!JIp^NMx! zL!ByH;Q5uqN#!QaQe&2;5237C;}UuXY~cs9TP5UZ8We;cm4uGBvwkX%O{^>o;GVC9V8hyy*Zz* zOD3Ebk7mceVREg4r1+?mR!as~Fl5c$p&6MxilQi-h{}NWmF(B&gx1M>tc7OK|jd zPpQt_@s!r{r(Ka~QNh-+p8LY*!e75!S(dG-y``z3S`E(rvqM;>(Ld+{NN}L zqr#jkBFj*dNQ|&jK~?zQz4;kC4l24AF26Xz1VOx{k40UxaO7OEwqi#KTqEEY4OQ_eg?O*{P$ zzPWGn!*{Q;V)-iv?p2*yz$l+FdJ#n?%VM{+G^vS6amH`K`c$b`KAtl0$|<#SDmjLp z!i=eehX)6ALM-Y1r=qPQHx)vlQ`A{edn!&mIH&+6p z*|e*~gc|~^xX-6=Bsboc46Iz_jAYr}lCWd^Jg!X@$KLI#+j^V0D!H?zRBp)yxJ!8{ z&dO;(iDB5bsx%&yz3c`>YqgWhLbulh z)DPj3M{DkRfoqfb<;sPDYeFa{dB=5`IfV^xnS2ECzs*92f{FXMR5*{YVN{uS2C7!# zqU|$SjrYDJ&r&f0i9~PYgj6_jZ6S;@h;KneWRZ)R#mzNJyjH;GpDUr18K(~_F|_w0 z)bKwkn>=g(prap8b+Fe49WOIJs#MNDS9GWj?%!ijQb`arxwuL&DX}u#HLnG#JVUR< z>sVbZX-a2EVuh0WH`tE~|3ZZxPi1FN?D`Y9^xa;v`P5&Y<}mr{hG~6bN9FfZ5Li?d zbfL;Gd0CNf#<0HrDBzxsb>q;sUlXY!rK$2x?X#e&7uKkQ!)a2!GW}ajE7>-xH%40@#V@J~p#)<0lTc8y!^Fs+=AjZ) zARaDUGraGk4fEcXukchLd*LB# z?Ad8zTtf4aWE_-L!QdByZZFj_R(^`6UquK}nT>d{lc*=t=M2^J%ov;^f(?-LSp?Nkn;nVsxsfXa) zV)f#5&sj<+Y>FL}6%$$oW2>@{L4Jcw$17WyoWQ()V`qVLwppf>i~Uu^lQivype3^( zZss&ecJQZ(2UYQ>QE&u;Xu)cGHZw|$w=)@9^#B;yBhB|;=n(OjFYXko(7`5g>`jrF zEh`f1Td_i$ppFF*|LU#VAGrBQ!tP?08{Yzhq}aubBP<_#9>uWt1fiJUca*H*Z~N=- zRG)_R1meF92}HNtr>Cg3%(K4YUiq1GE z9fQiEog6(gLiP*9!^B79u;*z8JFAnSjExu1<0!mv4BIc7G;GYOJ_7{VLF|4nI4WIB z6)XEBDAh-J9zY)$EkWH@c+M+)gfJ|9td>y#r{Ez5n&dNN$6>8|dhuGZk!~s_@W9_E zS_zqV>mlzug%=Kp2yv+MrxQS9TtslG!hnmA{txq3T%W8&5E^>{=RPjY-U!djUMU*V zUaGG_GCS%_!=7c)2syFs1M2E4mGGy5hI!Zaa}}oF9$lCyIa3h=V|@1M0Z}CH4sRcW zWV@f!7H`wX$q)Hh|C1Sat`2Ul55{YPbQ~#cxxnyb9&SG05!5Xmhx22*N+K|HY`;Pc zIb9K&20B9jEaa%5VBOq;@SfI~P@4^Q9aUj7r}KWI5K}3neZBJetRv@4<=EV03R3Ac zxbm~c6Tzb}k*`?g74^SRn?9BN182kp6-o0M3SB~&r3JKJ82KWv8!3u62V+$|Fe9VE z7{x+|M0X~SkY(i*tO6<}B1_(@1>xoe0>&&18A;M=r)2385W(IkRV4Pq)f<8W@Lhf* z?cJC>cXUcQi6sa8zt8*QkqwM)xuE5S*EKylCOY<&>2tp8Bv$EoJ%8b?Y6q?LDNRe2 zSST`NNh8b72cCY{h#gl}W8lG$~f zwzLJ~VTN@dv(Y0X0@`Kmr!e*JY_!ZB6m+MW7<-ddiM4gu} zGmO87x_8d?Cu?yjzC|GB@vKBjyhgfUcOMmO>dz$I;&zkb>(afXG3Z;4QHd@y+bn6j z4&R2im$gvg|LRJUF>5ls!y|!Z~X{fbFic;cE3ev^NTz#OBV2cZ))VduRbthji(V zf|U65BpO~5=xby9K%&b%7{QAJ`#XD+E&;Cn)R*lR-m@??v+-FK)y`dCmUYx_%Tx&t zi0>c2;&gp>n1wJZc#>e25F!i2qYS}*7Trto2merc7odTUGf~Wza3%jOnw;SdJ`*W( z6pAZK!^wp4rJH9Gx^Q7>1XySpIlGt?yMSQ|XJRnlLqjBYSyg4|M7kcuC*PwZ{R zK}+!_%J2r>DbnDdY&N_a_G?5n%4vz+OR7XK!kscG|IB~7{MRCc*okRmGU3<;MLD-> zP}8iCb&+2#d%e6kS>PzXK_fvt?hl1cnl1%I0)9B7Ow1$hrDquQ2in2 z9*vP^5K1f@RrI&u>C->{>4S3xLR_QF5|EveLA>%&NvN;e3(!eSmH%^+>w5Bta_3C( zj9wmpHgRJRfid|?7g%!Z-$+{g?T%mZ(^{+`8&viRYpw=VVIELLIyiN4d@ax|FaYal zUDt;RS4RD{y+IQNNs{+ce$!0sC8vmInfg`KgdGeTLcfH<@_3#}RBV&LL1<6`rN3C@ zZVCuhQpbm-pav2+syRLMlQPEl#F-#$6Vk@lLl_lbF*+_xK7iSJ=g{zvX#T#tILt+^~L z+oV}I>i$Jp1b?0IkoDMZiX z1xZHYuD+v-L10%^5(l*O?;cha6_v_WcQkt9JO*WzkL(oOP*7$xZx?3h$N&Sk(Rg^& zzHj7iGNBgPlvt!If~ajtg`|F^hKd_PD@k@qTabV;`{pF|2#=j=o2K++;`^S0sEuPTAWkAeoU(x~{ zq$Wm`sC6^O9~gDL6DxH+M85Aw;-Ty~5U2+>B>oCU22POgM+^`%R1$O8=@rHJX&4t2 z+)#TE`bbJROF6%SdtU_ItNTf?S@a~o0e->v%yiM%z#mv9Sa!qgd>kQ_);_}e6w7xd z%rqtZtx*^$M3V!cEOm2`(I%B%Z|Pk^6x#b6!}!iFwp-v{knl#RWBO#Acu*D^68C5d znFsN#C-JK^>4Wg@Mke;bBnWo;iRwv0^`7~8NF>C2{fYNE;KGwqzZC-d>Bo%WI7xYdiZ&v<- zCA$;}{Yc5903=Pv`RIz*rY3Tc)UlB$N*AqJnWdIQ5gColRVs=R@$A`sa7p^%Ar_}^ zK7=Ao`utuRPNj@EdQ40hg|NTp)8JtoyJX$C~b| z0%V~9E?jVMr=;aREfWPA8er!4?x=`W?JOV(*3&U+jN?70BH)XixhO8S2OAkZm{52x z+&qMAdQVw@GMyg`Zm7_>jf6FlWZ<^%JNM`;Co)XpZU8cGd&SBe?@gsvA35|KYe9VI z7`d)%Oy9HM2W7CMBmo$_RH~#`7O|~kIgYEJB$dGIX1;f8fY4}bd+E^I+yKpJC<(M@ zE0PRKcOGzHk4VUQp4b=JDO{aqlaDXwuaweY>Gf;N_bz0FXZY3<7~VD zXndTV)P2TJ*{m*7%P$^a=ehIM!Nn_M|k^y%l`F(wFoZ!fiE{z3X{evt}A@R2fZU&y)oIhz4FPK_3Wp z3Bbk4oaB6c9v5NJQpp|+AEPq>RCPtT9P zGGo7&e3q`SRQC3*QQ;QX0wyPetS+K^;Y&-F_F*QIRjnALb|$R;J_87O%mvR^Ly)E2 z*YDAK=RHPN4;MvF#^FdOwBSvKP&)!s=M_;$QvMge6*~J@5aiK8myLs0{C~t5=YNm) zs}$Gy6woqsk(uvS7dHc*I0#QIrZbmz*=3{Ew zZ0afUXf1SdCI1fFw_hrbuta=7gdlyay-msu; z-oV`GkKYAXLI%)@=E%Q?Rx4LNIQ!~sun@j}bM4Mej@CPeP92Y+QGvI>N6)OxS@&JjVQs_q*Dq6pekmQ+<_?0@zBJ$9k9}b_V!%gs4oz2{ly?rZ8?82es zlZ}$mKuSA-vX!v(?869(0vge)xR3v)C}5Y9;Vmvu6_FXs{e$*wxD+N~G(827YMx!)0WN7JJNquPZ^=JP3=5Dw8DbLJO#|;57w7^)Wp_!9 zA92ur6Yy$6Q_CdRi<@7*@|s=V%Gmh`Ma9Nz_J{N90dI$j9~g)s(0~69bvu$E`uT?9 zb(?V5p$A-U_redySN*zTaOdXgvpR1~e7Lcopdz^aHn2ndXQu1 z_^vM5Di-+gUNDyU{}`)lTl{+DVyOW6REOqG@=QQi37x3l8{bq0Xe)WrZFm^>u}uRZ z0aA`GaCkZm8pMNS(-v(Fl>V}Zy-vx78RBzMCrif#G5fr2)813=WH8rcbqoO=JSbT$ zJTRixNR3qgE`P`p&0!RaZ+OL_6CQ&Gc)g@zRztNw z10mg%UcD{if>DnYW^;*gM>&wCjRDC)>|$V)?#kQ{OLwg1ByvU+2a?IR4<>4`!nr?^ zZ(ZVQCFmiJHJV$@n5PIun!TY5W9W{yhCa5DbPn(Nb!IjVFYWDlWU7P6fWs!zS_xez za%B|WqrXQ9_{MTbp8}~t@6SQ8*h411O$2)UFE`>h72w4sP3sFQHo_@7;(;#oMA~hn zS8d9EKA0Y5ih?SDq;~I!^J_5C7T@M>AnhUc^c=yP2amHzF6sPDJO>BI3NVL~Xu(Xl zyQu~wpsg=csrc$LFXSw{B2H!W<-}GuZ|v@w1MQ8BbcFl(EAhaO(NEySw>#kD$@ygg zxdY#$Y6)|l5@2ICzft1Dk$CTjMahi^%}?B~p#$il8Y&}N>)`cQMPXmTc~-b4aj+cK zbpsPt=lCOp#6}&+N%myse|jX35n2pVhJz!fevJIhgTN1|XP$K-t8w zBY+dN&llBjkkHW(Al4F|JbhA&E|G95Dk`dy=GKxOn7LE>C`%bmt-lZ(1adJo4JNwV z0oU$5=#i3=%r%9=1XWLiXx>1J(;&w;;fnvr%o8APgD>@a?w+rs3#HRfC3l8I*i}H= z zMWuq%@9^A#o(2=&HgiCCByp*vuoyzzZ88;f(yKHV@~UfPYpBDu)(cnJ<}^r0bHzAX zN{FPJrRjelpsdfnD}|`A=52u0))u<@RkZm9um-W(r%RexVSRh3h`h4pKNV0hx>`ZK zzO%e>(PJ0=?=(0%Q@cj^5TpaS8u}EolhITrAB#PE`}vbe%@*;KCW@C8>*vo0hg2q9 zRi_6tE~j+NH9!(mmwvx@EC1Ly<)*k@-_Gwu?4S`DuA5Iq<#dANG2?jI*3pNV5tB|| z?jrwO?gMeEIM$BdV~!~Vc!3On=OBoVNcI|#6W+!6%*>luY}%tF8Ns=rUq=B=q4 zKuvd~v6}?eDW=A=)wIABQb=Djvn8b zHyxaQ`n>J~yNLIf|AL0CUX)nMC;|vO8zYHl8fqSD>~Gd}v$f>$LI`uT0toDIQg0+O z$vH~9FM9^qa`j6c-@S81RhPY`nb2#oy~=DE8xMtgZ^;a6nIAHM~Y4o2m#Qjtg9i=*pCDa77$s zB~0C2VKreKVgDLve;U)c)E};+>7-HMQk{Y_nBMLTrp6HZVE%`BBnbw|kvU#mwzaT} z*5m>yxAN}wxrF?(j-SR8*gaUtGh23RS3AY+L-zhv&XhaROIUIyYQj$P5b+8##g6Q_ z$Kcd!_`BCnq*;vJkeW{ea`}VM0ZM&A5oc}q15vX8XabLPhHqG)3Cn)&BUg=4Xg1_?vQY65&oy!nXjL+n!lU&ApZ}y zBMQwu0tbM8i_wrt>ah)aIr6vsje^2Y|{$e!3Mf-IAwhdVeByVKB3>l z?+A3b+yme0#eYS7{O&_OBT%oDdWn*^RB09en+hyi59iZ3o$F|Ps)-?l>=g%fP45vQ zy|L|qqRqv4>}rgtKvyc_y9MX^Ao@~kIJXuX`$!->4j_$Bwt-YRc$ddbIo+nXEf#b1m4i*>w@coC$Q@JKd6qq zBLf*ZP8iGU#m6$BrcI$0f(#NlhUtDBaT8(azlA#4NQG{#SvzrIFGG)J7aX|ZWyW9# zx1aBPc;3<{hI%8N$O3h+g9O(#{Qr&9Nk(>x^*A6kIjVBdgB`3FgN?gk1`o64nNj6~ zMEkZ(-SVgV&~!)}gJw%rcXPaO$wIyei|6OUU$647>8j=VQdvHWC_z!@qCZO!({wrx zccZWo*8A2srI`87VMp?;iR0LV3Rw1vcRNWh@b*$$y1%;96pkQi4Ci~v zLKNJ#$UK2>swujj9)}XAnUxffim2PZqTi+j^GS9>2HGl6WSm8N!${Mc^`D{wlT_N;o7IdtX?#THcbro{y$ zIa_i=fbv&nOi=ND&-)-C+w;rAq5E?@J&D&rDEzfn-hx6HD-1M_bx;0}%UJ6tF!9FhG^sxaNocEM}$BP9&{LVd?>SNkLKHNUnHt#ckE3!?w3t;r1q#-eq` zs)Gi8iGT)FG<-pO<$4iIOYeqffMQTGQ1iVf6qt&wreyX-ybNlaO#6=)E9L%kxDs0q zG7mjVoCEcJ3b*OmQ&c{J7Fs7gN^Dr)FMm$*yP+SH7GrwQeAWI3iaGZxc><9;gdrJ# zLLUKs426#%)eOMU)xQsZ=FU_AHQ)YiE2TaP$9|(%(j;OBy)1#qMLz%>>=mCNr6WFg z3nD^P9%A;tvewSaW&5dKXWt+E7FPU{DU{z0t3kQJPXNEq#V{R^@WXpg+imMxPb_f8 z;vpCeggp#L2f9#gE76U{E0p2JkG9Fg{cBNZeosAMw_c`{EOEZ<9z~40y9RlVHyVY` z^pv$b^2!{M_(dI-HaI}b++lM!n9n{8M}l|c7mW4B@s^W9LvD8`p(d&I)3F)q2AVPp z(>$6lPU5eQ^K(~(rP40bSh%r!AeZcIXejme9VySvA=%!5`Xi!&UM{nyW$EMo+5@b? zb)d95{H`$$Gv) zc!0&3sheb%iojh*i=XGY1X*zS!G8GZdoi0*iY^;=h6rM}S)0GESh%KJxt#vFN^1LJ XG1LD-ya+b{5g$B#V*zUg2m5~ja4IO5 diff --git a/metacode/optimizer_target.py b/metacode/optimizer_target.py index bf5f1db..a121105 100644 --- a/metacode/optimizer_target.py +++ b/metacode/optimizer_target.py @@ -9,7 +9,7 @@ import tensorflow as tf from tensorflow import keras from tqdm import tqdm -from ..pso.particle import Particle +from pso2keras import Particle gpus = tf.config.experimental.list_physical_devices("GPU") if gpus: diff --git a/mnist.py b/mnist.py index b572460..a153629 100644 --- a/mnist.py +++ b/mnist.py @@ -76,17 +76,15 @@ loss = [ "mean_absolute_percentage_error", ] -# target = make_model() -# target.load_weights("weights.h5") pso_mnist = Optimizer( model, loss=loss[0], - n_particles=70, - c0=0.25, - c1=0.45, - w_min=0.35, - w_max=0.65, + n_particles=150, + c0=0.2, + c1=0.35, + w_min=0.25, + w_max=0.5, negative_swarm=0.1, mutation_swarm=0.2, particle_min=-5, @@ -96,15 +94,14 @@ pso_mnist = Optimizer( best_score = pso_mnist.fit( x_train, y_train, - epochs=300, - save=True, + epochs=100, + save_info=True, + log=2, save_path="./result/mnist", renewal="acc", - empirical_balance=False, - Dispersion=False, check_point=25, ) -gc.collect() print("Done!") +gc.collect() sys.exit(0) diff --git a/plt.ipynb b/plt.ipynb index 6f9cd6b..589d819 100644 --- a/plt.ipynb +++ b/plt.ipynb @@ -2,20 +2,20 @@ "cells": [ { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "(206, 140)\n", - "(206, 70) (206, 70)\n" + "(73, 200)\n", + "(73, 100) (73, 100)\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAIhCAYAAACYF2qHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zeZb34/9dn3ju5s0ebpHtCS+mAUqZCEZQhThD0KDhAZR0HiBwEFfjhUcHjAb9wRITj4BxQ9CirakGgjNI905Fmrzt37tz7/tyfcf3+CA2EFoTaJgWu5+ORR5Prvj6fzzWa5J1r3YoQQiBJkiRJkjTG1PEugCRJkiRJ700yCJEkSZIkaVzIIESSJEmSpHEhgxBJkiRJksaFDEIkSZIkSRoXMgiRJEmSJGlcyCBEkiRJkqRxIYMQSZIkSZLGhQxCJEmSJEkaFzIIkd4xvvOd76AoCgMDA2P63DvvvJP77rvvLeefNGkS//Iv/3LIynOgbNvmxhtvZNKkSfh8PmbNmsV//Md/vKVr0+k03/jGN1i+fDlVVVUoisJ3vvOd/eZ99tlnueSSS1i4cCE+nw9FUWhtbd0n344dO/ja177GwoULiUajlJeXs2zZMh566KF98t53330oirLfj97e3lF5r7vuOhYsWEB5eTl+v58pU6bwhS98gba2tv2W4SMf+QhlZWUEg0GOOeYY/vjHP+63Xr/61a9YsGABfr+fyspKLrjgAjo6Ovabd2BggCuuuGKkrWtqajjjjDMYHBwcle+ll17i9NNPJxKJEA6HOeWUU3juuef2ud9PfvITjj32WCorK/H5fDQ2NvLJT36SLVu27JO3t7eXr3zlK0yZMoVAIEBTUxMXX3wx7e3t+y3rXt/+9rdRFIUjjjhiv69ns1n+7d/+jRkzZuDz+aioqOCUU05h586dI3n2fo++0cdvf/vbUfdsaWnhvPPOIxqNEg6HOe2001i7du2oPD09PXz7299m6dKlVFZWUlJSwsKFC7n77rtxXfdN6yQd/vTxLoAkHe7uvPNOKisrD8vA4u247LLLeOCBB/jud7/L4sWLeeKJJ7jiiitIp9N861vfetNr4/E4d999N/Pnz+fcc8/lv/7rv94w71//+lf+8pe/sGDBAkpKSnjqqaf2m+/JJ5/kz3/+MxdddBGLFy/GcRwefPBBPvaxj3HjjTfyb//2b/tc84tf/IJZs2aNSquoqBj19dDQEOeffz6zZ88mEomwdetWvve97/HHP/6RLVu2jORvbW1l6dKl1NXV8bOf/YxwOMxdd93Fueeey//+7//ykY98ZOSe//Ef/8Hll1/OJZdcwq233kpnZyfXX389J5xwAuvWraOsrGwkb3d3NyeccAK6rnP99dczffp0BgYGWLlyJcVicSTf6tWrOfHEE1myZAkPPPAAQghuu+023v/+97Ny5UqWLl06qv3POOMM5s+fT1lZGS0tLdx6660cc8wxrFmzhpkzZwJgWRYnnngiiUSCG2+8kTlz5tDc3MwNN9zAE088wbZt24hEIvu06/r16/n3f/93ampq9ttXmUyGU045he7ubq655hrmzZtHMplk1apV5HK5kXyXXHIJH/jAB/a5/vOf/zy7d+8e9VosFuOEE06grKyMe++9F7/fzy233MLJJ5/M6tWrR+q0Zs0a7r//fj796U9z/fXXYxgGjz32GJdeeikvvPAC9957737LLL1DCEl6h7jhhhsEIGKx2Jg+d+7cueKkk056y/mbmprEZz7zmUNWngOxefNmoSiKuPnmm0elf/7znxeBQEDE4/E3vd7zPOF5nhBCiFgsJgBxww037Dev67ojn//gBz8QgNizZ88++WKx2Mg9X+uDH/ygCAaDolAojKT94he/EIBYvXr1m5bzjTz66KMCED//+c9H0r74xS8Kv98vOjs7R9IcxxGzZ88WDQ0NI/UoFAqitLRUnHXWWaPuuWrVKgGIb33rW6PSzznnHDFhwgQxODj4pmU6/fTTRU1NjchmsyNpqVRKVFZWiuOOO+4f1mnr1q0CENdff/1I2ooVKwQg/uu//mtU3l//+tcCEL/73e/2uY9t2+Koo44Sl19+uTjppJPE3Llz98lzxRVXiFAoJHbv3v0Py/V6e/bsEYqiiAsvvHBU+te//nVhGIZobW0dSUsmk6KyslJ8/OMfH0kbHBwUxWJxn/t++ctfFoBob29/22WSDh9yOkZ6x+no6OC8886jpKSE0tJSLrzwQmKx2D75HnzwQZYuXUooFCIcDnP66aezbt26UXlaWlr45Cc/SX19/ciw+fvf/37Wr18PDE+tbNmyhaeffnpkSHnSpElvu8zt7e1ceOGFVFdX4/P5mD17Nj/84Q/xPG9Uvrvuuov58+cTDoeJRCLMmjVr1ChFLpfja1/7GpMnT8bv91NeXs6iRYv4zW9+86bPf+SRRxBC8NnPfnZU+mc/+1ny+TyPP/74m16/t+5vhaq+tR8rlZWV+73nkiVLyOVy+0xd/DOqqqoA0PVXB3+fe+455s+fz4QJE0bSNE3jjDPOoKOjg5deegmAzZs3k0wmOfPMM0fdc+nSpZSXl/Pwww+PpLW2tvLHP/6Rz3/+86NGR/bnueee4+STTyYYDI6kRSIRTjzxRFatWkVPT8/brpNhGACUlpaOyhuNRgHw+/373OfWW29lcHCQ73//+/t9Ti6X47/+67/42Mc+xpQpU960TPtz7733IoTgkksuGZX++9//nve97300NTWNpJWUlHDeeefxf//3fziOA0BZWdlIvV5ryZIlAHR2dr7tMkmHDxmESO84H/7wh5k2bRoPPfQQ3/nOd3jkkUc4/fTTsW17JM/NN9/M+eefz5w5c/if//kfHnjgAdLpNCeccAJbt24dyXfmmWeyZs0abrvtNlasWMFdd93FggULGBoaAoZ/UE6ZMoUFCxbw/PPP8/zzz/P73//+bZU3Fotx3HHH8eSTT/Ld736XP/7xj5x66ql87Wtf4ytf+cpIvt/+9rdcdtllnHTSSfz+97/nkUce4aqrriKbzY7kufrqq7nrrru4/PLLefzxx3nggQf42Mc+Rjwef9MybN68maqqKmpra0elz5s3b+T1w8XKlSupqqqiurp6n9c+9KEPoWka5eXlnHfeeW9absdxyOfzrFu3jiuvvJIZM2Zw3nnnjbxeLBbx+Xz7XLc3bePGjSP5Xpv++rw7d+6kUCgA8MwzzyCEoL6+nvPPP59wOIzf7+fkk0/m+eefH3XtP3r+pk2b9nnNdV0sy2L79u1ccsklVFdXjwosly1bxsKFC/nOd77D6tWryWQyrF27lm9961scffTRnHrqqaPut3eq6q677iIcDu+nFYenQ7LZLNOnT+fSSy+lrKwM0zRZtGgRf/7zn/d7zV6e53Hfffcxbdo0TjrppJH0fD7P7t27R/7/vda8efPI5/O0tLS86b3/9re/oes6M2bMeNN80mFunEdiJOkt2zsdc9VVV41K/9WvfiUA8d///d9CCCHa29uFruviq1/96qh86XRa1NbWjgz1DgwMCEDcfvvtb/rcf3Y65pprrhGAePHFF0flu/TSS4WiKKK5uVkIIcRXvvIVEY1G3/TeRxxxhDj33HPfcln2Ou2008TMmTP3+5ppmuILX/jCW77XP5qOea03m47Zn3vuuUcA4o477hiV/thjj4nrrrtO/N///Z94+umnxU9/+lMxceJEEQqFxPr16/e5T09PjwBGPo455hjR1dU1Ks+5554rotGoSKfTo9JPOOEEAYxMXcXjcaGqqrj44otH5du1a9fI/bu7u4UQQtxyyy0CECUlJeKcc84Rjz/+uHj44YfFvHnzhN/vFxs2bBi5/qijjhIzZswYNX1l27aYMmWKAMSvf/3rferl8/lGnjljxgyxdevWffKkUilx1llnjar/ySefvM+Um+u64phjjhHnn3/+SNr+pmN+85vfjNRp2bJl4o9//KP405/+JE455RShKIp4/PHH9ynDXo899pgAxC233DIqvaura7/pQrw6dbRq1ao3vO8TTzwhVFXd52eB9M4jgxDpHWNvEPLyyy+PSrdtW+i6PvJLYu8vstWrVwvbtkd9fOITnxDV1dVCiOF1DlOnThUTJkwQP/zhD8XatWtH/ULY658NQpYsWSLmzJmzT74XX3xRAOKuu+4SQghx//33C0B88pOfFI888sh+17587nOfEz6fT3zzm98UK1euFLlc7i2V6bTTThOzZs3a72umaYovfvGLb+k+Qhy6IOTRRx8VpmmKj370o/tdK/J6e/bsEeFwWJx99tn7vGbbtli9erV49tlnxT333COmT58uZsyYMRIsCCHEX/7yF6Eoivjwhz8sdu/eLXp7e8W3v/1toWmaAMStt946kveiiy4ShmGIn/3sZyIej4sNGzaIY445ZiRvb2+vEEKI73//+wIQc+bMEY7jjFzf3d0tgsGg+NSnPjWS9vOf/1wA4tJLLxWdnZ2ivb1dXHzxxSP3/O1vf7tPvdasWSOef/558d///d9i4cKFoqamRmzevHnk9WKxKM444wzR0NAg7rnnHvH3v/9d/PKXvxTTp08XRx99tBgaGhrJ+4Mf/ECUl5eLvr6+kbT9BSF7g/zKykqRSqVG0rPZrKivrxfLli17wz766Ec/KnRdFz09PaPS9wYhr23jvfYGIc8///x+77lmzRpRWloqjjvuuFHrhqR3JhmESO8Ye4OQ1y4k3KumpmZkhOB73/veqL8CX/+hqurIda2treJzn/ucqKmpEYAoLy8XX/3qV0f9sP1ng5CpU6eK97///fvk6+joEID43ve+N5J27733iqVLlwpN04SiKGLJkiXiySefHHk9k8mIf/u3fxMzZ84UgPD7/eKcc84RO3bseNMyffKTnxRVVVX7pGcyGQGIa6+99i3X71AEIY8//rjw+/3igx/8oLAs6y2X5QMf+MBIUPlmOjo6hK7r4vLLLx+Vft9994mKioqR/xtz5swRN998swDEAw88MJIvk8mICy+8UKiqOvJ/6DOf+Yw4++yzhc/nE7ZtCyGE+NnPfiaAfZ4jhBBLly4Vs2fPHpV26623inA4PPL8pUuXim9+85sCEM8888yb1imVSonq6upRQdhdd9213wW8u3fvFoD4zne+I4QQoq2tTQQCAXHHHXeIRCIx8rFs2TIxe/ZskUgkRgLcxx9/XAD7DfbOP/98EQgE9lu+WCwmTNMU55xzzj6v5XI5oSiK+PrXv77Paz/96U8FMDJC+Fpr164V5eXlYtGiRaMCKumdS64Jkd5xXn8uhOM4xOPxka2XlZWVADz00EOsXr16n48XX3xx5NqmpiZ+/vOf09vbS3NzM1dddRV33nknX//61w9aeSsqKva7yLC7u3tUeWF4oeiqVatIJpP8+c9/RgjBhz70oZEzLkKhEDfeeCPbt2+nt7eXu+66ixdeeIGzzjrrTctw5JFHEovF9mm7vesO3uhsiLHwxBNPcO6553LSSSfx8MMPY5rmW75WCPGWFsJOnDiR+vp6duzYMSr9M5/5DL29vWzdupWdO3eOnLuhKAonnHDCSL5QKMQDDzzAwMAAGzZsoK+vj/vuu4/m5maOO+64kcWh+1vj8GZl/eY3v8nAwACbNm2itbWVVatWkUgkCIVCLFy48E3rtHfh8mvrtH79ejRN4+ijjx6Vd8qUKVRUVIysoWlpaSGfz3PFFVdQVlY28vHcc8+xbds2ysrKuPbaaw+oTns98MADFIvFfRakAgQCAaZNm7bfdS+bNm0iEAjsswh23bp1nHrqqTQ1NfHkk0/us/hWeoca3xhIkt66f7QmZO9frnv27BG6rov/7//7/w7oOUcddZRYvHjxyNdHH320WLJkyVu+/vUjIddee60AxJo1a0bl+/KXvzxqTcj+PPLIIwIQf/7zn98wz5VXXimAUVs9X2/vFt3XD39/8YtffEtbdF/rYI6EPPHEE8Lv94tTTz1V5PP5t1wGIYRoaWkR4XD4La2R2blzp1BVVXzlK19503xDQ0Ni0qRJb+mef/jDHwQgHnnkkZE013XFxIkTxaxZs0ZNx3R1dYlAILDPupLXa2trE6WlpeLKK6/8h8+PxWKirKxMfOhDHxpJu/HGGwUgXnjhhVF5m5ubBTBy30QiIVauXLnPx/z588WkSZPEypUrxc6dO0euX7p0qaioqBDJZHIkLZvNirq6uv2O8gkxPIJYX18/qh1e6xvf+IYwTXPUFttUKiWqqqrEJz7xiVF5161bJ8rLy8W8efPEwMDAP2wb6Z1DHlYmveP87ne/Q9d1TjvtNLZs2cL111/P/Pnz+fjHPw4Mb6u96aabuO6662hpaeEDH/gAZWVl9PX18dJLL42MJmzcuJGvfOUrfOxjH2P69OmYpsnf/vY3Nm7cyDXXXDPyvCOPPJLf/va3PPjgg0yZMgW/38+RRx75lst71VVXcf/99/PBD36Qm266iaamJv785z9z5513cumll46s7v/85z9PIBBg2bJl1NXV0dvbyy233EJpaSmLFy8G4JhjjuFDH/oQ8+bNo6ysjG3btvHAAw+wdOnSUVs9X2/u3LlcfPHF3HDDDWiaxuLFi3nyySe5++67+d73vkd5eflI3ptuuombbrqJv/71r6N2NDz22GNks1nS6TQwvLNi7+mmZ5555sjzY7EYTz/9NPDqSMtjjz1GVVUVVVVVI/d89tlnOffcc6mtreVb3/rWyLbovebMmUNJSQkAp556KieeeCLz5s2jpKSETZs2cdttt6EoCt/97ndHrtm4cSNXXXUVH/3oR5kyZQqqqrJp0yZ+/OMfU1FRwde+9rWRvP39/fzwhz9k2bJlRCIRtm/fzm233Yaqqvznf/7nqLI8/PDDdHd3M3v2bAqFAk899RR33HEHX/rSlzjnnHNG8qmqyo9//GM+/vGPc84553DppZeSzWb57ne/i2maI6MLMLwj6eGHH2bRokX4fD42bNjArbfeyvTp00fVKZlMctppp3HBBRcwffp0AoEAO3bs4I477sCyLG644YaRvJ/97Gf58Y9/zEc+8hG+/e1vM3PmTFpaWrj55psJhUJ86UtfAoa37J588sn7/D+JRqM4jrPPa//+7//OKaecwumnn843v/lNFEXhhz/8IQMDA6PKuteLL77Ili1b+Na3voWmafu8DvC1r32NBx54YOT7wufzceutt1IoFEadxtvc3Dyyq+f73/8+O3fuHHVK69SpU0e2K0vvQOMdBUnSW7V3JGTNmjXirLPOEuFwWEQiEXH++eePWly31yOPPCJOOeUUUVJSInw+n2hqahIf/ehHxV/+8hchhBB9fX3iX/7lX8SsWbNEKBQS4XBYzJs3T/z4xz8e9ddba2urWL58uYhEIgIQTU1Nb1rO/R1W1tbWJi644AJRUVEhDMMQM2fOFD/4wQ9GLYT95S9/KU455RRRU1MjTNMU9fX14uMf/7jYuHHjSJ5rrrlGLFq0SJSVlQmfzyemTJkirrrqqrf012GxWBQ33HCDaGxsFKZpihkzZoif/OQnb9jOK1eu3KdevME6m9eOdKxcufIN8712bc3e57zRx2uff+WVV4o5c+aISCQidF0X9fX14sILL9xnFKm3t1dceOGFYurUqSIYDArTNMWUKVPEl770pX0OtYrH42L58uWiqqpKGIYhGhsbxVe/+tX9Lgj+/e9/L4466igRCoVEIBAQixYtEj//+c/fcAHtI488IhYvXiz8fr8oLS0VZ599ttiyZcuoPM3NzeLEE08U5eXlwjRNMW3aNPHtb39bZDKZUfkKhYK45JJLxOzZs0U4HBa6rouJEyeKCy+8cJ97CjE86nPRRReJSZMmCZ/PJxobG8UnPvGJ/eZ9vTc6rEwIIZ555hlx0kkniWAwKILBoHjf+94nnnvuuf3m/fznPy8URfmHh5vt2rVLnHvuuaKkpEQEg0Hx/ve/f58Rw70H1b3Rxy9+8Yt/WC/p8KUIIcSYRDuSJEmSJEmvIRemSpIkSZI0LmQQIkmSJEnSuJBBiCRJkiRJ40IGIZIkSZIkjQsZhEiSJEmSNC5kECJJkiRJ0riQh5Xth+d5dHd3E4lEUBRlvIsjSZIkSe8YQgjS6TT19fX/8G0VZBCyH93d3TQ0NIx3MSRJkiTpHaujo4OJEye+aR4ZhOxHJBIBhhtw77HR/yzbtnnyySdZvnw5hmEclHtKB4/sn8OX7JvDl+ybw9d49k0qlaKhoWHkd+mbkUHIfuydgikpKTmoQUgwGKSkpER+sx6GZP8cvmTfHL5k3xy+Doe+eSvLGeTCVEmSJEmSxoUMQiRJkiRJGhcyCJEkSZIkaVzIIESSJEmSpHEhgxBJkiRJksaFDEIOE7ZVYOeLq0j29453USRJkiRpTMgtuoeJ7h3bibXvwS5alFbXjndxJEmSJOmQkyMhhwEhBAPtbQDYhcI4l0aSJEmSxoYMQsaIlc1STCWxstl9XkvHB7ByGQCcojXWRZMkSZKkcSGDkDHStnEt6dZdxNr30LtrB/Zrgo14R9vI57YlgxBJkiTpvUGuCRkje9LQnoHN6zZSEdTpb21h7snvR1U1Bl4ThHiug+s4aLrsGkmSJOndTf6mGyO24afoKSTig1QEq8kk4jQ//yy+YBDbKqCbPlzHRngeTtGSQYgkSZL0rienY8ZIbVU5AJlUaiRtqLebvpZdw69PnY5h+gA5JSNJkiS9N8g/t8fIhJrhIKSQzeJ5HnXTZpDs7ydQUgZKNVWTJjHY3UWxkMeRQYgkSZL0HiBHQsZIdXkpiqpg2S4ruz20qgaOPuMstOBkWto62bOtG8O3dyREbtOVJEmS3v3kSMgY0TQV0+9nKJej11ZY15emx3uR9WuaGbJcEu19LJnQAMjpGEmSJOm9QQYhY8jnM9lRXk17WZD/7d7Ist4cQ7aPrFDpynror4yEyLNCJEmSpPcCOR0zhlzNIK9rqIUs6YxCIFGOp5YC4BQVuTBVkiRJek+RQcgY6ezspFgs4OkapmdgZEuoEDWofhMA1wbHMLBR5EiIJEmS9J4gg5AxkslkKXgKrhlCVwywBan1TxNyugEYUnV+mYGHg5X8qqCyKZ0b5xJLkiRJ0qElg5AxUkCnqBh4hg9DuOjCYSho4LMLeLpHwjTxxHDerOuyIp5iyHbGt9CSJEmSdAjJIGSMxPJg6SYaKqoAhEMqaBJwHTzNI6frFD3B/GKWaruAKwTPJDLjXWxJkiRJOmRkEDJGCkLHVk0URUNDQXhFcoZJtWKBIcjrGpbrUOnZHJkbQgG2Z/N0F4rjXXRJkiRJOiRkEDJGFkyuIqaG8BQdFQHCxjNMQp6FMD2KqkbRdYl6DlHPZvYrC1afjKcouN44l16SJEmSDj4ZhIyR1a1DJJUAlmJgOg5COAwqIbJ5D7JpSrIJ9D2t6IODACwJaAQ1jVjR5uG+BEVPBiKSJEnSu4sMQsbIwqYojmaQVU1K02lcT9AvAvSmTXBdSrJJQv3d5OIJlHQGM5vh47Vl+FWVznyBR/uHxrsKkiRJknRQySBkjNSFfWiagaua6Lks+aJCX06w3YvgaCqKEBi2TSaZxrd6DdmVK6kyDT4YDdLZ2cWq1g7svdtnJEmSJOldQAYhYySeKBDQVYSiUHBVVMsF4RDHxFUVLMOHXnQgmQSg2NGJ8DzURBzTc8jl8/QU5CFmkiRJ0ruHDELGSNdADl3VMPBwPR3F9lAUm4ym4aHgKDrBTB4XsB0XO5fDiQ0Qi8WowEMgaMtkx7sakiRJknTQyCBkjLT2pxGKSggPVfjQXAcUl5ypogoX3QHNFhR1gwHDZGAwTnL3LjKZDBUML0ptk6eoSpIkSe8iMggZI226hae5+D0HtAB4Ho7wyGsqhuMQyhUBFTscJldSgm3b7Fm9GoD6Qi+qW6AjV0AIuS5EkiRJeneQQcgYyXXvRCdNpFhA9cARAqFAHhW/laU8lQMUbF+AQiCA8ARefwzDSnDEwNNEMm2kikVSjjveVZEkSZKkg0IGIWNACEFXtojuWpTmi7i+PEIZfs1WVHxWjrp4P0VRwBaCYsCPQKAW8gTTPZRHIlTbCRyrQLdlj29lJEmSJOkgkUHIGBBCoGd3Q3CA4sR2JjauQTM8ECAEOFkLt9iJIywKhQIuYEZL8PsD1Ll5TNOk2s3iWRkZhEiSJEnvGjIIGQOqqpKrDOAL5ClRB1D1IqbfAWV4OCTtmQhfFldxKXouQgjUsigVZVHC6QS6oVPlZBBWhm65TVeSJEl6lxj3IOTOO+9k8uTJ+P1+Fi5cyDPPPPOGeXt6erjggguYOXMmqqpy5ZVX7jff7bffzsyZMwkEAjQ0NHDVVVdRKBQOUQ3+MSEExw81c2TPWsLpXXiugap4qB6gKORUPz4zjxACRwhsD4iWUsznsDs60VSNOjeL6ubpyhXok6MhkiRJ0rvAuAYhDz74IFdeeSXXXXcd69at44QTTuCMM86gvb19v/kty6KqqorrrruO+fPn7zfPr371K6655hpuuOEGtm3bxs9//nMefPBBrr322kNZlTclhKBgbGXAtwlP68L2DDQUTNdFKCrpUBi1AlTLxkEhW3DZ7Zo4Vho3W8COZYhqHtOtPoq2zdOJtNwlI0mSJL3jjWsQ8qMf/YiLL76YSy65hNmzZ3P77bfT0NDAXXfdtd/8kyZN4o477uDTn/40paWl+83z/PPPs2zZMi644AImTZrE8uXLOf/883n55ZcPZVXelKqqCKUaoULUCuC5QRRFYDgeihBYaoCu0hBDoQCWbqAJ6M057BE2BdtjaE8SXdM5Nr0Tz3Zoy1u05ovjVh9JkiRJOhj08XpwsVhkzZo1XHPNNaPSly9fzqpVqw74vscffzz//d//zUsvvcSSJUtoaWnh0Ucf5TOf+cwbXmNZFpb16lqLVCoFgG3b2PbBmfow15UzsaSUSly6akxQXFTPBRSKqo9+v0JQ1VCFS4UKOccjb1rEMi65dhVVzREM29RlBukx/fyhJ86ssJ8Gv0GDzySgjfvM2jva3n4+WP0tHTyybw5fsm8OX+PZN2/nmeMWhAwMDOC6LjU1NaPSa2pq6O3tPeD7fvKTnyQWi3H88ccPr7FwHC699NJ9gp3XuuWWW7jxxhv3SX/yyScJBoMHXJa9hBBsDvmoKeoIRcVyDQQCnxgOfAqqSVrXMBSDgJckkIux0BgkSBilvA7VKsfpglhVM/2rnuHZCYuwNZVGp5cqb4iiEULRS2myISiGT1cVgDv8KSEDAtrryvTKv554Ja8Y/twVoz9/s/fMUxXwqaAfhPjn7c4uHarJqF/9ccUhvf9eJQYExu27751pxYoV410E6Q3Ivjl8jUff5HJv/XTvcf8xqLyyQ2QvIcQ+aW/HU089xfe//33uvPNOjjnmGHbt2sUVV1xBXV0d119//X6vufbaa7n66qtHvk6lUjQ0NLB8+XJKSkoOuCx7CSHo+fOvqDPytCizKLo+UDyC6nBH2ei4nmCy1oXiaQhUqs1SAkoCPZinyh7EKRbIKQZqoIvSytMJDG2gPr+WggJOUeCoBo/WfYIJaoAqoaDyahsOvfJxsLnAu+XvH9f1aGlpYcqUKWhjMKp07OwaZtdFDvlz3g1s22bFihWcdtppGIYx3sWRXkP2zeFrPPtm72zCWzFuQUhlZSWapu0z6tHf37/P6Mjbcf3113PRRRdxySWXAHDkkUeSzWb5whe+wHXXXYeq7vsLxufz4fP59kk3DOOgdJ7wPBZGBtDJYdhRdjtRysw0VWaOdhpwFI2qQpaIAWm7AqvgJ1MyD8EaQlUZlJQPPVUk7FkcZbVzsvEobrlLLhwl4asnO9hJdyHHRD1JLBghoyhM0g1mmSagkMgWyVjOSHkUBRSUV/4FTVXQVQVdU9FVBU1VMDR1JH3/QaGg6ApyloP9JsMlBxJOHkgMqhzAk177HNd1iZuC+rIgmqa98TX/xDNeKxL0yR/ab9PB+n6UDj7ZN4ev8eibt/O8cQtCTNNk4cKFrFixgg9/+MMj6StWrOCcc8454Pvmcrl9Ag1N0xBCjN+OEkXBrY4SiGeo0mLo1gw8n0dEz6ALF9UDVQ2Q8Vmk82GCdoGc3U5M7KBgzePo6WdibdmMV0yg2/0UchlCoTDm7DOITjgatvyeuf3bmFijsjJcRs4dPtp9fm05TYF9gytpX7ZtE+nfyJmLJsofppIkSWNkXKdjrr76ai666CIWLVrE0qVLufvuu2lvb+dLX/oSMDxN0tXVxf333z9yzfr16wHIZDLEYjHWr1+PaZrMmTMHgLPOOosf/ehHLFiwYGQ65vrrr+fss89+079wDyVFUQj6jyNlrkC1YbrXznY7SpmaIeTmyHshikoJq8p8zEga2FqePdZuBo0SBrIeS2pqsfa04uRDWGoTmXAVoQUnQkn98ANC1ShsZw5pZjZU8bu+BK15i1jRkUGIJEmSdNga1yDkE5/4BPF4nJtuuomenh6OOOIIHn30UZqamoDhw8lef2bIggULRj5fs2YNv/71r2lqaqK1tRWAb3/72yiKwre//W26urqoqqrirLPO4vvf//6Y1Wt/lPAEdvQvZrK6gYlKP03uHkKqzRHubl4U84kZdfSZQ0xWFQqKwm6vniE1jd91MGprQNXYZPaT0z1inRuYO3UCJ+wNQsKvTF9l+9EUhTqfQWveIm47b1wgSZIkSRpn474w9bLLLuOyyy7b72v33XffPmn/aEpF13VuuOEGbrjhhoNRvINGMQOoopYOMUBY9GAIG111iHppXKFSUCI4Wg9FVaOIis/zMxj0UVPoR6uupqXQwXOBLixTUJXP8NLOv7CwZiFBIwjhKgBS6R5a+9bRn88TTzsMmHPGudaSJEmS9MbGPQh5rxCZPeiKxyaOpGjX0uTbwRJ1FxEviyIUHCWApxQo6BEURcFn2SSC1UTzXfxs+71sCa4nrgrCapDGWIF05iXiCwcIGo3gKyGpwP8mmym2+sjqATpSOUJGEFFf8U/tNpIkSZKkQ0WecDUGhBC0huMUVZusHqRDqaWoahiKTZg8CAWBDwVBURcIBbSihWk77CjN8kLPC6SDCkKFrChQ2Vpk+tp++h7+X9xMBls4PO4MUBQuUVQaQ7UoKPSld5Pde1iIJEmSJB1mZBAyBhRFYf7ipbieIKVq2JqBUDxUPIJYaMJBeH5QoKh7CEXBUh0GjF2kTBjKOEz0TaVClCA8j64SDwFkN28k/uBv+OvOx4krEFB1zi6dzckNJ+LXFJL5TnoK+fGuviRJkiTtl5yOGSNVpbMRXoyUquNoHlElhwBUxSVMAZswCgJLd/AUlUG/hSsKCEzCjkpR0yizDAZ1QWeVSr7ShxLL0GVvom/bTvwVYZYH/YQLKULBaip8pXTmEmxNtJBIF9g2uI0PTfkQFYGK8W4KSZIkSQLkSMiYycWK7NHDoCgETPDj4qCg4xAUBYTQUQQUdAtPUciZOQq2ilesJWjoKP44quHg0w2IhtkT9XhsapJOZQj6BzitYhkT9DBk+1EUhell0wF4qed5Xu57maydpXmweXwbQZIkSZJeQwYhYyTRkaFDNVEVhUmqgqOWYKNiYBMij4uOLlSKeoFqPU4mkAPHpWDVkrCOJOX6KAY0yvQQpi9ERvVI+h30QJjTizOobE4Nv99JMQdWhrnlw0HIoJUeKUNHumN8Ki9JkiRJ+yGDkDGyPp4mJxTCCOpw0YwqHEXD51mEvTwuCqYIMMuN0ejbQzCQwOc56G6YwWQ1nVYdjlAoJUjYCBJWdKo8H4snnEi1Vord2YuTLg4/LJ9gSrgavxkl53o0RhpRUIgX4mTt7Pg2hCRJkiS9QgYhY2SNlUJT88xUCuiqgqUE8fQAfoqUuBl0y2GCA0e6cQZ0F1OxqS0UqVcKeMJloOBgeRqqonKsOYPjvQoqXZ3+QoLAwoUAWHs6EI4Ddp5y02BS5QlUR48mG1hCs+Wn4Hp0pjvHuSUkSZIkaZgMQsaAEILa8m1U+uMcq/USMEqxCGH5ImgahEUO4WapsrcxqDsMmi4KUFU0qChmUSjguIKcpyNQyAuPqOpHEQ79qT7MefPQysvwbIViezvYOQxVoS5URXXpXNotF9WoIW47ckpGkiRJOmzIIGQMKIrCx44s5xvqS0zVBklFggwq5XTrKkIfDkIi2gu45Gj2eewxVARQZzt4roquZ1AUSLsGjoCOdBY3B4pwSJPDdRwi73sfQjFxBgbIPvsUXjbLkeEAYU2jwtCJBOooeB4d6Y7xeyM/SZIkSXoNGYSMEV3UonkVKEBGd9ljJNmoWbwYsbG0BD61A1VATA8SVw1QYKJj4XoKpppGUyDnmdgu2IpD0NVAuGS8LI5dxKirwzd3Hihgd+wh8dvfstincWljNYtLQwR9Vdho5J088UJ8vJtDkiRJkmQQMlZCmekITDRjEB2HuB7HUzSGdJfd4QFKvTSNjklerSKHQchTMMMJYuEOdJKoClh2KR7gKg5BYSAEOMIik08B4J89D/+cuah+DS+Xx+7uBiBq6KiKhmkMv9Hd7qHd49UMkiRJkjRCBiFjxMukECjgi4E7RE4toqChKyogMDyFScUwgiPQrFKmZQ0MReDTB3FIYGgKwislL1RQBJ5qoAsFxbPJWa/seDECaKEQeknglWdmACjTNQACgcl4QrB5YDO2Z49HM0iSJEnSCBmEjBFzYhoReQZhFLBEN66iUOaVstgOEnJ1JuVLSYhqTK+ckBXFsCL4bY1qkUfxXHyGQlQL4agGigqOrqELFTyHfDE3/BAjCIBqDH/pZYeDk5CmYigKkeBETD2C5Vry4DJJkiRp3MkgZIw4/f2owkWYAbK+blwVKtwyyvCxIF1GpR2g06vDL/woWiP5YhnBok59UYDrYWoKPiVEThh4eLimjo4KwqYwEoQMj4CorxzG774yEqIoCqWGjqKoNJXNBWBDbAOekG9uJ0mSJI0fGYSMASEEW3q2sUp3eNlXQPWnQDEIORU4mo6meLiodHm1aMLB1v2kCYGiUJ830FyNEr0cTzGwhIorPDxdQRcqivfaIGR4JETRhne/eJlXDyaLvjIlUx6ehk/zkbSScm2IJEmSNK5kEDIGFEWht8ZgW0Bnp2kRVGwMUYMtghQ1DV0RdFNNzguiuQ62plFUDFAUgq5HfXI6VfpsPEUDVCwhyCsarlWOkg2Tzr1yNPvekRBVgPBG1oTAq0FIxlWYVzUPgGe7niVn58a0LSRJkiRpLxmEjJGpTcdSE21iSqicWUaIsD6TvOcj4w/RbDSxSplP0TNQlCKupmIpw3MqPmGjex62W0RRTRRU7LRBLONHOGGUoo/2Pb309PSA7gdFQTFNFGy8XHbkTJBSYzgISTouC6oXUO4vJ+/kearjKXluiCRJkjQuZBAyRmoDpUz2RTk+WMtZ4XqC/lICAR+qBnuMRjJKiCI6mldE6Cq2oiJQUD2Bz7Mo2jboOqanI2wNoQpMNQdqHtuxaW5uJlcogO5HMQ0QNsJ2EJYFQJk+HNQkHBdd1Tm16VRURaU11cqOxI7xbBpJkiTpPUoGIWPE84aDAdUI4tMEOh5FfIBOQB9+4zkbHdXzQFMRKhSFjoqg0j+AT8RA1wnaOgIwwhAxEyi+LhTdQwjB4OAgGEEUVUPzKcPPfWVKZmQkxHYQQlAZqGRRzSJgeJGqJEmSJI01GYSMkZEgRAuhqRphN0de8SEUnYA+/JqLhlL0iIggQjVxhI7PLNBQ1sEU3xpq/S34XB1PUTFCKiYCgQfa8PWDg4NgvrJN1z888rF3m26prqGgYAtB1h3eFTO3ci6qojKQH2AgPzCm7SFJkiRJMggZI6+OhIRRFB2fKJJVfDiqQVDLoyBwVBWfY+Oq4KgmQmhU+TPongfCY7K5kcpwP44m0H06mqbiAZ4yPNoxNDSEp/sB0PzDIx97t+lqikKJPtzdCccFIKAHmFQ6CYDtg9vHqikkSZIkCZBByJgpCZ9IqutkgmYTKCqmKJJUQ6BoBDQHFQ8H0PEwQyk81cWJFFE1F9WB/lQdppUjGujBMj1URUNTVYSAopfFMAxc1yVlD4+AqOZwEDJqm64x/FrSdkbSZpfPBmBHYgeu545Ra0iSJEmSDELGhBCC3WuSWEMl9PRXg6Lh6j4ymg88g1KRR1FcXKGgKCpVZi9l5b0YZS5CVXCGIlixKIonQAFLt1AUBc0YXh9i2RnKysoASBSGd7qo5itrQrKvbtMtfWWbbsp59ZCyhkgDISNEwSnQlmoboxaRJEmSJBmEjAlFUWiYU4aiQG+ugc6qz6L7ghQ0Hc0xiXhpVMXDA8r9aaYHtzExmkExTPCC6DlQHBvH9Q2/gR3D0zeaoSMEWG6OaLQUgMHccIChvO7odhg+vh0g67464qEqKtPLpgOwJ7Xn0DeGJEmSJL1CH+8CvFdEyv34q4enQXpaMpRksqhFlQpbQVdNdMXDNQpEQwkCto4/W08qWUplVmViOoUbGaSolaApKRSK2K5HyNDxgKJrURIKA5AuONgBgfZKz772wLLgSBAy+rj2Mt/wKIo8uEySJEkaS3IkZAyZJR7104dHLApBm0HDQvc0/KqHYVqgOdjFEP7uxTh9c8nmaxColApo7I1T9ExQNUzNJp110Mzh4Q5HFBGKRyAQQKgGGQsUfXhaxn1NEBLShqdjcq8LQvyvLGa1XOuQt4EkSZIk7SWDkDFWPz3K0R9o4qNH+6muS6EHc4RVgYYAoaL3LUSLT6OoegyqHp6ioZs+/AUXu6igqAY+1SGRdxG6HxAowmUoOUggEABVJ+8IFGV4ykUULIRtA69Ox+S80UFIQB8+7r3gFMauISRJkqT3PBmEjAPd0JhQ4uNz0/swgyqapuADNKsEitVYtsoOs5ukNrwwVTVNFDWKl3dQdYOAblPwFApeAENR0ITLQCI2HIRoBnkHFGGjGKPPChlZE+K8biREGx4JKbgyCJEkSZLGjgxCxomq+gCo8JUQzcwmlCtHEwYFPF72hrBUizwCRxV4Cvj9EUTGRVF1grqDrSjkHB+GAopwiSfjr4yEGBQcgeI5qMHhEQ43MzoIKQqP4mtGQ/ZOxxTdotymK0mSJI0ZGYSME10vASBUX02VVofpClzPpbOYpkN3SZul9JRWMWQauAr4NQikfShCQVfBxcV2TEwFEC6JVOKVIEQj7wxvz9XCJgDuQAwAU1UxlX0Xp/o0HwrD18jREEmSJGmsyCBknEQiR1Bd/QGiR15AeEoSnDyu5zIYVHEjgs5QLd1lteyKVpM1FUzDw7BNyHionoNHDs/TMRQVAWSycUxzOOjICwMhBGZtJQDFtlfP/wjp+wYhiqKMjIbknfwYtYAkSZL0XieDkHGiqgbh8EzUYAXaMR8mYBigamT8ARThUd0XI2DlyWg+uqNBHL+Kp6rYRYHwHBQ3g6aqqF4QTyg4dhr3lfM/HHRsD4yaKADFri5EcfhN8t5om+7eIEQuTpUkSZLGigxCDgNqWTWmbiBUjbwvTEkmzTEbX2buzmYcT8PRoK0yRF4PU7CGu8xUi+i2DiKAh4Ln5rAsC5/PB0aQggOabqOVloDrUezsAvZ/YBm8ZnGqDEIkSZKkMSKDkMNEtV8BRUGzBcGBNK6iEhlMUZpMoXgeulakeUIjbUoFHiqaXiSQCiOcIK4QOG6WroEh4gVIpvO0t+yhONCO2dQEQLGtFXhrZ4UIIYjFYhQKMiCRJEmSDh15YuphYrJPpSZRxC46bItMZcjzIRSV6ek4C3L9ZCNZfGXQo02jStmCrhV5Wd2J6ep0qiZxu438lhZcz8DrtwlpHpFNL1C57DLYuIliaxtCiNeMhOx/m27eydPW1saePXsoKyvjqKOOGuumkCRJkt4jxn0k5M4772Ty5Mn4/X4WLlzIM88884Z5e3p6uOCCC5g5cyaqqnLllVfuN9/Q0BBf/vKXqaurw+/3M3v2bB599NFDVIODY8aCJmqsHCHhoOkGjqbhCRgqhMm7KpOSg9SlVUozRQr5iQS8PD0iTpeWw1Y8so5HX6oZ27IJeCm8whCpRD+t7S2gaXiZDG48/sZByCsjIfFUnNbWVgCSyeTIOhNJkiRJOtjGNQh58MEHufLKK7nuuutYt24dJ5xwAmeccQbt7e37zW9ZFlVVVVx33XXMnz9/v3mKxSKnnXYara2tPPTQQzQ3N3PPPfcwYcKEQ1mVf9q8pXP44llHc/G8Bj4QSHCqupZJ1gBFYTKo+IAikwc9DC9EStRSk/JTl8thFlz0bDlD6Yn05TuYm3mJiMhSVHQca4hMfztW8JVzQNraRq0J8TyPbDaL53kE9ACO47CrdRdCDB/57nkeyWRyvJpEkiRJepcb1+mYH/3oR1x88cVccsklANx+++088cQT3HXXXdxyyy375J80aRJ33HEHAPfee+9+73nvvfcyODjIqlWrMIzh91ZpemVdxOFM01RmHDOZXEpjmbGIRv8TrNgyyHNeFUVVYUh1qc+kUJ1KMk45OwNNVDoJRGua6fEk/swA22pnsK3aJGoYZAiDO0BsKEEkXEMVUGxtI3TEPFzHZU88znO7t+E4Dn6/n2woS3d3N+VqOYGSAKFQiIGBAYaGhigvLx/v5pEkSZLehcYtCCkWi6xZs4ZrrrlmVPry5ctZtWrVAd/3j3/8I0uXLuXLX/4yf/jDH6iqquKCCy7gm9/8JtorizJfz7IsLOvVN29LpVIA2LaN/cr7rvyz9t7nze6naKD7VSyvivaKSygpXckct5MeL4qhJvEHO2hMVbDBV0Mi0scyaz0Z10+fa+BXsixu3U1ysIa+OUdgqAXyjsrgQCtCCRO1bbyuLrRclv7+fqxCAYsiCpDL5YglYziOAyGYPXs2yWSS/v5+BgcHaWhoOChtcDh7K/0jjQ/ZN4cv2TeHr/Hsm7fzzHELQgYGBnBdl5qamlHpNTU19Pb2HvB9W1pa+Nvf/sanPvUpHn30UXbu3MmXv/xlHMfh3/7t3/Z7zS233MKNN964T/qTTz5JMBg84LLsz4oVK9709XyvTjGtogiTcOV0GodWstGdiKL1oCqtNFoTGbIyzPd2ofiC1FensUuDZPsiWBkNFJOKvm4c3SHr9xPwFdjQE8dNDVJeLNJ5z8/omDgDgG7FIuL3k8/n6c/3kzEyqLbKU089heM4xGIxFEWhs7MTRVEOajscrv5R/0jjR/bN4Uv2zeFrPPoml8u95bzjvjvm9b/chBD/1C88z/Oorq7m7rvvRtM0Fi5cSHd3Nz/4wQ/eMAi59tprufrqq0e+TqVSNDQ0sHz5ckpKSg64LK9l2zYrVqzgtNNOG5km2p9Ye5q2zYMowPTFxxPb2oh49EEGhUbAyFOr/p1JCZt4qctgSSlpI0B5Lonu97D0EjIOdOsR8oUA1W0xSv1JvIow7VGb7SmP3iE/Zg34wyaTyks4dtmJKIpC0krym+bfYGgGZ849EyEEL730EpZlMW/ePKLR6EFph8PVW+0faezJvjl8yb45fI1n3+ydTXgrxi0IqaysRNO0fUY9+vv79xkdeTvq6uowDGPU1Mvs2bPp7e2lWCyOHG3+Wj6fb/iQr9cxDOOgd94/umd1YynZhE1ZbYiK+jAl5ctJ5xx8u16kENuAUMESJbQNNfI3dTK+kgTLSjZT78Twe0V0Z4BgIYMwNIam+JmxbRPVdpRNDXPA1EgUS8h2FZkb3Im9eQ8DzX+m5gP/QnjiTMgOkO/djqNUEph9BhWlYZLtbWQTNVRVVR3UdjhcHYo+lw4O2TeHL9k3h6/x6Ju387xxC0JM02ThwoWsWLGCD3/4wyPpK1as4Jxzzjng+y5btoxf//rXeJ6Hqg7vBNmxYwd1dXX7DUAON7qhMX3Rq0GY4fez+OzzcN2z2XTfrWzoLrA6NQWdEqYMqvRYQR6L1OA38kwudNFg9RBREpi6hyZsNh05nXI9wbHGGtars/Bliyx1d1KeLmDaFgOtWcT91zJY2UBG2wkq9Kz+I5OTrUxIDeGP9aMWW2DGEePYKpIkSdK70bhOx1x99dVcdNFFLFq0iKVLl3L33XfT3t7Ol770JWB4mqSrq4v7779/5Jr169cDkMlkiMVirF+/HtM0mTNnDgCXXnop//Ef/8EVV1zBV7/6VXbu3MnNN9/M5ZdfPub1O5g0Teeoi7/NUcCnhWD3s7tZ98Qmdmc0eiwPVwng2FNpYSLTtCFypX00ayFq3EHq3BihYoGF+gaSwQjN/om0eAqdqUHqUwYTs4P4092kJmg4wQhxR6U61ksgUoKDhxjqwEnH0CPvjdEQSZIkaWyMaxDyiU98gng8zk033URPTw9HHHEEjz766MiW2p6enn3ODFmwYMHI52vWrOHXv/41TU1NIwdsNTQ08OSTT3LVVVcxb948JkyYwBVXXME3v/nNMavXoaYoCtNOmMaUJZMp9A7y8l+fYW13nJ6izQwEfuHDGJiMHozTHJxIrDCRicpumvReQmqOBcVdbA9MYHtZI01uCKHMRLU9/MUuhtQgq/JTKORjzPjIWTwcv426QoHTtv6G0iPOJBSahuvmGYivRFMDVFSc/J5ZtCpJkiQdXOO+MPWyyy7jsssu2+9r99133z5pew/SejNLly7lhRde+GeLdthTfRrBpipO/Nx5nOg62IM9JDpSrH1+Dz3e30grKaZmJ1BdiJIvzKS9vIJqdlPpDDHfbmeKD7b75lLV1YejpChV8wg3yxSrhs0VLaz623exAhqd9LC7/UkmVAlCoelYxT4ce3jhUSRyBD6fHCGRJEmS3r4DOjH1l7/8JX/+859Hvv7GN75BNBrluOOOo62t7aAVTnobNB2jqoHqo+dy+mUf5KJ/uZmLT7yIOU0DpCa+wGDDHsL5DENeExu0GejCptTpZ7K3hme1ODv6tzKUbMX28rjFPmY4Ebp8LaSUdoSXYV12gEK2i66uX5NMrh15bCazbRwrLUmSJL2THVAQcvPNNxMIBAB4/vnn+elPf8ptt91GZWUlV1111UEtoPT2KYqCHvFTM+8kln/sp3z01O9zwqQFRKeUMxTuQzcCvKgfQUEU0bVBJtQO0tEwnc7IJDp0wRZDYXtvLcnURGLpMEMiSrvi8UL3LoRw8VyLsvLjAMhkmxHC+wclkiRJkqR9HdB0TEdHB9OmTQPgkUce4aMf/Shf+MIXWLZsGSeffPLBLJ/0T1I0hapZ06icOZXFCYtk1yY27/gd/7dL5XlmMs9toSI0REljAk/J0yqKOGY3AwwgNKgXJrWaTavw2BDvp7LyZCb4StmQLmLaGtVkyefbCQaaEMUsiVwaV/NRVSKPepckSZLe3AEFIeFwmHg8TmNj48giUAD/K6dvSocfRVHQy/1UlC/myIkOpdNf4MdPajxvmxyZb2WimaBCt+nXCuR9/QhNp1JYLMrZTHQ8sr4iWTy8v/yVeMhPZ2oLTkMZFXNKGVDWEe5YgZVoo+B5CEVj14ILOKZxFqpctCpJkiS9gQMKQk477TQuueQSFixYwI4dO/jgBz8IwJYtW5g0adLBLJ90CJSXLaUkcgRXBDu4/YltPN47kSMDW5lo7MEI9OBZRQKqoFy4RAbDtLlRopEYOX+WISuDnnAIi10k+8tJB006Y7uIxgQCH4GSiSieQ2HT73hY+TTnNUxEk4GIJEmStB8HtCbkP//zP1m6dCmxWIyHH36YiooKYHjL7Pnnn39QCygdGroe4ehpc7jni+fy4VOOZZ1xPLu82TSk6wm5UYoEaMxV42RmscaaR2diDpZn0O43aNCSHBXq4EiljeCuNJN2t1CWbaWoODTOPZ1plRMJ2DlCzf/Hntw/HhmzrcJb2vUkSZIkvbsc0EhINBrlpz/96T7p+3sTOOnw5tM1vnzKLJrKS/jP9RW0DE2muthNUzbD39XJHGUE8TsD+Cwfu504rtFLj0+h0hdGNyM0DqQxRJq8v5RnvGlkn3uOs45cRllmEDfTyeZdT7ApCEea09ESFqFoGdGaWszA8BsD9u7aQcu61Uw5egm1U6ePc2tIkiRJY+mAgpDHH3+ccDjM8ccfDwyPjNxzzz3MmTOH//zP/6SsrOygFlI6tBRF4ayjJhCJmNy9OUwqXstfBzoI2ZV0lCi8L+0yyV9Jzs0TM/y8rEbwJWYzV1tD0OrAsPL0BcKUeXFWb4yitr3M0bM0bCVLW/vfyPnKWDPwFxZqs6hRy1FUlRnHLKO0po72LRsBiHe2yyBEkiTpPeaApmO+/vWvj7xL3qZNm/jXf/1XzjzzTFpaWka9G630znLy1Cp+fMosPrdgPksnRPBpOQqq4JmgSYc5RIXbhKfo9PosqoRgozmbuFFFbLCS1kIlFFwU4fByyibVEicz0IzW10G+N4YrXDYHuyhGNITnsevlF2nfvB6naAGQGYwjPLnVV5Ik6b3kgEZC9uzZM/JeLQ8//DAf+tCHuPnmm1m7di1nnnnmQS2gNLZqSvycu2ACSyafy0//9ABbugIkhc7vSBA1U5SLMLY6RKp0G0eW9VPIlrF2x1T2pA1UH9SY0OUk+Fs6wQynh4mezlH9Vew+ZzbZKj/hmqmYW+NkBuP07tox8lzXsckmhwiXya29kiRJ7xUHNBJimia5XA6Av/zlLyxfvhyA8vLykRES6Z2tPhrk2o9fwJIJ7agkcTydTiPKrsgECoZNs38AJ1nJLrXI9vJahKMiPIfuQBm6PolVqg/PFdQW/FTU1tGY0cnaWYaKSaYtXoqqagAEIiVEa+oASMdj41llSZIkaYwdUBBy/PHHc/XVV/Pd736Xl156aWSL7o4dO5g4ceJBLaA0fiJmhK9+/BLOqRgg6Ln40yppr4LW0olYmsYazaI1ORXNGKRca8MwsnhKkawbJq1PJF06HWfSfBTDYmv/Zrb0bWTX0C6CJaVMWbgEw+dn0vyjiVQOv/dMOj4wzjWWJEmSxtIBBSE//elP0XWdhx56iLvuuosJEyYA8Nhjj/GBD3zgoBZQGl8lZgmXXHwF50cGmZiMUdLjkbEn0B4Js8so0hFIktJsQkaSieFWhJ4kodiYdgQzcDSeHqA7bDGoZPGyWVqTrQghqJ40hcVnf4SyuglEKl4JQgZkECJJkvReckBrQhobG/nTn/60T/qPf/zjf7pA0uEnYAb57JVfJ3TP//J48x529VSSbJxM3uzEJ4bwazEK2Sh1WgdBM4fPHEJ3AuwZSFEZ7uUFNcFAsQQ74TAYjpOxM0TMyMj9w+UVgIKVy2DlcviCwfGrrCRJkjRmDigIAXBdl0ceeYRt27ahKAqzZ8/mnHPOQdO0g1k+6TChaBof+dxH6L3zdzhd3XR2l5MMlKNrm6j1smTsDFq+hGn+XcT1GtJumP4C9PkS9IfSuEUDTVHIDiZpT7Yzt2ruyL11wyAULSM7NEg6HsMXbBrHmkqSJElj5YCmY3bt2sXs2bP59Kc/ze9+9zseeughLrroIubOncvu3bsPdhmlw4RuGpz9ydNpLK2iPKngy0XRlflg+PEqiuygjCa9mzq9G0U47BARNpoWlgGThUFlPoKZ0dny4hq8vDPq3pHKSkCuC5EkSXovOaAg5PLLL2fq1Kl0dHSwdu1a1q1bR3t7O5MnT+byyy8/2GWUDiOTa6MseN+xTPT5iGazlLhh0sGZ5P2NbK0bRJgqc8LNKF6aztJmYp6OJjQaY6VEh1S8QpFt3c3ktgyMOqo9VDp8wF0+LXdXSZIkvVcc0HTM008/zQsvvEB5+atnOlRUVHDrrbeybNmyg1Y46fB08rwG2ocWk33heSh2ozvT6QpZuDisMZIs1NP4K1ej6H7Srp/TBw18xSLVFmyP5mjJtPDy1q0cVxfGnBAGhrfqAhRkECJJkvSecUAjIT6fj3Q6vU96JpPBNM1/ulDS4a0y7ONTx0/jc5eczYL8AJFkL9X5BhwnyItaPc2GRzTSgelqaJkmolkdXcmg54o4okBeLbCm92W2vPB3MonhA8v84eFgpJDN4nnueFZPkiRJGiMHFIR86EMf4gtf+AIvvvgiQgiEELzwwgt86Utf4uyzzz7YZZQOQzUlfpY2VDPji99goZ3iqC6XaC6MZZexzl+OqbrMsnwkRAlDnsAgw4ABKA4ORfrcTpoHM2xd+yz5fDuGP4Cq6YDAymaxLIudO3eSSCTGu6qSJEnSIXJAQchPfvITpk6dytKlS/H7/fj9fo477jimTZvG7bfffpCLKB2uFEXhtNoKPnLF5Szp6eTkjnLKCi4xtZasbxLHBrrJK34KwsXBo9espyACqBRIG4MkUwO09Bpsb/lPCoVe/OHhbbuJWIy1a9fS2dnJpk2byGQyo57bm+0lUXg1OGnNW+zJWWNad0mSJOmfd0BrQqLRKH/4wx/YtWsX27ZtQwjBnDlzmDZt2sEun/QOYEQiTP+X4yi790Uyus4zE6K4JVNpqRhkQi5LQaikFZ0KzaIzUUE6OoShFGhLZqjw15EdCBD2/Zq8N4v+VIahjRsJlEZRFAXXddmyZQvTp08nlUqhBBQe7X0Un+bjotkX0WcLHupNoACXNlYT1A4orpYkSZLGwVsOQv7Ru+M+9dRTI5//6Ec/OuACSe9M5cefgZEP8vFfr2DuUJg/zDfpC1VTXpognTYJqEWiIomXm0quZBsBxUY4Q7QniigvmDRrG7EyaXJWlv7kdqbPOYmOyQuIdu6hPpdjw4YNAPQWevFqPQqiwObBZl4u1CAQCKC/aDMp4BvfhpAkSZLesrcchKxbt+4t5VMU5YALI72zhU89kVyrzawXV2HvcXnsyBCJykoq+/qJ6A4t0Yl4Q1FcTBSRoqgkqO9eTUb00loaoNbMM6h1MVToY/P2OL7JC+iumUjlQBdhQ8dxHGKZGEpOQQtp/K67jZJIBbzyX67PkkGIJEnSO8lbDkJWrlx5KMshvQsoikL1Z9+HrXUz44VW2pODbCmpJFVeQ3Uug4pDoqaWquwQhWAaW8TpKx0iYWZpjpicVqqTsdMYgzly2TZ4/P+ROuFcrFlHsrymjNWbVlPoLuDL+CDkpznnMduf4ahoJbtyBXqL9ng3gSRJkvQ2HPCx7ZK0P4quUvvpj5DXb+OYXXFiM0K4JUF8KY0yLU3BVPC7tfisTrJGEtfUyQbKyPgcHnf2MFsZpBjWsdJF9Pa/MLCyk8crJ1Bz5Fmk/TkASpwS/OHJkE+TLfRydEkju3IF+i3nH5ROkiRJOpzIVXzSQafrIarPOQfv6Frel1nDiVYL0/JFGrNphF3ANqcTLIbQdBXXMAkqGppQsEWalJWnQo2S9HkMBovM27WHwUIP9234LVuyXSiqQolaQolaD0DB6qVcH56PGXIc8q43nlWXJEmS3gYZhEiHRGnp0cx9/0exKgzCxhBV4QSVjkJT3CGYMRmqWoBTWo1fNVmcrGeSIyjzsgjhw9fvMeQ3cFWoVlSiSYjbg6ze1k1aLyXqi5IZKqApGgEKbN60BrNtD0II+uWUjCRJ0juGDEKkQ6YkMpv5J30FKzqEFkkTMnPMy+WIFicSUCuIRfwUzVKiRT8nJBuodQOUOlX81agh7CgoQY1Eucr7egzIWXj9O9AGJyI8hYF4nLKsn3DMoquvC18mCVaBPksGIZIkSe8UMgiRDqm66qVMmflhcpEcJZE+pgS3EcoIpsdrydg6PVoDA6pLU6GOs5NnsNNYSjxQJO/4KC3xMRSwCSXiVMUVUApYIsZAPE86lqR6p8C/yyNn5QhpKiKfp68o14VIkiS9U8iFqdIhN3neV2jueg61sIYyew9hGoinI5zgRHD0OLlgjqQDoeIcFlgaPUqOOGEWeBaWkmZI1ThuezU9FUMM1j5Dv3cObtFC1QRpb4B0xmKiAaJQQd9rpmP2vkuv3DYuSZJ0eJJBiHToKQozTruXrj9cSFm+gxnKStD86F6ElKPhKR4dehbhC1Kv2EzTS+hxNDa7jdQEXqKj3KbKqkC1c5R1drOxKkvItYirz+CaKXRLJZNPE8kboOsU6srxqSpbt25laGiIRYsW4fPJ80MkSZIONzIIkcaEYgSpP+s+9N9+BF+ih1zEpp8mEoNHo4oEIS9J3Gijx5jDsc4UnlbrCdoqdmgbvU15dkxsItJZpDw9gD60m55ycN0EhqujFnQyagrH3YpfC9NcUUpVwEd/fz8Ag4OD1NXVjXMLSJIkSa8n14RIY0b1lVB17s9pWnI+LZE6NtUKxKR2sjk/igPlxQROPgm5mczN1VKaqcTITsJTXRrDT7BtYiXCdanq305BacMDqrMN1Bcn4wmPlBbHdW127d7Nrl27Rp6bTqfHr9KSJEnSG5IjIdKY0kobqTruOo6Z9AFyq26iP9BPdHoBrT+HXwSY4u3gWX0yA0UVHPDlZmCrWTq8FOnANrY1DFGWzaIXatHVECFRR6lWSd4/SErzSPsyFLwwruui68NHvadSqfGutiRJkrQfciREGhez6xdyxqk/ZGJkAoVgmmK5j2Agg2IWmGE8y1AgQdHtpbZQQ9gJo7k+wrZBW0kVQ6E8/nyKkBOhaFq4BYVKtwZdVUiYg4hgCMMwmDt3LgDZbBbXdce5xpIkSdLrjXsQcueddzJ58mT8fj8LFy7kmWeeecO8PT09XHDBBcycORNVVbnyyivf9N6//e1vURSFc8899+AWWjooJkence6J/85xSy5FSc+jKzWDqJFhgtbP8dF1VE5wKRM6l/TP5ouJmSwcmokqZuCqfkK5DMGix5ARI18coDRXja6oZAv9MHkiS5cupaysDNM08TyPTCYz3tWVJEmSXmdcg5AHH3yQK6+8kuuuu45169ZxwgkncMYZZ9De3r7f/JZlUVVVxXXXXcf8+fPf9N5tbW187Wtf44QTTjgURZcOkspgFSdOPY/PffkajqmdT7ZnFuVujkXFZppCu2mekma3r5Y6awLTHB/VdgUBZzazEibVaQsTm67yDeSyOaKiFBybzkwnmqahKAqRSASQ60IkSZIOR+MahPzoRz/i4osv5pJLLmH27NncfvvtNDQ0cNddd+03/6RJk7jjjjv49Kc/TWlp6Rve13VdPvWpT3HjjTcyZcqUQ1V86SDSAyGWfPELfOgrl1NizKE+k2JZai1N+h6em9VNa0U31apJPUVESQVVU33UaX5qEzX445PZkR8gPeRH2DY96c6RM0JkECJJknT4GreFqcVikTVr1nDNNdeMSl++fDmrVq36p+590003UVVVxcUXX/ym0zt7WZaFZVkjX+9dyGjbNrZ9cI4B33ufg3W/d6tA3QTmX/Id2lb8DLP7RY5NbqQlUMfK2kZOSO+iJD0JywkwYEykvqoLxXLIpieRExGGYkmG8hnK0k/Rnyij7OSTCAaDeJ5HIpF407aX/XP4kn1z+JJ9c/gaz755O88ctyBkYGAA13WpqakZlV5TU0Nvb+8B3/e5557j5z//OevXr3/L19xyyy3ceOON+6Q/+eSTBIPBAy7L/qxYseKg3u/dyvEmESBGVXEXeTdJaX47GyPTqRyC1FAFvf5B3hd8DsdoQUyIs2twJlo2SJ/PoS3v8afNL1Db2oZVVTFyXkhfXx+q+uaDf7J/Dl+ybw5fsm8OX+PRN7lc7i3nHfctuq8/UlsIccDHbKfTaS688ELuueceKisr3/J11157LVdfffXI16lUioaGBpYvX05JSckBleX1bNtmxYoVnHbaaRiGcVDu+W4nxDnEW7dQvf4hNg/2EUjsZNA3A1NVmGd3kRwKE41mmVNsxanN0ds9l3IvQJ8uWB3xcyk1zPjAaaxdt5ZCocC8efOIRqP7fZbsn8OX7JvDl+ybw9d49s3bORZh3IKQyspKNE3bZ9Sjv79/n9GRt2r37t20trZy1llnjaR5ngeArus0NzczderUfa7z+Xz7PdbbMIyD3nmH4p7vZnUzFsCUuTQ0P86zL/yecLKZumgrSlalw6pFSQxSoqaoDfRSqAgRSVSSMhIMGD38aY3F7KFuSmZOYGCwj+ZinqnTp1M7ZTrKG4yIyP45fMm+OXzJvjl8jUffvJ3njdvCVNM0Wbhw4T5DRStWrOC44447oHvOmjWLTZs2sX79+pGPs88+m1NOOYX169fT0NBwMIoujTXdxD/3bI4/80pCEZOg4VAI+Ph9+Ez+TzuWbCrClHyKErOHCjNDnd5GnW89jtvPrp5+9rzcjJXNEetspff5/6Nz44vjXSNJkiSJcZ6Oufrqq7noootYtGgRS5cu5e6776a9vZ0vfelLwPA0SVdXF/fff//INXvXemQyGWKxGOvXr8c0TebMmYPf7+eII44Y9Yy9w++vT5feefx185l3zsWs+f0jtOrTyeWreUaEqXeHOD5tMVftpxgJsycfJOglIdJCn5sjlwtTlmui3p+lMrUVVq2jaG3HnP8R8B+c6TZJkiTp7RvXIOQTn/gE8Xicm266iZ6eHo444ggeffRRmpqagOHDyV5/ZsiCBQtGPl+zZg2//vWvaWpqorW1dSyLLo2T8orFzH7/JiY9uJ1ST+dho5xHtOOpyCWZF9rKdG+ADV4jCa2AW2JhFvqIuxZeUaOnqDMnEMHLp0nteJGK8kkUlQYUvx8vEBjvqkmSJL3njPvC1Msuu4zLLrtsv6/dd999+6TtPf/hrdrfPaR3Lk0LUtPwUXqP+Q9OXtlJImzymOLnf3ynEElmmBDu5kg9yWOGDuEIc63JpPMxtECWfrdAa10F4f4GylJb4U//h9CHz5FxPRf/P9g5I0mSJB1c8qeu9I7j99VSc9yXMMpjfCDVxVG6w4BWxgplCT1WDYvtIRr1MoL+IOWhKJNDUUqjcbpEhF+0Rvl/XoD/SUygZetuMpkUSiQ8fN/WNsQrC5klSZKkQ08GIdI7UiDYQO0HLyBspDg/0cEskWKDOo12r56hYiVz1SSoNlvNPM01FTzvLqG92ECfZdKbz7Ddhv8pncazgTzxYxajBgJoVgF7z579PzDVA3Z+bCspSZL0LieDEOkdq2Tm8YSnRIhqFqenksxy06xlPv0iQjALljtIh6+T9UYD3cEJxIITEGURptBGmZkgGxWs1AKs3LUadfp0APIbN+77oME9sOY+WPNLGYhIkiQdRDIIkd65FIWqMz9FIDRIo2JxfH4QXSulg3oUt4QyctSbu5kb3EJTxGZ6Lkc0ZiOSVcxPr8Xn70U4eV7qTbA158Mq2ux58UXaXx+IdLw0/G8+AVv/CHLKRpIk6aCQQYj0juarnkz1uR+hvLSTgOpwTLqbDepMno0uRA1UYpgeVc4azmvZxCe6tjDTaccNhUmbc6jIFfEcj2ISntoUI65UIISg//nnX10AnR2AwRZQFPKqySODeV5sfn58Ky1JkvQuIYMQ6R0vMuckpl5+G3UNBgOGRe3QIHmnjN7gYuJqlKSTpcF+kYmRZqZrfRwpdjIxnGG5leEjhfXUOf0k3SQxcwJurojb1fXqscOdq4f/rZzO3+pOYychnunvI2YVAbBci6JbHKeaS5IkvbON+xZdSToYzGCEk754LY27dnH/ylVE93TSaZYQN2dQls2yNuKypFCLz66l13AxlABV9BP2Chzp7ORF0UhBq8Puehk12cPT//0TZp34ARo7XsA0DXZULGBr3g/KToTn8njHbiaYPexI7ABgSukUjq45Gl2PYgtBlSmPsJYkSfpHZBAivatMnjaNfzEMdm3ZTvvTa+ko+tlZWcWLQF6dREN2MqsraxlQYHKxjbOdPxEhS0htpU2tJFbZiCcs7F15Xuj6Xyr9KkfVemyZ6gdFYW7QZHM6w1Od65kayRHVhteH7BraRWuqnULJmRSFysdqy2j0m/w9kaHHKnJudRl+TQ48SpIkvZYMQqR3naamJkpLS/H7/FS29pDoiRPzJVhrrGXIHqC+MINYRRnPTm6gpG0Bx3kvM13p4JlgDX4LigUVy1bJ+nx05HSejlcxta2NmsYmjGA5xmAnumvSQx2fmbYAQ9V4fM/jtBUc8vkhyvxl/CmWZFrQx8b08Ftab88WOKokOM4tI0mSdHiRQYj0rhSNRjn25OMZHBykqWMGv171C9qt3ezRutGdAXyZCOHIIv4+4WhmD+xGLXrUlAxi6BDd46AO+VCjPawxZ9GjR2mLJ5il2mzWLQxHkNNMJmq1bFzfzslhH5Mqmng524NXTFPuLyfnuiMBCMDOnAxCJEmSXk8GIdK7lqZpVFVVUVVVxawjjuCBX/w761IbsFSFimwKlxcIazNoDzQyS9/BUrZRVCKsm3MUfe4EUmWLcewYWlGhMOjQpq2n6GYoFQpT3ByxQoCXLIOy1ADVc+oY0APoVpIzqkr5WzxFwfNYVBLi5VSW9nyRvOsRkFMykiRJI+RPROk9wTRNPnfxN/h607ksyjZQaZdQm80QTW+ibKBIjZalmhTRos3RznpKtATCDlJZcKgcitGwaw9127fhT7ZSnt5Av0iDnaZPKfCnUBmxrV0omSJetoC/M8Gnqsv4VF0Fp1SUUGUaeAha8haeZVFsa8MrFknm7PFuFkmSpHElR0Kk9wxF12n88Ef5yCM6/9P8BK7qI6nl2RnooCA0jvL7CeeCVKUGqRZ/Ym3/QoSVp0Xx06OFiPTVsWxPFjvUyOYpUbKlHoWIj7wGT4pySrsyBFyVTT27aNiTo25yGDGzhulBH7Gizc5Eirpn/kphYJAn7Cj90RpOf99RHDW5arybRpIkaVzIkRDpPUUxDCo+/GE+9oEvEBVFSjyXuJpiOzmeUPvZXpImoxuUYHGk+jzFIFQHdCpcCzcXIJhKUhobZM7uApZVRj4NqUKWbU4GNRajsmUn/b3rCey4l8yjP6Tt+W009fWiFfIU/vIXcrE4T+TCdBfA6e1j5d/WkbGc8W4WSZKkcSFHQqT3HEXXqVq0hH+pvYWH/nA7pbkeWm2HVMhmtb+NbZGpLCh4TMm5zKKVHmsa3VoNtr/IC2VZpiS70eMOomsC3YFSSjw/k7QkoUKRcmcHk4e6KPirCThhkr/6GWhVzApBVvN4MjyBxMx5hOwixu5m4l19/M/v1nHhuQswA/LbUZKk9xb5U096z2qaOJWrL/sJm19+mvWr/8AmewMJI0dfWRsvZkvp9CVYNNSJrdv4gz3sCiu46AxFHLwhBzXeh1ITwlLgxNxKqpUCmj5AWBSxczHCqRbMYiVpswLRnSFW6mNdfT1zwmE+cmQ5Vn4D96y1WJtYTVUEPnjmQlRVDk5KkvTeIYMQ6T1NURSOXHwys45aRsmj/4UWWMWO9k3sjjoMWi4vBvN4Ik0ZJtOccnqKMxjwCbSKBJP6XyRUyFARKOLoWQYdlQpnInY2RyqRpyIcQ9Va2KzUUpzxPl6ilHjBZVrvTkyxG6FlqEknaTXL2Pj4k0xofYkZH/8Y4erq8W4WSZKkMSGDEEkaUc9JS7/Hkml/p2Pnwzze30FcCxJ0HKbYFkfZWSyni6epp1PP45R2oWtdNJg+XCr5S3ERdq6aprzDkbkXKYR3kS8J4xX7iPdvIlmyFKPoUKNuYIutkMiUU1Xt0Z5U6bMVetZvQs/nOPJrX0NRlPFuDEmSpENOjv1K0mv4/fVUT7mIhct/zzfP+h0faDwGTbFp1SCqZwmS5RynmcuUFo4Ke9QbFt1Gjl5dkBIejpKnI+jnhaajSJQHqfQnmR/soR0DMxNjkpUhnDdI5lTyRi2BafOZ0FCDFQqwS4QYam4mv23beDeDJEnSmJBBiCTtj6KgR5tYftpPuPZjj7C0chJ/CLvEfIOUBAeZoDmcoWY4WnfxK/ByiR+3okB8msPOphCbqmv5Zfg8Wn0NpM0yAn6XoBtjci6FZVWRKx5JOFDBrCNqqa9Yi2cKdkQnUigW6Xv8cURRvjOvJEnvfjIIkaR/wF82hQ989A/ceM49hGY18UhJhL8FouwqKaXB76PSp2D6CxRLe7CDRfzVXTh+lx1MZqdooEsvh4DJcv96lFwfPckJ5IeC2KrFQPY3BHzNBCKD5AMRni6Zwe87LVqeXQ3AUGGIX22+mxe6nx/nVpAkSTr45JoQSXoLFEWhtOYYPvmhh/iYa9PRtZGh5qew2h/naGWIIa+HpNJDMd9OpLsSLe9jl76YTrWGeq2H6vAgnaEGIl4XSWsnQ5ZKYmgtVf44lcFKSqpSJAY8eqkmMzTEihd3EJoUY3diDTXNzQwEV7NpocaRDUsAcByHbdu24ff7mTp16iHZVeMMDGDtbsE3Yzp6WdlBv78kSZIMQiTpbdI0g0mNC6FxIbhXkN3yv1SvuZ0Vnk67P0W+2sLORahOPsdQwaMuEKdcZNkUXkCtapBu70UolYSLlRQGHYzMXBqDAwSqdtPbN5m8arA73sqG/3mYQJOBL2dg5tPEnrub5tIYjZOX0p7tYSA1AAwHJLNmzTrgxaxeoYC1cydGfT16RQVeoUBm5UqsXbuH7z8Qo/SDHzxo7SdJkrSXDEIk6Z+h6YTmnc+sxmOpWv1DnutczQYd4lEbO5hlMOdji5fC1AfIkmdNybFMmaRjDXVTog4RGZiBqhaJFINMNDroLhtkp1FCsUdhd0ctC0SOYk0BEUiiegV6E/+NauXJJipQJimgQG9vL7quM3369AOqQvovf6W4Z8/wF+VlMJTETSVRw2EUFJxY7CA2mCRJ0qtkECJJB4ERnUztqf/B2b1rWND+HH/bvooefw7LtMkXQgStHIrdT4gVBM0S9OB07D1BBgNJfKVFIsJPsVBJbXgXxcpOticWssepZ7r2PG5pH5oGrhIDxU9X+vcEzQVMiH6QSF0ZW15+mY6XX8bdFSdYXU/dERMwfBpCuAjhoaoGAJ7n4LpZDKN0pNx2fz/FPXuwPZeOwX6Su7dRFUtQpupEzzsPu7MTL53BsyxUn2+8mleSpHcpGYRI0sGiKBh1i5hSt4i6I8/nsWcfoRhbjV94VHnQaXey2rGJ61AdaCYYbCSdiZHwEgg9TF2uHDM/Gb+WI6yVkCsfYle+lPpklGgoQ1Hvx7KLFMUe1IKHr9iA3TeLobVryWfyDKY3UB8oJXbyedQfUY7rW4HjpJk44VOoqo+enoewijHq6z6K318PQP7ll8lZBdqxUWfOQN20iUF/mspAKV4mgxoO42UyuPE4an39ODewJEnvNjIIkaRDIBCs5n2nfI7fNh9H2ebHiQk/ft8E5rgxXiLHgJmjoraDcE8d/XYlGTdOzC0S6aknGGxi4pQE29I6O1PTMFfXMhAOY+ovEKjZTTEEWXOI7heeJZ97Gc0yKRRV8mqBbHGAiqf/zFBbjLLAdnSfTuJ9MxBGEcvqB2AouYZaf/3IwtPuZBxl+lQCgQCW5+FGo1jRSvxDQ2hVlZDJ4MTjGDIIkSTpIJNBiCQdIlFD54yp03mhrI6+lWupTm6gwqczUyTZog+xW0sxrTHLlMRUutwjGMrsRkn3U2JGqfPH2VaoIVFoJFnIouoJNGcChV6NknnN+EoULGWIrOrHV5nHKSlB6whDIU1vyQ78uQJ6NknE8Oj9288ILD0We6hIujWOUplEKUzD39xBwS5SCPrxBYI0YKAEIwwZKulIhFJAWMPnlTgDA+PbmJIkvSvJIESSDqGmgI+mCT5y57+f3oFjyWzeTqj1KVrULSTMAXaSIli9EQuTQaroqfNIqM8zUTUp9aIUBQwZNtVuClcJolpNFLqKGKIT3W9jagZaMIVfT1Cft8g7GrF8JQV02pMTmNjQSqB3N87aKAMbDIrpBMrsIsn4VirbmlAyAfSJNQS0IqIzTkVJKdmKUjLpNDnHZYcLk1UNIx4f76aUJOldSAYhkjQGgprKlJoI1CwGFnNM89+5dM3jJGhBFLvQUPBpOTprK+mlhF12Bt2/h2ylxlCumkq7jVAmRzI6l2BKI1SbJFJI4fUvpKu7j8nGNjyvQFA4VCQ8YrlGCo5OvK+MYHUWd+1mFGsBWrAC3dxCPq/RH0hhZKdjeRrmll1kjTIql5zDkLBI9XTzeNqlxwyxXffxifggQog33AbseoJY2qJrKE9pwGBadXhsG1iSpHckGYRI0jiIzDyRB6Yt48urnqJ/zybOTD1PmBxJO8cLkUa69Bry0SLJYAojF8ZV5jPF7KMtEMFI13CUM8Qc9lBvDlDhnoCvw08ysJH+RojsKIJwyQUCZDMT6dcbsXwmU7JFqqsVhkJ+ck6GMlEkFNwCG0uoRCEVsSmdZVBjNbItmWGza1OuaQw4Dps0k5PTabSSkn3qUrBd/uflDuKZV4+av/DYJqoicjeNJElvTh7bLknjRNE07jzh/fzgnM8QPuKLJO1StKE0Z3Vs4ezePLOcAFHNwjU76RJ9bNGDWPTgRbI0lx3F9oppiOo+AmIrbXVRnp18DC+FlvLk4kW83FRDygzg6BqVOYeAq9LrC9IfSFB0FHKpary4RVHJIqpzoKjk6qMMpFdDmWBdsAzPNAnn0gjH4aVQlGT//teFPLNzgHimiKmrlASGtwO/0CKnbyRJ+sfkSIgkjbPG0jIaT34fznHLWP3Xn7Brx6P47U18eCBEj+ayxueQVFtxUyXMtBrI6EVikUo6IxV0+nwkqgSOgIyvBkv14QgLM5qizOygsTOJEB5GokhOCHRlECPvw26fTCEdRpmzla7yLM3BKAsrZ6DGcvzG2s3mcA0+B2Z2tqEYQTIBP8/FBjlr2pRRZe9M5NjclQTg3AUT8Osq9z/fyuY9vcwtgymNckeNJElvTAYhknSY0E0fS8/4OkuWXciGHX9i7bYnqe1Nc1zR5Hl/EccXp98cQMHB9DzyKRMdFV9IQ6OUiDkNiyMZcFRynsK68iDxijSnrV9PXb6XAb+DmS7g5ipIZ4NoVjmJQZM2tYijxBBbmvEFlvKiq+HTslQrDlsr64kWcpDuYWtXnjP//nfU2rnYkeMRpspfm4e3/R45oZS6kEnnqo2U7WxjY9Hld/27+eInT0UP+gnogUPSZsITFNtTCFegR31oUR+KJgd4JemdQgYhknSY0UrqOHrR51mw8BLi+QH2NL/AzN1beWzPy8S1HFnNQqWIQhFXUVB1lYCSwZfvYFFhLZpoZINZS9yN4PoMnpp7MnMTcSZHtoIYwmmNUEwP0BrN0+dFEFoeJWCz0UtSTBooIseS3FYmDuZ4TKklIxQ0pRT6+2mLCpqaX6CgVtKVC6JmMlRE/Sx2VOJP7iS9q4t5nk7B0tlJjrue/y8itWHmV81ncc1iDM04qG1V7EhT2DkEgAVoYYPQsXUH/D46kiSNLRmESNJhSlEUKoNVVC44CxacxVEAnkd/coCuwT52Nq9DxDrJ93exXRvA9rpo1uMElSwRZTt+AYoVwBQG6bDKZqWMyb4QUXs6ajRDa20PQ1oFs4t+BiOCpF+gpTczpTPK9N61BJUZHB+1eanSZNDnR8mWcd/WTZyVHqS+7Em2pxbjdxwmDoEXCJKJxXA1m2hJBTOKJh3ZF9nU08mx1TN4uftZtvU9zwVHXEbA+CdHRewCOAXcnIe1Mw2AXuHHTVi4GRsvXUQreeNFsYVMhlhbC5nEIJ7rMm3xUnzB4D9XJkmSDsi4ByF33nknP/jBD+jp6WHu3LncfvvtnHDCCfvN29PTw7/+67+yZs0adu7cyeWXX87tt98+Ks8999zD/fffz+bNmwFYuHAhN998M0uWLDnUVZGkQ09VqS6rprqsmgVTjxxJLjgOD256nuadTzPQ+xKKncETLoqawfJpCE8F0rQ5Juq0dmKqgU05lfkwBWMeBX8Czd5EtdPF8b0VqJxAwuonlBmgrKKOpOvRFQkxfSBNR7yFREc78UAXEd8SNKHS1inItG9BdL/IQLSS5+ZMZ6t/I/lCKYpVjWOvoMcp8FzrQxxRfxq1odrhgmdi0LMBcgPgFqHhGKiaOarKQniAGP6ifxts+xPCdch31iK0Woy5CwnMryK/MYbdn8cZyL9pENL8/DNkhwZHvu7ZsY1JRy08WD0kSSM8y0XRFBRdThG+kXENQh588EGuvPJK7rzzTpYtW8b/+3//jzPOOIOtW7fS2Ni4T37LsqiqquK6667jxz/+8X7v+dRTT3H++edz3HHH4ff7ue2221i+fDlbtmxhwoQJh7pKkjQu/LrOZxacAAtOIO867B6KsWLNo+zYs43gQDdJn41jZBFYCKOFIAqIEkyviT02OEMV1CkOPi3OztI25qaOwDRr6XZ7qY/3kaxqYrbYQIOSZJrST2kxx4T+HgpiB44RJL8hQ68/yi41wB49Tq5nACNoEHU10hv6SU526Mj3M7jzYTanE3xk6rk0pHqh5Snw3FcrkvwdNCyBKSeTt3pIDr1MLrYeTQ3DwA5o/hMIDycXwbVMFDWGv8FFURT0yiB2fx57II9vSnS/7ZRPp8gODaIoKjVTp9G7awf9bXtoPPIoVE0bk77aH8dxyOVylOxnC7T0zuQVHDIv9KAGdMLH1I13cQ5b4xqE/OhHP+Liiy/mkksuAeD222/niSee4K677uKWW27ZJ/+kSZO44447ALj33nv3e89f/epXo76+5557eOihh/jrX//Kpz/96YNcA0k6/AQ0nSMq6jhi+cUjaZ2t3Tz4xz/TltgI/hbw5ZmWh7C6jfnFrai9RTwzz8ZAjt6K9ZjBHSxLNFJeLGMFfdj2apIMsdZn40TDnJZPE6lNkxvswKKMvmATrVqIDVMEplfAZwt8aQcl0E93Mkf57hIGS+PkfXmMjtVsbF1P2FdKNBNH0XSY9wlQNLydz+M8/1esLY+SrAH/YC+l+TSNGRdlmw0KUHsEtnUMpNZhGi2osXVQUYcWNUB4uMkinuWi+vYNKuId7QCU1tQyef5CEt1dWLks8a4Oqhon7b9BHQu610PVDAiUHfwOA3bu3Elvby8zZsyQfyy9CSEEjjOErkcP+3U/dncWYXu4dhGv6KKa4xfkHs7GLQgpFousWbOGa665ZlT68uXLWbVq1UF7Ti6Xw7ZtysvL3zCPZVlYljXydSqVAsC2bWzbPijl2Hufg3U/6eB6t/dPzYQqvvqlzzBYLNISG2R7SzM9/VsppjZTP9iKKRSUouBoRWFDoEhXYIhHAinCuPgUl8mewM07tPgb+UNlHbGSIMckeikrKxAXGfrLFDYqJrYWQxeC9+1IYzo2K6dEyJoe5f0mE7NhKsJtzHPbiTk1rHRNJtZO5OiyJrzdK8kRQOmrQhTWUyy24Uso+ErrKAqFmsQe7IoZ0LAUr+lUrOd6IVyLqq/H7dlI3q4j9+yLeIUqjMmzKPSm0Wp1hHDRtFfXe/S378F1XEqqanBcl/KGJjq3bqZ7x3aidfv55S8EyrY/ogw0IwZbEXPP2yeL59kkky9hGBWEw7Pedt84jkNvby+e59HS0kJFRQXaOI/KJGMxympqUFWVZDJJR0cHkUiE6upqAoFX1/SM9fdNNruD2MATBAJNVFediaLo9BdtwppG8DDaFSWEoNCZxHtllK84lEMr849pGcbzZ9rbeea4BSEDAwO4rktNTc2o9JqaGnp7ew/ac6655homTJjAqaee+oZ5brnlFm688cZ90p988kmCB3nB2ooVKw7q/aSD673SPxVAeWASrn8SXnWeVGYXXrwTJzdIaTZPS8hGUxzyFAgInTl5P1DF7tLJpHy9rAw0EhIOs7IZXCNK3PWR8w+hIZhtWtRNylPf34+eCPN4TS1dPoUZiRANaCTVyWzxpvCiOh1fu87x22OcW7odxaejW3Mw7LkUAxoDRhGzfyLlgxsJqUV6unbRVz4Fx/8IZVYYxacS9HUTie8kE19DyqnBr1Xh64qT6giyrW4bA3kf8dx0hAiyoLSAtXMzFR1deM+/zPrFi7EDfoZ27UTs3Mnu+BCa/5VfsEKAolCSa6MuuQYAb1crO1tNUFQ8z0NRFBRFoOsbUNU+BAqOfQxCRN9WX+RyOZLJ5MjX7e3thMNv/dh73c3joBMnhU/xEVbf3pH5qrYLTe3EdWfieXUUmpspDAzg1dRi1FSTyWRG5Y9EIoTDYYooDKoaUZQD/r7xFwcJFOOk/fU4eugf5tf1tahqP7ATz9vEHm8x640QqoB6r8gMxyKEd0BlOZgMS6Wy/9V1SanYVrKR4YDEc6DQryMEBOsdDvWAznj8TMvlcm8577gvTH39kNqbvT/F23Xbbbfxm9/8hqeeegq//42j0GuvvZarr7565OtUKkVDQwPLly8/aHO0tm2zYsUKTjvtNAzj4G5TlP55sn+Gv/dSqRSObTO4fi3PrN/A2vwQMUKs0k0UQxAYVHCDYeJmO78LTmOmr5MqxyQpUqSNADVFhSlDJmktSlYXLHQc4rks631B0qXd5OxptIg6XjBPpM7KkVcFXSUOz5kzWWC3IZTtZDNH01c4nT3BCEPZdXzEClFqKpQpOrv78wihg2ITL8kirDABtYHyiE3TgqOJD6XJ77awejO0hRoZVEJ05E1MM0rPgMOxWi2LSjJUN07CsV3s972PbFU5fV3dpCY2sqemkULPTsy2l5iq6hg+H/WTZxLSh3+xTV+wkIEhlfaXd+GvDlMzO0k6XQIM/5wwDYW6utNRlNEjGWnHJe95VJv7/t/asGEDyWSSkpISUqkUmqaxZMkSDMMgk7Bo3xynqilCVWME180yEP8rwrNRFINIugRlaysv+ZK015WRU3JMqJjAkpolb2k7tOOk6Orag6AByFESjLBpl0a+vBwFgb+6GqWujoqKClzXZWhoCFsIYhMm02v6sV2Xjbt38/X/n737jpLkKg/+/63cOU/OM7uz2pyUpZUEAgkQMsjGJrzmBRtjom2C/TPYGAQvySSDDRgEmBxFEElpUUBpJW2UNofZyXk6x4r398eyY9a7WkkgGMnU55w5Z7r6qVu36nZ3PX3vreqLNtMRPvWqJyEE86NlJFmiqTt6ho03kLffcOJqJ4YR6WWIweeDFoTiONLkTkT/syAQ/1V5DuPjY3gijoRM2ZN4xE6x3Dgxf1AgmHTgPBRaY0EGmh4/qXksniuQld/8PNQ4mMOJV0GSQAjUtjCBlSmqRZOhnQtYqgPAigtaiKZ/Nz0kS/mZdnI04YlYsiQkk8mgKMppvR5zc3On9Y78Jj72sY/xwQ9+kF/84hesW7furLGGYWAYp8+m1zTtKW+830WZvqfOH3r7ZDIZAFrbrmHV86/Bq9WoTI1xz72/4MHZIgtVhY5GhNHYeiraKIdkGUuaQJVy9LoSK6wEpojyqLKaUncfmyr7WGHuZUHOM23IDDcs9lhr6NIlYuEErc4+5k2DffUuFhSDjHqcQNMQwYlultVsCnYz2+2XkjTuoKzUmRMaSVNjJGgwpAUxM32cGzpI3XXZMfEwipNgUCzH8wKYR0vkMyFSXpFKfpay53JoYY6EW2fjgYe4JXIhc+N3oPW1MpEzmBAVQjOHaK4NIUhy1DEJ5xt8L76GP1sm4S3kqN03TmReEPUk3OoYU/Ju4p1pMplnUcg/iOvmqdX2kUicC4DjCfaWinx5x04sy+HS5jBbmlN0d61EkiTq9TrlchlFUVi7di0H73sEhuvM6WP0XLiC2aEFzKrLxIECjimItB6jWjmA5IVZeERBmq1iy0GqcpxRI42U8JByB5hrzPGSwZcgS2cfoigWH0WWJRQ1iuvUyO//JcVKEUUJ06omqMxlGbjkInp6e5AkiUf2P8LDI1PMDx3FGehnvDrGmDvNe49YvLSjhed1bABOJCCj++c59sg2kCT6ywMYAYlURyfB6K++2I3ec+KKKC0Arg354zByNyx/Lu6hn5GtmATZRmTdC5EkiVptCkny0LUYyeSl3Da8m5qbY2VyORdEQ3xwzxhFyyHvqTRR5ooVTWzsfvJzeMYP5pg5XqR7VZqWvif/JVQ4HiJrIssKencUa6yM1PBwTRjasYBreyjyiXaplxxSrb/bz5ul+Ex7MttbsiRE13U2b97M1q1bue666xaXb926lRe96EW/Vdkf/ehHef/7389tt93Gueee+9tW1ef7gyWHQsSWncMLl53DCzlxcrGsEg/cex8PHK1zqKQgRJCMfpS02iCmBNgWWM4xuRvJljiuDXK+MGkXhzlOlQlDZ1XJRIsIZkPzTBphKnMKU1mPmarDc1MzJGWPQERg5F5ATEozJIIcqSTpU7Ks9e7hYKhONR1kkzdBSB1nxIhRUiapSyXs2U5CnkwUjWmRxJybo0UZ4wKOURlPMqp3sTOS5EBSwZ5eoFFscLw8T7VHZ0X1MM8v3kdJhLkvcAnzejOlgMSqqXmOl5ppimax1aPMGi1YtXYCHMWbyCNPJyFkIif6sHiY2clfoLV0oLal+Fp2kgeO70PMW3ge/DxrsvvwEK9YezfLe7cwP68hRIFIsJXi5ARiXmd30aR8cIrErr1k9G5cLYQWUKkfPoax8CO08CjluSbKY0nAZiImcSS6jGAhRkVK8cvSOB16kU3Nw/TG+9lZqgJwfjyMJEkIceJyZ8epMDe3l1yujqZ3EQj1cezwj6gIwVRMYtxtoIxH0B+pUR+dpNAxxf31XUzUIySlMKGRX7KqyWTW8ajYMb40NsG8l6E/HKd3wWH88DCuW8Nu1Nn+8710DPRwdPsjRFIZ1l20Gn3yxDAXq68DRYM934LZ/VDLcs+UzJ5iGiay6PMHuWZDD1FphIYns9ceZC6XYMaNomDxrEiNiQWZeENQUSXKQYVM1ePuw/N4QrA5nD1RfrL3cV/vnusxN1pCeILRfQvUSiaO7VErWcQzQZp6ooTjZ/9hxsbhPMIRKCEVvSOCNVbGLVuM7JzFtT0iqQCJ5hATh3KUc43f4t35v8OSDse87W1v45WvfCXnnnsuF110ETfccANjY2O8/vWvB04Mk0xOTvK1r31tcZ09e/YAUKlUmJ+fZ8+ePei6zqpVq4ATQzD/8i//wre+9S16e3sXe1oikciTGmf1+XynkyQJw4jzrOdcw7Oecw0ANbvGXHWW4pEJhrb/kA1iBKnqUZZ0aorK/UYP5zsmAXeUimYgt9yP7ukIr0TOa6MaSCApTchOjOGpi0j0HUBok3jOzwlnz6dX0ZmvN9EWnkQNFlifvBFP99BVibKj81A1wFggyVxYx+4dY7cVJ1IKgDVBSJ1BCc8z64ZIx8sYYwvsa6mj6zlCnVVa6gNUUi0E9TrPr97NsuJhlIiOiLjcIq7DluNkE4Jz+QFWQ8FTgkxbde5V6nRI4/TkFmC8l2D9OLomk7hiGhFYoDQ0Tv74IDuCcZxcgoRl01qZ53Asw7QI8uVDWc478o84noaspEgfHWB0OoZtt5BQW4kMT9EwZ5gMzRJIVlCaYxS8YeLmHBE1T71uI6saU2qO++NdtFsNqvMeQ+NgR2NUdI/P3PsLWts6yLk6qqYyUZqkeXoGiKApQYqBBfL1WcBD0zzGaia5usJIpo3pdBuuKBCw60xO7eK6kX7GDswwtjHBQkZHnZgiZNeIN6V5oSfzYznFvO1x+/A4zXaJ5QuHaK7P09klGNkxR7UUYOKogaYbZKdq5A78nPMGZZK9PZAeOPHi6jofxh6iXphlX7kJVAPZaWAVpnloOMLFrSPst2IMKWlkHCzXZoszgrvbZaa0hraATDAdIhnR6bYkxsdLHHh0B+uC2098M7/oTaCfPkQzUhxhuDhMMpAkWIvj2gJZkfFcj/mx8mLcXNVmbrREz/oUhcgsc7U5CmaBhJGgK9pFd6yb2fEy6vACzu57CK7pAPVKJFmiMFOlHtRQwxrLNjXj2B4Th3JUciaeJ5Dlxxn6yY/C8D0nhqrCmRP30/ltb/r3NLGkSchLX/pSstks73vf+5ienmbNmjXcfPPN9PT0ACduTjY2NnbKOhs3blz8f+fOnXzrW9+ip6eHkZER4MTNzyzL4iUveckp673nPe/h+uuv/53uj8/3hyikhehN9MH5fazZfDFjY0do33Er09lJSnaZec/gCB3YXgvd+p3UlQYNzyLkqpAvUhftkJ5jKm6QNcMcqy+nU6+iRGRa5HE6i2laA60c5iI6Wh+iVaqBJzFuxrjPgKwNcdsko8wwE4hQNvaQDUaxAw0CRo0sNposiEbTVFrLVAsSptNErGmeYeMYVinEOYUKfV4NWU1Rz5VZZQzT7P2A74WvJR8rcKieRW402Gt3sKB1EZUTFEMqB41+mmdcVi7cg5qGWnaMQLKI0yhwn2ih1ICAm2PDfJZ4yx5iuX526JexEOhlR+wKVtTvwT48g1OJ0CuakaQ6AXme4+km7ursoqTamKE5WuUhJKuF9oUQ55eLRJMmheg0e8UmaqUI2fwcoVmJpqDDAjHmFbirFKI3VyatFqlJLsfKDS4av5/eahlklclQG15QJTkgOO7UKcxYSGWdqaYkrqeQLMcxRYIdRhndmqLNTRAdD1BoqRCJeMimzHJzBfepZRQthV3NMTd7kII6zhE3yyr1OOlhHZHtwbVX4UkGrQMDzBzZy8xCmZ/nVTZIMVYE7kKLpSAzCAtH2TfZwIm005SI82L5Xr40aTCRTTMbLDPmtqIG4qQbo6wdnSSiHaOgW+jTfUR6I2xojbM/X8UO6bQZDTon7mZCGiUd8jj00F0sJDZzXm+KpuiJ3oyaXeOhW/4LbTrHWH8T40qAfnsNl/ZfSChuMDdaIpYOEIobzI+VGZ+Z4lt7t2J0/Pe9bYaLw9x07CZUKYY2HmX9uMslHtgTJsUfFhCJDVQLFooq07+xHT2oogUEqq7gWC7Vgkk0dZZ5IY4JB38K5q8SooWjUJ6F9S89Y/hsdZaKXcG0TRri1J6WhuuxvVDBkOC8ZPRpcZnzkk9MfeMb38gb3/jGMz73la985bRlJ7sSH8vJZMTn8/3+KYpCX99KenpWYJomjuNQmTvG4R0/IDd+iMq0ymwggCYZSJLCTLmFsOIwnnbJh2waaompsMS05KFIYZSwhJI2UZwgASNBJvgsUpJHbbKZeYrM6MdJiBp/lINOp8JIuMBIdI4JmsjSRNppQjbnqBsLVBINXCVINB0hJS+jLBk07DxIB0ja8xwTcWLxNoy0hahbxKQFXla7ke9o6/i22YMnathGAEUeo70eIibpuLLBSKeEqpfpjR1hzOvAy59DqdbFsXgI3SyzurwLs2uIWjZM//15QuFx7l+7jJy3jF1lh8H8btqMQQqKTrqU5bgxzYOZzWieQ7dVZbm1C0mq4rg6k24/t8dewibtXkLyKPkwGNkactaihGBV6RAkN/KAHmbClKmPT7Il910Otq7mYKSXnU3dRKPbaTITuKZHteJQOlKmKZynM2AzH2shLmzqNZ0143WyoQpjmWbGk1WWL0ywcTRH93Q781ofqlVi7uB3CCbTvCB7lF+SY9yZoUYVRZlkn6iTmFZZXr8YXfHQpBq5ZA639SHqRYWa00Fuxzc4slclfU4PgUgEo3sV908pkOxl48pmIqMP0acXeGTydo5kd2H2PRcvO4s4ME+p3I3TPg2pPJKSpc026Z4H96CNQNBb202+WmWynqWiVpkrfIWxthyHZ85nVWuUFcowj277EZF9RwgKl5aFOnLd5ODqAj2NMOcvv4hMZztCCES9zkLTLPdu/xKeY9KSj3LOqi3ILX1sP/4LZsdmqdoTDJT6mcwVOBIwWKMsw83mKD16G7ReTCwSI9F84mpLSZKIpgPkp6uUc42zJyHHf3kiAQkmoWMzHL8LcschO4RI9WMdO4ba0oISizFeHuenQz8FwHVdJq1JXixeDMBQrcEd4zMkbr8VgO4/fzmtyfjv9PPgiVjyJMTn8/3vI8vy4v0kotGNtA38dw+mZVlMHTjCsX2HiSpzFHIlVs3IFPQyB6N1pgwLRysjKXVcSWA7KpanUQfyNniOgohPICHQVI9ksYP5chhLmaXFhWBdYrlcZ8CaJeylMUWKoUiYPc4MGEU6gzEstUjOTTBejNKc20Y+UOV2NUBe6mFNKE+zIRMpK8xTwSs/gk4HVS9CsuHgiBpN87dx3kiQ+UwX013N5BMaM80rqSpRysUWZKmGW2qQmptCC08RdBoE63W0tjDNk1MkjkTY3RLDUVoZ6XwRLaEkUd3GrBWxULGde0nzKF32FGEcmlwI19sY1IoU3QjTcpzDoQHQSrSr81hKjJoSJqg2SGXniK7opUWp0mbNsZDo4nm1HQw0okyoK5hzusg7LhW1jGNN0KONkXRMAsLDVuJcV/slraUCWamHYbMX2wY35HJvS4GA7dDqHKbnWB6jMI8tQ1thhvHOPP26wJU7mTMauCJDzZ5gSFZZkZ2gjyhR6zjZe36BnpyhNthGvS6xa7qJ8XIL1k6VcNRmw8hNZOU+bEdG3n6UO4oTPNw4wDpvhuZGjdS+aSaNXRhmD25hGVNeC0V7grRyiPhIJ2MLE4yYVWL1BSxPQD1JMdSLbgyjeDliC98lX3uUQwejmOXtVI5Oo6LRE+pCHRslZ9dJuHl+Hihy5Ng21jdvoEnILBzYwd3lXVApk5DbsYPr2HbcoGQLJsf6CGTH8eQ88WqdtAgzV1ug0TyKcp+NNeXCfJ1IahDbjCMpOqoaJZr6VRKSbcCyE++NhYkK+ZkqPWvS6AGV0uRhcgd20BYGY/BqSPWBWYLxh2HoTsrDU8zf/g0UI0z8iuezM3bicuq4ESdfKlJ1a0yUJ2iK9/LjiXk6fnE7RqEACI5+7QfYz7mWzlWZJe0R8ZMQn8/3e6XrOr0b1tC7Yc3iMuF4mPMVqtkChSN7uHfkQSbkI9TVMvVQhaqnUbWSLNgBykJBUiU0wyNpOlw8lUX1JIRwOKBk8PRmliuTJJhBk6uEtQApS2ZjzsNBxVCP0VD2Ml9NIbseklLjsOKxSwoyW62TdxXiuk44AAEzgOraXOIusKaRQ6tbPBQrs5AOMRKosrF2mP5iin2BNRRKSZINh2h2ilK4gus2sC2FnYWLSDNHV2Yas3eO46Eoc7UOmhdKZGMJvFiUBRMmvRrtoQLr7IPMa8NEnRIlGbKSykNyBDPg0GFNIUkKlivQaw1SboKSJzEdW0Eq6yDXZ8mGswwwSSMmOO42mHFVRrUETdYeYpUSttzOSGSOmlImppWY1DxmbJnmgkpMcjGUGlExTyY4TFiN0VWJc1jpYTo0SKJgk9jvUG+Y1AjiKhrzaORzApJVVFFGbSRxCaHJFlgT7Gx/kOuGUiiWTrDRhlTupj0zw1Y5zaFAM7lGK5ZpoBWmsIsZrpQfZJ+bZ1fA5VjoKFtCR4hJYBIlVarhhoeJRCewxDjuQgbdAy0wTWsxyJA+zj3p+6kFTUKNVuRgmkSjF83soupZVCSdfnmW/spemJ3Bkx32dMHeZJFEQCNTnMfEJj8F98dmuL3+AMmsQ0N3CNRKJIsqI00bGQ93EC3XsPccwVIDBGgl6OWpSfOExDLMUJSDBz1WRiyEqGPlphg+muf+790FoSiXXfI3RNMnrkSr5BsIT+A4HocenqBULJHL5kj0wPTOm3HrDoWaYPnhu3D6BXcUElxStknsu5XC1C04VQ8rFmL/D/+LR1bLNK+6hEtDV/KTfbdTL8BDx3bRv7yJ6F0/JVDKM5hKcTBbprxvmDnzTozo82nqWrqhGT8J8fl8S05SZQJtMQJtMdJruhngjxafs806t/z8p1xy4Wb0QBhJC2DKDsXyHGEjjWUJzGqJ/Mw+zMoUC9kqdjVNvZGkYpWpVnQ0SyaKjUGNiifhehpxrQyqhxAqPbUm8vke7KBOpS5RC9RwAjYlYI1Z4znKCDGtgqNJOCLEw0aduiF4IBUh4Nm0mwforEvMeSolVUcph6lKMVQZApJHzQ2wt9xPSG7HjqrowSGWG5NkJBtXW8GwCBP0jrOsNM3BoAWOTcAN4FYzHPV06oqFLLmUiRCUZbRAA01SCDTmUF2ZRLTCqkCZrroFiodVg3Y7RkIKUlYCTBNlIiBjBwqYooLt6eAEWCWKVO0oDXSGEhHKBLGcJtJyE4HAOFG5jCRVMe1hKM2z093IwYSB4vViamGShk2zN09cSjEkLMqyguWECJXPIVGOs5CqUUiX+XZE4fKxXkBj1IpwsHwuliIIaC7NTQHK1SDlqSjjqsVutYlOdTf3WN1cEFsgJCu4UoTZyjpitQpGbZJcxiGoT5JQmrGme7G1VVhGll2xnejeLJFGlDnJBn0aRSvQXu9jqLQCWdRYKe+k056mkYaRuEwuGqKiq7QO1Cg3YkieS7NUIG/qVAhwOKnTcCKkohqSvJy9A+cQcFT0mkZbziRuFoirSYbDEopoUHfmqLOKgFljpzBIdIaQ84dZmJlkSFmOqcoMHfk23S1bCJSzOGYOI16kBBzYfwBhWYyOGgSHcyTMBpn6FEaozkRhjKm9e7i39Wqadu5hVfUI+kKF2nSEajrOvh5BdlilJb3AgeExpkpT1Os22x7ax/6dZUqV4yQCDiv7t7Ag1WkbvRd76AD7v9NKS0czHVf1EG/6/f+atJ+E+Hy+pzdZRSgGsabuxfsPRIB0OPNrQa3QP/i4RXmuy8zYEJPH91GaPcjx7Dz7vQSGKNNcm+LSokqxliFbaqKm6RBWCKsFxt0EniKQNJuInOdit8BBWeWYpILsUAw20F0H4XmAiRYqk2SaAC5awsOWFBqSgodHQPYIKibIJguSjMckEcASsN9TmCVOVjRzfH4dOEGEBIoA2QNPdikr4JY8EnKefmk/rlFnJlyhalTZaQgEIAlBsuoy6EawbQ1bcqloDWy5gSYkgp5MytYwhIZNGz82NjGv5xBygyAurggju30YnkcMiyZpjoZWpzP4MLP9KWqSQrOXJ+BZmELBQhCWPFJOneWFJE6lxLDoJldNU4gcYNao8dPBInq2m7LUhapaRMJ51qSOEtAkGu4aHkkOsgdBTmlh0Bgmo+zFVi22EmK+3kq9atGnTBATDSILBvG0Sah9AiE7ZLMSCyGdsj5PRvIINgZBC2EHDxLVJqjFSzS3amSm6rg1mSOimQOxOYShEbPhgpqN6hpUhEbcsrBVwTFDRbgOKa+BK3kQX82RjucQaSi0ZXMgCUoBlUo8THreor/Yzph6kJt7VYSRYVU+y5bawxihMmbQZijgsVc7iqOCrKgcmt/LORWdZabBd7buoMXKEJEUlEgJp96ENRyiHDpMxihQLEfwPAdJFLl66lsEagtMOQG0RIhCqIkcOapSDcMM4d1sMRx6gDZNx5Q7GRbNeJaCwmqmgzW+t387y8x1KHIQpTaKPvQAlnIRmrM0v1nkJyE+n+8PhqwotPcN0t53ImG58gwxdqNGYfwAtfw0k+NTBCtNlOdVyo0StWqFolej5NUIO1FWeTpVo0ApVEQgSLgySeoElQKqXMOWBA3Fo66ALnlUkcHzCLgyGkEcSUKRBI5wkYGGJhNQHLoX0pSQURQTRQg0VDxVRRIKiuPREBpVr50jIsZ59UOkSlVmMjoFTQZXYFTjtJVXkWzYqGIBOyChKgaKVEUJlgnoNTTVxZJVfm6sQlYKLCNOUERpd6ZBElTdFsxKiIRaIBiIsNY9xnjQoU2eoSq5yLKDiktdCVCTwwQ9iQtNg3DbHEbrJFEvwyNWPzptVAOHqAdrWBGLhGnSojk0aWMMK4KqBGS2o0QO0plPY5s6hdIWutK/ZFy2qTsqpbIMosSEp5LRBUUqlKoy6YRGvH0BybA4qDm4nkG43k7R7SHoBRiQMjwQyVLXGgSVUS4OLeB6Ib4b7mRG7SYmu1xnlWmmzN7AAEdFGkVUsAMpmiSFc63D9IpHMHFxlCMMyRY5L8HqxghmSXBf2+VUtDYebU3TP5anForielBjiKA8xJ7IUaq6wJQlhKfQ7oWwzAQiWCakT1PJ2BwQsDkbpZTdhCKCtOQswtEoQgkSLpyHUp3mmFanqtvEZAfbydBwuymHVGKeRFXVOK7mGA+NESqfwyPucmIlk5X2XtRIinrMIihkoraCbUUYni0RrG1loOUgIW+WdPkIVI4RUPo4eeff3yc/CfH5fL5fowVCNC0/cZPDnvOf2Dpew0RSZCRNw/M8Kg0T13NRFAUJmYCqIAN1s45p2yiOg+s0cCQD25VQFBCuwAgHcVwTXQue+P0as4ZVKiNFEnieAFmlIkw0TUeRPBRZQUFBuB6mZSFUD1t2cV1wPRdNknA8G9UUCOGhGBpC0ahUG6j1BUy7wZuSrXimjZ23cCp1VNVioVIhkAhimDUU2aHWyBKaSbHxyP0QgKonkdNiHA+kqCg6dUkhJOtMBwzilEjbOdJKgcv0PdTrGrWy4HCgSlUtokcmqEgOZUfCqysIVUKVHZAlmlMStqtiegojQkYSaSZqz8OW25EUm3mlRk05RELfzzwew3WXkNAhZmHKHgpwTtnC8PYSFBJ1OUWoLHNAL2F4eUblEvVklIaUJCp0AuZGbifM7RoI4eEKG4Ig0Jg2TTyriUn1YrqdObq8SVZXj6IIQd0IEG6WeJH7E6ZqrWRFmHqzhBEIYenThKVhhpIlXGEwoTahCplzGwUuqkosdyZxyx4j0Qb7DImCJLi/uUxbdAftjTRjXhjd3U2X00HDbkYTSZJmLxEvgqlmCQUeJCxXCctxVD2HJwWouesoNHqRSBMMBxlTAkyLlaQcj7TTYJ0YomPC42hsgEOxGI+mTOrhDJeFx4hMWYjsKI3REVY19/zO3lePxU9CfD6f77ckB/77LpqyLBMLnflGUhEtypO7ZWIUmn/7n7E4s4HfugTbtvnpz29mzfnnIlNFKY2Qmx1maOw4WmOecGUcNJkZq5NULU48NERJONSEiiag1ZKI2zKyqoPu4qkSpgwF2aPuKpSd8yhrA3gaCIIIEaNKGxlrOd3q/ZhyDlMWIBm4QqXNjNNAw5YEnuYhRJnuisnaWoXjIY85I4ijRjjPmKbqrKHsuAi3huSoSG4VQzJRAjqWrOG4LseNFg6ZIQ6UV9LqllmhHCYtzyEpHrLsICkyaeYJSfNYUoAOW6dDsRgKVnGEygLLyLlrUbwo+9wc7dJ2FowIliJTUFSE7TFrRRDGMHagTkGbZkUtQASPinIIJVTDQ2eyvoJ5KYUdfpSamqOouDjKOM1egF4zjiJvR2it5KUQZRFCMg0sN8BhEeQidZT+4b3IZY22TBSjI8txK8GI18JC/Uo6WwqEyg1Cuw+w6rzLn4LX1ZPjJyE+n8/n+40pEvQ1NZ+Yr9M+SN85sPkJrOc6DnMLUxSnpwkaUeqlKrn5WczcBEGpQa5RZCocYJn0CK6ikrdrOOUgUl3BcYKY9oW4AQ9ZnaZBjJrTQg6N3bKEppWISFmaiwt0FyYJKAZeQMeoaZhygHBNZbmsItvzZK06LnnSShFVEWTt5UTLEh4lslIKrDp1V6MShr3KcsIiQ4s7hxAypicR1nNEtBJlIVH1JJRGiOW1IDmRpmE0s4YFhFcnqxncGNgErkbebQZLQVE8FFWgWDlioT3oep6jgSoBxyXi2RgEEbKLndoPgCokPAwWpCg1TyMra4xINVSpTpsyRlHPUFY16m4QUYOYZVM0JVxHoLVWCS/fRyrqEjdLPDi5kjKwEI9Rj4b5Y3X+d/o6eSx+EuLz+Xy+3ztFVWlr7aattXupq/KUc133xCWvEjiegyqrWPUSW3/4TfYcm+VgQ2FOjYJuY+oGSSlAyl3DfGCEeaWMg8C1JCQb0qJEh5enxTFQ3BTbtEtpoONJdTw5j1ALbLKmuEQU0BozFHDIqRqzhk4hCBVX4YFoBEN2CAZLxFyDSDHDJsXmuBrgOM1U3BCHZg8sybHykxCfz+fz+Z5CiqIs/q8rOgCBUIJr//xNXAuIagF7bpzp6RLzw2PMzMyzIGIEWq/Fri8wnjUZsSzmFMgJkwlhoCgzjMpNSEIhiYQshXAlBUmKEAg7RBojZOwyg65F1YkwpzUxpjoMqSaeJjABE4m8B8QPIsdARrAMgeZJqKXlS3Ks/CTE5/P5fL7fIymcQO9L0NMHPRdf8huV4XkeQggao2NUGyazhcuZr4wzOjOKPDWFUczSamik9QBVXaaqapSFQll42JKFhAuehW7XCDgOmfTpP+73++AnIT6fz+fzPcPIsgxAuL+PMNDMOac8b9s2N998My9+wQsW769zkhCCWrGIkGU0FRYmH6Gl9wleCvYU85MQn8/n8/n+gEiSRDiRWHzcsXzLktVFXrIt+3w+n8/n+4PmJyE+n8/n8/mWhJ+E+Hw+n8/nWxJ+EuLz+Xw+n29J+EmIz+fz+Xy+JeEnIT6fz+fz+ZaEf4nuGQghACiVSk9ZmbZtU6vVKJVKp12z7Vt6fvs8fflt8/Tlt83T11K2zclz58lz6dn4ScgZlMtlALq6upa4Jj6fz+fzPTOVy2Xi8fhZYyTxRFKVPzCe5zE1NUU0Gj3xI0RPgVKpRFdXF+Pj48RisaekTN9Tx2+fpy+/bZ6+/LZ5+lrKthFCUC6XaW9vX7yz62Pxe0LOQJZlOjs7fydlx2Ix/836NOa3z9OX3zZPX37bPH0tVds8Xg/ISf7EVJ/P5/P5fEvCT0J8Pp/P5/MtCT8J+T0xDIP3vOc9GIax1FXxnYHfPk9ffts8fflt8/T1TGkbf2Kqz+fz+Xy+JeH3hPh8Pp/P51sSfhLi8/l8Pp9vSfhJiM/n8/l8viXhJyE+n8/n8/mWhJ+E+Hw+n8/nWxJ+EuLz+Xw+n29J+EmIz+fz+Xy+JeEnIT6fz+fz+ZaEn4T4fD6fz+dbEn4S4vP5fD6fb0n4SYjP5/P5fL4l4SchPp/P5/P5loSfhPh8Pp/P51sSfhLi8/l8Pp9vSfhJiM/n8/l8viXhJyG+Z5zrr78eSZJYWFj4vW73s5/9LF/5yld+r9t8qvzHf/wH55xzDoZh0NfXx3vf+15s237S5fziF79AkqQzHv9vf/vbXHbZZbS0tGAYBu3t7Vx77bU88MADp8Tdfffdi2Wc6e/1r3/9Yuydd97JX/7lX3LOOecQDofp6OjgRS96ETt37jytbkII/v3f/31xP9va2njDG95APp8/LXZ6eppXv/rVNDc3EwgEWLduHV/60pfOuM+33XYbl1xyCcFgkHg8zrXXXsv+/ftPi7Msi3e/+9309fWh6zo9PT28853vpF6vn7Hcffv28ad/+qc0NTVhGAa9vb288Y1vPON+ffnLX+b8888nHA4Ti8XYtGkTP/7xj0+J+9rXvsbLXvYyVqxYgSzL9Pb2nnG7/9MXv/hFJEkiEomcNU4IwWWXXYYkSbz5zW8+7fnHas8Pf/jDZyzvxz/+MZdffjmxWIxwOMzq1au54YYbFp8vlUp84AMf4IorrqC1tZVIJMLatWv513/9VxqNxhPaN9/Tn7rUFfD5nik++9nPkslkePWrX73UVXlSPvCBD/Av//IvvOMd7+Cqq65i+/btvOtd72JycvKUD/3HU6lUeO1rX0t7eztTU1OnPZ/NZrnkkkv4u7/7OzKZDNPT03ziE5/gsssu44477uDyyy8HYNOmTWzbtu209f/zP/+Tr33ta1x33XWnLMtms/zd3/0dq1atYn5+no9//ONceOGF3HbbbTz72c9ejP37v/97PvnJT/L3f//3POc5z+HAgQO8+93vZvv27Wzbtg1N0wAoFotceumlWJbFRz7yEdra2vj2t7/NX/3VX1EsFnnb2962WOaPf/xjrrvuOl70ohfxgx/8gGKxyHvf+162bNnC9u3bGRgYWIx9+ctfzs0338y73/1uzjvvPLZt28b73/9+9u/fz09+8pNT9vWuu+7immuuYcuWLXzuc58jk8kwNjbG7t27Tzsub3jDG/jKV77CW9/6Vj70oQ/hOA579+6lVqudEvf1r3+dmZkZzj//fDzPe0JJ5uTkJH//939Pe3s7xWLxrLGf+cxnOHbs2FljXvKSl/D2t7/9lGXd3d2nxX34wx/mn//5n3n961/PO9/5TjRN49ChQ1iWtRgzNjbGJz/5SV75ylfytre9jUgkwr333sv111/P1q1b2bp1K5IkPe4++p7mhM/3DPOe97xHAGJ+fv73ut3Vq1eLyy+//Pe6zd/WwsKCCAQC4q//+q9PWf6BD3xASJIk9u/f/4TLetOb3iQ2btwo3vWudz3h418oFISmaeKVr3zlWeM8zxP9/f2ip6dHuK67uHx2dva02HK5LFpaWsSVV165uGxiYkIoiiL+5m/+5pTYb33rWwIQN9xww+KyD33oQwIQO3bsOCX2qquuEuFwWOTz+cVlK1asEOvWrROe5y0uGxkZEbqui1e84hWLy7Zt2yYA8fGPf/yUMj/4wQ8KQNx+++2Ly6rVqmhraxPXXHPNKeWeyY9+9CMBiO9+97tnjRNCnHLcrrnmGtHT0/O467zwhS8U1157rXjVq14lwuHwY8YNDw+LSCQifvjDHwpAvOlNbzot5rGW/087duwQsiyLf/3Xfz1rXKVSEZVK5bTlH/3oRwUg7r333sfdlu/pzx+O8T1jjY+P88d//MfEYjHi8Th//ud/zvz8/Glx3/3ud7nooosIh8NEIhGuvvrq075xHj9+nJe97GW0t7djGAYtLS1ceeWV7NmzB4De3l7279/PL3/5y8Vu5sfr7v7MZz7DZZddRnNzM+FwmLVr1/KRj3zkjN9Qb731Vq688kri8TihUIiVK1fyoQ996JSYhx56iGuvvZZ0Ok0gEGBgYIC3vOUtZ63DrbfeSqPR4C/+4i9OWf4Xf/EXCCG46aabzrr+Sffeey833HADX/ziF1EU5QmtAxCNRgkEAqjq2Ttd77rrLo4fP85f/MVfIMv//bHU3Nx8WmwkEmHVqlWMj48vLnvwwQdxXZcXvOAFp8S+8IUvBOAHP/jB4rL777+flpYWNm/efFpstVrl1ltvBU707Bw+fJjnP//5p3zj7unpYc2aNdx00024rrtYJvCEtn/jjTcyPT3NP/zDPzzuN/lPfepT9Pb28md/9mdnjQNOOW5PxDe+8Q1++ctf8tnPfvZxY//6r/+a5z73uaf0Uv2mPv3pT2MYBn/zN39z1rhwOEw4HD5t+fnnnw9wSvv7nrn8JMT3jHXdddexbNkyvv/973P99ddz0003cfXVV59ykv/gBz/Iy1/+clatWsX3vvc9vv71r1Mul9myZQsHDhxYjHvBC17Azp07+chHPsLWrVv5z//8TzZu3EihUADgRz/6Ef39/WzcuJFt27axbds2fvSjH521fkNDQ7ziFa/g61//Oj/72c94zWtew0c/+lFe97rXnRL3pS99iRe84AV4nsfnPvc5fvrTn/K3f/u3TExMLMbcdtttbNmyhbGxMT7xiU9wyy238K53vYvZ2dmz1mHfvn0ArF279pTlbW1tZDKZxefPpl6v85rXvIa3vOUtbNq06XHjXdfFtm1GRkZ4wxvegBCCN73pTWdd50tf+hKyLJ+WLJ1JsVhk165drF69enHZyW58wzBOidU0DUmSePTRR0+J/Z9xv77uydjHKvPkslqtxtDQ0Flj/2eZAPfccw9w4jhdeuml6LpOMpnk5S9/+SnDXI7jsG3bNjZu3MgnPvEJenp6UBSF/v5+PvaxjyGEeOyD9Djm5uZ4y1vewoc//GE6OzvPGvvFL36Rhx9+mE9/+tOPW+63vvUtgsEghmGwefNmvvzlL58Wc88997By5Up+8IMfsGLFChRFobOzk3e84x2nDMc8ljvvvBPglPb3PYMtcU+Mz/eknRyOeetb33rK8m9+85sCEN/4xjeEEEKMjY0JVVVP66Ivl8uitbVV/Nmf/ZkQ4sSQBSA++clPnnW7v81wjOu6wrZt8bWvfU0oiiJyudxiXWKxmLj00kvP2jU/MDAgBgYGRL1ef1Lbfe1rXysMwzjjc4ODg+Kqq6563DLe/va3i/7+flGr1YQQjz8ctmLFCgEIQLS1tYn77rvvrOXn83kRCATE1Vdf/bh1EUKI//N//o9QVfWU4ZQ9e/YIQPy///f/Tom94447BCB0XV9c9pa3vEXIsixGR0dPiX3lK18pgMWhK9d1RSqVOmXY52R9o9GoAMQDDzwghBDipptuEoD4+te/fkrsl770JQGIwcHBxWVXX321AEQikRD/3//3/4k777xTfO5znxPpdFosW7ZMVKtVIYQQ09PTAhCxWEx0dnaKr371q+KOO+4Qr3/96wUg/umf/ukxj9HjDcf8yZ/8ibj44osXX3OPNRwzMTEh4vG4+PznP7+4jMcYdnnFK14hvvnNb4p77rlHfP/73xfPf/7zBSDe9a53nRJnGIaIRqMimUyKT3/60+LOO+8U//zP/ywURTlliOtMHnnkEREMBsV111131jjfM4efhPiecU6eBP/nmL5t20JVVfGa17xGCCHEF77wBQGI7du3C9u2T/l76UtfKpqbm4UQJ+YjDAwMiI6ODvHxj39c7Nq165Tx9ZOebBKya9cuce2114pUKrV4Uj759+CDDwohhLjtttsEIL71rW89ZjmHDx8WgPjgBz/4hLd90mtf+1oRCATO+Nzg4ODjnvgfeughoSiK2Lp16+Kyx0tC9u3bJx566CFx4403iiuvvFJEo1Fx1113PeY2Pv3pTwtA3HjjjY+7Pyfno/zHf/zHac9ddtllIhaLie9973sin8+L+++/XyxfvlwoinLKMThw4IAwDENceumlYt++fWJhYUF8+tOfFrquC0C8/vWvX4z9l3/5FwGI973vfWJ2dlYcPXpUXHPNNUJRlFPa0TRNsWzZMtHe3i5uv/12kc/nxS233CJaWlqEoijinHPOWSzzuc99rgDE6173ulPqfzKR+cIXviCEEGJycnLx9bJt27ZTYl/84heLQCAgyuXyGY/T2ZKQ73//+0LX9VPmAz1WEvLCF75QXHbZZackyI+VhJzJC1/4QqGqqpibm1tcpmmaAMS3v/3tU2Lf8pa3CEAcPXr0jGUNDw+Lrq4uMTg4KLLZ7BPavu/pz09CfM84J0+CExMTpz3X0tIiXvziFwshhHj/+99/2sn/1/9kWV5cb2RkRPzlX/6laGlpEYBIpVLib/7mb0SpVFqMeTJJyOjoqAiHw2LTpk3i61//urj33nvF9u3bxWc+8xkBLJ6Uv/GNbwhA3HPPPY9Z1n333ScA8bWvfe0JbfvXveMd7xDA4rfrX5fJZMTLX/7ys66/evVq8ad/+qcin88v/v3jP/6jAMTQ0NApx+dMbNsWa9asEevWrXvMmI0bN4qmpiZhWdZZy7r++usFID7wgQ+c8fnZ2dnFb98nez/+8R//UWzevFkMDAycEnvzzTeLrq6uxdiuri7xH//xH6f1pti2Ld761rcuJiiAuOaaa8Rf/dVfCUCMj48vxh49elRceOGFi3HhcFh86lOfEplM5pTelJe97GUCED/84Q9PqVO9XheSJIk3vOENQggharWakCRJxGKx0/b185//vADEQw89dMZj8VhJyMlJvW9/+9tPadOXv/zli5NyT04GvfHGG4WqquLBBx88JRYQr33ta0U+n3/cNvvOd74jAHHzzTcvLmttbRXAYm/gSScT8jNNwh0ZGRG9vb2ir6/vlGPue+bzL9H1PWPNzMzQ0dGx+NhxHLLZLOl0GoBMJgPA97//fXp6es5aVk9Pz+J9Io4cOcL3vvc9rr/+eizL4nOf+9yTrttNN91EtVrlhz/84SnbPjnR9aSmpiaAU+Z//E9PJOaxnJwLsnfvXi644ILF5TMzMywsLLBmzZqzrr9//37279/PjTfeeNpzAwMDrF+//rR9+nWqqrJp0ya+973vnfH53bt3s3v3bt7+9rcvXkJ7Ju9973u5/vrruf766/mnf/qnM8Y0Nzdz8803Mzc3x8zMDD09PQSDQT772c/ykpe85JTY5z//+YyOjnLs2DEcx2FwcHCxjpdddtkp9f/EJz7B+973PoaHh8lkMrS1tXH11VfT19d3ynyKZcuWsW3bNiYnJ8nlcgwMDFAsFvm7v/u7U8pct24d3/nOdx5zX09OMA0GgyxfvpyZmZnTYsSv5oM82cmoCwsLzM7O8vGPf5yPf/zjpz2fTCZ50YtexE033cS+fftwHIcLL7zwtLgvfOELfOELX+BHP/oRL37xix9ze2eq57p1657UPo2OjnLFFVcghODuu+9+3DksvmeYpc2BfL4n7/HmhJwclx8eHhaqqj7upYCPZcOGDeK8885bfLxp0yZx/vnnP6F1//3f/10AYnp6enGZ53ni/PPPP6UnpFwui3g8flqX9/80MDAgli1bJhqNxpPah2w2KwKBwClDDEKcuEz1iVyie9ddd53296pXvUoA4qabbhLbt28/6/r1el0MDg6KNWvWnPH5N73pTQIQBw4ceMwy3ve+951xbsET8alPfUrIsix27tx51jjTNMUFF1wgNmzY8Lhl7ty5UyiK8rhziIQQ4q1vfasIh8On9NodPHhQSJIkXvva154Se/Ly11+fV/LOd75TAOL+++8/JfaP/uiPRCQSWZyn8z89Vk9IvV4/Y5teffXVIhAIiLvuukvs3btXCHHi/XOmWEC8+MUvFnfdddfjXqb9ghe8QGiadkrcyV6cb37zm6fE/u3f/q2QZVmMjIwsLhsdHRW9vb2iq6tLDA0NnXVbvmcmPwnxPeOcTEJ6enrEP/zDP4jbb79d/Nu//ZuIRCJi/fr1wjTNxdgPfvCDQlVV8brXvU786Ec/Enfffbf47ne/K97+9reLd7/73UKIE5PdtmzZIv793/9d3HLLLeKOO+4Q//zP/yxkWT5l8t+rXvUqYRiG+M53viMefvhh8eijjz5mHQ8ePCh0XRdXXHGFuPnmm8UPf/hD8dznPlcsX778lCRECCG++MUvCkA8+9nPFt/+9rfFnXfeKW644YZTxt1vvfVWoWma2LBhg/jqV78q7rrrLvHVr371cSfyCXFiWEqSJPFP//RP4u677xYf/ehHhWEYp50Ev/rVrwpFUcRXv/rVJ3T8/+cJ6KKLLhIf+tCHxE033STuuusu8eUvf1mcf/75QlEU8ZOf/OS0cur1ukgmk+Liiy9+zG197GMfE4B43vOeJ7Zt23ba36+74YYbxA033CDuuOMO8YMf/ED81V/9lZAkSXzoQx86rdw3v/nN4vvf/7646667xJe+9CWxfv16kU6nxb59+06Ju+uuu8RHPvIRceutt4pbbrlFvPe97xWhUEhcc801wnGcU2L/9V//dbFtvvOd74g//uM/FrIsn3ayPbl9WZbF2972NrF161bxmc98RiSTSbFx48ZTXr/ZbFZ0d3eL9vZ28aUvfUncdttt4rWvfa0AxMc+9rFTyty/f7+48cYbxY033ig2b94smpqaFh8/XrL5ePcJ+XWcYU7IRz7yEfHqV79afP3rXxd33XWX+O53vyuuuuoqAYjrr7/+lFjLssSmTZtEPB4Xn/rUp8TWrVvFP/7jPwpFUcSb3/zmxbjZ2VnR398vDMMQ3/jGN05re39Y5n8HPwnxPeOcPAnu3LlTXHvttSISiYhoNCpe/vKXn/HmVjfddJN41rOeJWKxmDAMQ/T09IiXvOQl4he/+IUQ4sSH3atf/WpxzjnniHA4LCKRiFi3bp34t3/7t1NONCMjI+Kqq65avDLi8W4G9dOf/lSsX79eBAIB0dHRIf7hH/5B3HLLLaclIUKcmKNw+eWXi3A4LEKhkFi1atVpPTjbtm0Tz3/+80U8HheGYYiBgYHTeoMey6c+9SkxODgodF0X3d3d4j3vec9p4/lf/vKXBSC+/OUvn7Wsx0pC3v72t4v169eLeDwuVFUVra2t4rrrrjvtW/xJJ3uu/uu//usxt3X55ZefdV7Pr/v85z8vVq5cKUKhkIhEImLLli3ipptuOmO5L3rRi0RbW5vQNE20traKV7/61ad8Az/p/vvvFxdccMHia2fNmjXiYx/72BnnQrz3ve8VAwMDwjAMkUgkxPOe97zHnOvjOI748Ic/LJYtWyY0TRNtbW3iDW94wyk3SjtpbGxMvOxlLxPJZFLoui7WrVt3xmN2sl3O9Pee97znjPU46bdNQn7yk5+ISy+9VDQ1NQlVVUU0GhVbtmw5bfLpSdlsVrzuda8TLS0tQtM0MTg4KD760Y+eMiH8ZK/Lb7pPvmcGSYjf4mJzn8/n8/l8vt+Qf7Myn8/n8/l8S8JPQnw+n8/n8y0JPwnx+Xw+n8+3JPwkxOfz+Xw+35LwkxCfz+fz+XxLwk9CfD6fz+fzLQn/tu1n4HkeU1NTRKNRJEla6ur4fD6fz/eMIYSgXC7T3t7+uD8t4CchZzA1NUVXV9dSV8Pn8/l8vmes8fHxx/2tHz8JOYNoNAqcOICxWOwpKdO2bW6//Xauuuqqs/5Ql29p+O3z9OW3zdOX3zZPX0vZNqVSia6ursVz6dn4ScgZnByCicViT2kSEgqFiMVi/pv1achvn6cvv22evvy2efp6OrTNE5nO4E9M9fl8Pp/PtyT8JMTn8/l8Pt+S8JMQn8/n8/l8S8JPQnw+n8/n8y0JPwnx+Xw+n8+3JPyrY3w+n8/ne4ZzhUD51dUopmmzfXiUI8Uc+R9+m2Athzo1jWVbmI6J7dRRvAaKbiNiMiJosWn5q1j/vOt+7/X2kxCfz+fz+ZZQ3XIo1W0iAY2gplBu1JnKLeBWTKz5IlXbxWxk0evjjI5PUq3VyDkmrtRCXkqSC8SpBMJ05PMMzs9gSRK2qIJao9Y0i6M3kIMuxF2OxXsoaB04koItqZxbvh9NNtm6604/CfH5fD6f73+rasXk6NgCR4bHsCfH0edySPUaY/YhGqaDJctkglkiWoOAZhMxIhhqmFo1yXSjk2Opbur6BryYBEggCSTVRnY8oMJk2qCl7BBysgQDZaKts6iyjSQk6kqQ3fHNFLUItuTiCQnhSHizTUQqIar67JIcEz8J8fl8Pt/TjnBdPFmmYdvYtovj2Aivgd2oYtkOjuUSsysUs1mQbCTbRpMlhABJd3CEgxrUqZo2mgduvYrreQQlB00Ko+spJAI4jQpVx8FVJTxFI9bSjB2Lo4Ui1GsQUqOY1Qqu06CSO0K5pmMdOYpbqlKuVLATCVxTRbdtVK+K60Hd05EUg1TEgeYoZjjN2KRFa2WCaEOjtaohuR624+GhIqlJ8on7ycTqyBJ4WhxVS1JXAhwymig0R5nTDCyvRKBRpdmsoiomISVHRFRRlRr7RRczwThzq6ucV9lFUA3jKnUcq8qUs4YHQxcSWAgjTJVgfYE+p8bKhkHcvAzDdqGltCTt7CchPp/P53vKeJ5HuXTihFZvLODUHcwDU5gLI8ws7MBz5mgoNjXboV4LYTpBFMlFbkhIpk4pEGYmHacciUDVAEXDUSU8GXTXxbAFkpBxAoJeaYhObRjZMVDKSdxcMzk1hmKVqNaG8FQDdANH1zAzBbRICSU8i+eFKI6vJW0mCch1IlSRbZM5BA/IazFI0Cck2hwZBcinLSZSKkVFZ93kJG2lIpJQUUQA2RIIzcHEpSEMkC2MlqPURZjp8moaYylM2SNou9imShaPqiJhCpmH+xNIYZdzxSGa5DQOHmatBbeWZjjUytFAMw3hIktVHLVKwptkuXqYqA6K2sD0SqiNCEEM1tBgyljFLAkqYiVhq0E818XwRIZbNq2gENPpm53gkkNZ+oMJwnoChMB0HY7IHnpTcEleL34S4vP5fL7H5XkeuVwOz3Uxi3PEZKgenSd210Ee+uk2puo1CrKFo3g0dBVP05ElhbASIagGUWNZlJZpLKmBiguyiyJMVK9KRU6Q05LMGWkqahxFUkCSkGwdIxdDEhIK4KoSlZCLGauAUWcP/TgVQZc5w1xUcLg3wnStj5DtsPpoEdcpIzkNIslpUokihUCC/YFrUESA58QmCYxkgBOTORUBGSExKDQswFYi2IbBw92Q0+t4nsB1ZR5p7iZSH0fzQBIgsBGuS1nXKAY0ah01ssFBHFlDoo5qZcEyqDoqjttKUyVPU3GW+UiKXNJEj1S4W13JskqClgmdupXkYEsrk0GdecXDkao0zDyBRgnVytGoN6FbMq4kYymCWUehnSjNhk2/G2E40M4eq4+XHKtTE4KH1gfIpuaouh1UqhK9hkRI17Alhf2BCiNqBNed4PKugSV5XflJiM/n8z0Gx3GQJImKVSdbmWMkO4NaFzSmizS8ECMzBRYKC8jeYRJOnuh8Cb1sgSNTC0s0wgqKBgFdRlNdFNlBeALblnBcmYoapqzHiIkAQc8kZc8SkmpUs22EvDjCA9cBCQ0bBeHZIFXwEikCoQCa8HA8l6pUp6rWMCSLmqEx6wQpWyAUgRlJIRQFS5XxEISsPEHHxCZF0PbQ3Tkc4WErDTx5gWCohiK7yI5OQIpjiBaCtTRTrstcLIjQBKri0lrP0lHLQpPL2PJWjKIJkzqeoiKJE78bElMSGJKO2jSGkZxDQsWrN5EzIW8kmU0mKOpRkEAgkGUFA410vUZcZDFEjaBkE2nUUSQXKwgL0RCWLJMXKSbdQXZyKY8aDbxwGWQX4bmYcpJs22bs4k30JhaIKxZ5u5Ptgctwa0liwSq7m1rZWDpEYaEVV1bIiAhJoSJhkZc9RtQquzrTCDxk06U9t0AuEqEUjPFQS5rBwiR67jjzKOzvX0EplCEaLaOpYXTbwXA9ImqJkFtDxsILZ8jLUUZSLvWawDYaqIpN3C4y47azzdtCKFNHKFWOReo0vBxKY4q4Ok9QNQiVDRpTy9hjGQQUhYgkU1M8vGAZU1VYbakM5DqY6Ewwqyr8++A03Y6OFHRZWVGRpifZoEcpt7oU5CJ7ZRBCJRspEvJiXHHxxUvyHvOTEJ/P9wfJ8zzsao3a1BTFIweYGjvG9MgBarU6WsMjrmhIapBRMc5kSGU2uZxKqBmBhixUosImGmrgNtnU1Qh1FyLpMgHbxVM9VMkl6JkIBKonUCUdSQ6S1TPkJZU5PUNWSwESMiALCUP00dMocVFogY5hCQkJVAnPVfCEArIKBKAoqAqYDCiUdBc5UaQUA1VAxpklKgsO2mkm8nFirkox2Iypa8iSR83owPNkXFlBFnDuTJQV9Tz1+CxENepRHUcVGGaCUG4QtZJibyLISKuLUCwkBAgoSTFKVoi8GqMuB6BZ0JoqYGbDTMcTtDsGvTOz6C1D5GIjqDWH1PwqzGw3+3qWMSqrWPk6kuwi4eAZ05xvh2i1JGzdpmw5BCNFZN2lEISQXCMmaoRdGbMaoXushWjE4Vjaw1OqNOoSGS1HnFnm3avJx/o4X+lDDgjKboD72IJbzRBzXWyizEfqjLY7ZJydlOZT1HAo2zkk4XGgZYDjPf3IxjQRGmzIH8ApBNFmw0ycs5GJaIJ5Z44wHTTCMTwXzEidFrVCz8IQLY9Mks7X8JrSOFEbJWaxOrKXkhLnUHQtDUXDEQ6p2gKJ+Tqzcg/jcRm0MDFJIOouqdwk3cY0RiBOuqDSerxBTZpjIpAhF05hIuHZAQpmE1pymgPpg2QbWY4XLqecFihKExXPpN1RWDefI1UXhPVpSu0mP5YkpJKNakRwRBBVylJyy7TQ8nt/H/pJiM/n+1/J8zxc16VRqzF+4BiP7tvJ/MxRItlZsBu4QkMGDLNOsFFGQsHQMrQZCbRIgpoWo6aEmYk/iwMxgQQonoenywTiVUzNwuTEOLrwFOpaM3PhDiJujahbI+VU6axnsVwFzdVQHZl7UpuoKiGE7NCggWtJhMwKuqThqBHqqsKxaABHh0vMLO2VCrIMTrCKqXo4iowtZExM8kEPK6BQMDo4HFpOGQ3XUdA9m7S0gAjWUdJxSoSQRYW45NBkFfAkBRudupMgT4QDPXEy9X0k5DKKUAmZcSTbQEZgxo+zrV1jXpcAQWejQFvFoUGEg6FWxqU0mALDM5GidQrNLUjxJqJmC3OqxKNtVQbFAnkrzVbrIjrnSwSbYsyHHJKeTVM5S7kxQV2uc544nz4tRCk4xlSwQCKiUpleiWMsYAqdY7JBi7dAi1skXstQt0N0FebwGOZRIpQ8hWt6HySoedwndWFpUaajLfSWGtzrbiHkGLRZJr3ZCUZDgqO9UfZHezm/JUtnZAwz5FBTAxwNr2DWaCVAg4y1wKbqTpSYR3lAo32Hzvh8GtJtFAPN5MKthKwqvdMHuFx6hEpHHK8Uo3U6RzZiI0p1MMOMJpvZOBSkS+TJ6I+wI7WJiUgTbl5imVThhc37uN2ucHc1RcMIsHJmlA3lcZqkKLPJNiLVCno8QNQscE56hl1hlaoUJ68KlGiaskhSUrKkQw1eVstzR7iJKjUsu4rtODjMo2YqiHiBYkuVlkfXczw1gIiEkQoLJKNTmF50Sd6nfhLi8/medmr1KuMP7KE8OsrC7HFce5pvDv+EqAohz8EWZeZkgVqUEdkQngJCE7iKQYou6q7HpF0EW0JybIRkg+TgyvBo60rMUJQVs8fpKMxiG0GKbVFmu/rJJ5JoOIRdGxdBSRWUqKCUI0RyZTqqNn3pw3j1OpatUbLi2NUUWjHCdCjBcCaAq2TxvAZ1N41ZDXFOpUCTlGdrupuK6xF2DBI1hWZzjqbiNGVHR5UgqeQYCins7gpxPJigqX2C8aqKEckR16dwJJtJO4YtFCI1kFFYkFs5GDoHwwoTKgmqZglLqIyFutEiZUJCI+459FXHaWlMYikWmmcSteqYqscdLVdRUCM8FOrmwvwOxFwGq9yGZqQQsUmGEyGmRBjZbLByYgxtthU3odElZgnpDR5N9NJjLnBpdYijTTF2ZtoI6JN0l8rsioQ4FJWpucuZmO9iVM2wf003UlCh3yvynOkiTVVBqd5MXddpNlSKOBwWCcqVBGHTJdj8EOZ8O6IeICVccnoHZdFPzJNRJYURSSaXW04tMorc/ACP2jbPjudY7dzOTvlqhtU0Q/YakDXSjQYvHHfIWhI1u8hEIUw208yOps1c4u1gLBZlb2ItiuQSFnXOtfazTDmGnQjhqoL5SBfTHb2svG0Kw/GoROPUdY3+6WNcOnE/SspkrOqRnffIpmQc2WCkJcSO/rVY2iaOGx4v2LEfRVZYvv5SXn/1xfxs1whFz2TlletprpjUv/MzqlNjNMWa+JPmELPDw6TnplFbk8itLbR2rqJx8D5IquxyA0wHm3ATSQINcO01JEOPcPEVRZTSZu4vPYpqzvGcjElPx1q2Vm8EI8Y53f/IzMIhAl6YpmiG57UtY2PPFZzT3LQk73U/CfH5fEvCsyxK07NMT0zwyLEHGBp7hFA+zzKvhKJrEHUgGEAEg6jRABElwoyRYMaIk1Nj2Dg4mTrBYJnm7ALtFY82pZO6KqGg4GFQV6sERB3VbRBIVdnfsZ6804okFA61LWO8NY3U5NEwwsiSjuIplITKlGRgSw667JF2CzxbPExUhGmEDIxIjYYS4UDlYgqiRjx/hGBtmvS8RngUzFiZsC4x1dSBHAlxfyRCUW4jr6qUVAWjMcGzFlrpcSqEHZmA8JiXyhwSEwQLE6Tk1Sx0N7En0s8meQ+mkFhodFNyK9RqEdS6QtYxMKpxHm1diWIGWF2y2XJ0mLnS3ezoaCarZsjo59CnRGl3C4zJGrud9YyJGJ58nMtmd5NJl1kn3ckDieso08G9chsd7hQhr4brVpkxu5gpRxBFl7aJBURFJRlSeaQWZn/M43z3AJfNbieuZJlpczGDITY0TOJ1GcMyseQ+7pcu4Zfe+eSiYYLhHIl6iZQruDiYoyVQQao3Ew+FScseAS2PGVVYHXJwQym+6rXTp2RplyZQZlsxhIRrh6jUWxjXPabi82TsZlKWRF+kzkimQiAc5mC1Cu44GveStS5DczUMWWXdeJ1CYQG5kqdNtXm0J0Q2nmJWTnMw1IlKBFtSaVdmeAM7SIchJG3moNrNWCSEW5slqMLYFRfSPTZPSjJpmzpIY36ccIuEYgqSIxZeyUE2UrBhgJlkN2UtiuNmiXsmna94Na3pGBvO6+DYXAVX1knGo4R0lVBKZcOFlzCWrXHNujb6ogrihz9E3bcPr6uLFS/6IxKJBLnznk197z6uEoK1qQG2z1YhJBENbmBjeg5Nr/Mn/bOEhwrUq2NcvebP0N1esvdXuUdJsmd8FjekE3N0ztUD/MmmTsLG0qUCfhLi8/l+5xpmg9zUEPvuuI3RR0dQCyau5VDTbOSAQ9zI0pXwyC3vZ2d4MxG3Qdi1yWoJ5rQUltDAU/E8Cdt0US2VkFLCCoZxOhIMJ9ZxCImA1yAdnMZSVPIiw6xXp8U8wvpAgaPGuThejHB1nuhIg/m2DMTDWMEQmvBIF+u0jpeZthQaIYegaxGSJFbrQ3RFXOSIiYlHpW6xUOshkSsTzx0g0JjCkB0iThuOazNZNxC6TX/+CGPtKynH25AkGdsNUpbnKZZl9lUOolUXaImVcA2L+7QaNRSWBWya60PsK7chBWXm3HU0FRQS+ToeFWynhi3qhEWUkZZ12KpArc6wcbSCqhmYXd0UAkdJ1hzWeANIQY9ftquEqkX6Fg6RVKPkM224kytpGXqUlfkZ6itm2Z5cR1YLMtPRTKCcRTUr2JKBZAmM8jxRc4FqIMqwa6CKefolDbmh0eyWGFIyDBeitMrTxOseumGipVzWuEcplxPMNNoIuS4qKeI0WNM4xvKp7Yw4TZQNl5SSpD+RIJTpQUrn6S9HiYb7eP7FfezYr1AbfZRSvcF0ySUtNOSIzGwii6x4GKbFhliAcirMQHo9TlhluJDAthUM1WVN9RhKJY3UEFQUl1hTmrUDQaygxHFZxq1PM5ToAKMTTQ6StEa4yj5AW6qHtpYXIDevJhhII5dqxBa2cmBiJ8syhwl0rqBT7mK1vZnKnu9QkXKImkmyKOEEMgxtuJC1Fz+PHqtOdmqYQGE/6/sHef7lqxbfExOFOgCdif++NPaF69qpWQ6JkA5A38tfTm7HDuq1GrOzs8TjcYaODwPQ3d3Nhu52GqEFemNBLm+OUy4Wyee3US3t4OK0y9GcRSy6CkOPsqK5ifp8lgcRSBK8dVUL5/f3o6tL+xNyfhLi8/meUlajwYM79rJ/NsfB+QXUYpUrjpaBAMXW40R75xBuABeJuDJDkDxHQoMcTZyLLMnInsKCiOE5Edy6StUpUVYa1MwgmbJD2syRsUss8wyC7fuZCCYZkfqYV9O4wSozIkAYgzDQgYNt9POo149nakRFmYsae1ESBhXRYKGaIJ3PUM914loWFc8kpdqESicmeerlKaoNlXwmSLDdwlELOEUIjh1D1GYIWWXi7jxqt0696uFVl5ER7cy4YBf30V5dwAo6YCTpLR3h4fZOCvkZUsUxirqDqkr0x3P0aw7HVIcpYbIQVVAKY9S8HiwvSUNXKMVS9I1OUdGiZFujTMdacTSdUH6BdUf3ITUEdtcKRLCdgVqV9vBqQi7kvQnC5Qli5XmSlFgTn8a1S4RaTdTjLl4pTsdomZy5l6FkJwU9jEEBVfXAMQiU52mtz9JIl5mJTpLWS2wJ9rE5IOONNzGlnUvFLDC4MEd50qHRW8STXYRsILxmVjaW0+Qd5xe1LvJaJy/fMID9yBG2WYMIAcnmZlKZDOm+XqLRKHGpk7k9s+iqoHhkjlqtTqK+goG2FC0pj+m5hzm3x+b8zjr3zo2THJNoKM0QsrhM+j+EWyLcMvw9ApEg6xKXMn58gnFhYUYk1rS2s6arH70jgtEf522axExhiBtGHmHeLtIfmCdSnESXe8h2/jnp1iQT+TrtumBLMsIh83Jm3QoR5RhrmhYIqzkUWUNp7kCemKNsxxC7Koxn4ijnXsa0EaHJiHBBapSxqkvFjNGwXQKaAsBE/kQS0pH87yREV2V0VV98rCgKgytWsHv3bqanp5mbm8N1XTRNo6enB03TeM1g22J8PL4e287hOGUcx8J1FBQlhCTLrLz0ClLHjxHetw9F17movwdliRMQ8JMQn8/3FClZNrfctpV7R+cwSaBKKqpIYIcT7O0tsK52iGhrlrzsYSsWulAIODILIsGx8CVgRTHqGrWiTpQK1UCBbGgH6cYkq4sQrbfj2iHwIkjArFBw53tJN+1jjTeGcFXqxRBFL0ys3M1ypcSj8SD7QwlMzyCcd9lUP0SyNUY9ECQlz6HNx0hN9WCJOseDRQIRD8/UCBc1RG4BWZ7DVWNMmH2UxpupBY6zzNyHpuYJBhMoRgulaIlHo12Mx7u5sNhJ3FNo80wsPYMwZ2jYNeqSQVUEaBk9StIzCUohgkkDI6JhqHleKJq4z6pwUMox5wax9TqZmRKy2oKdTlBJaYyoTVhKDDMl4UpZhDbHYHaCHqvI4WiIqG4TaaRYYVxGPBLEdevM5KoYuXZstYdodJpoTCWhlFGSdUrZIIVqC825IC90HdzcVgpOhQNahtlwG032IUwVas0KY+1N6Go7l9UVwvYk5YPzhMMayy9fT3Y0g300i+fpZLNr0GIRhGdRrA2wPLGJgbnvMFZRqYR1siMFhJYiGNGJpDt43iWbWTPYD0A+n2fPnj2oMcjOLmBUK4RliageIt4SZ67qYlTS2GaFTLaN80o1ZrQ4IuXRFEyRsRKMPLqPlUov7T0rSRbTmJE6aquJHFBYvWED0WgUOXDitCcDnelB/sI6wlx5nBZDY0rtYvv0CvZOVdk9XiFXtZAkiAY0SnUbuJD+zErS4aNYVhbhOehGmtZz/oy+wCC3qLeAEmCiMUM6muGa5hTbqlnmNBnJi3Lb/hn+aH07puORrZgAdCTOfpOwRCJBR0cHk5OTuK6LJEkMDAygadppsbJs0Nz8PABs22b37psXn5MkidaB5Vzb248QHop6+vpLwU9CfD7fkyKEYK7eYLhS58DkYaZLIxxfmKOcCyJXQ0SVBFEPluXnCLguD7Yl2dsqSEizdHkWQ57LeNni/Kkodq2DY/2bcWPdBFDAnEerGuScGDnpFizHpGANkmxUqSouyCWUWp16I0Jei6AWmvCcNWS0SXSvgpQvU6tkmBrI01zo4aKsihzxyAYluhkiqWykWMsTC4wy33gWnhzAMMp4hUM02y7FajdBUyexMEmVOcpynOG2GFpKYDQKqI0wFelcLuiZ4EjFYNhs51hqGeWuXpJSjnBexnMkjH5Y0b6a6h06B0dmscwik66N7LrIik5vejWrNq4gWM5hzwwysKpGf8bhAwdKdIxZhIMw19WF1IiT0XXMdJpGTEVueLTKEmFrlIb8C/S2MgU5ymy1xrxzkNWh1aSC7SQ6dWIXr6fX7uT4zoeRZJl1l/81IVFAssqg6OhXJKj84G6U6QlCQUG4fR358hDLJ6r0eMc51tlC3YvgdG2kLWKzKWEzqE2R++kETl5CNOlU03NIw+MEEg4Cnd7uDtxgJ2OZ9eQmaxwoOzTJq3lWaBdN3TDjhCEq0btpM/Nlh/zsJGZPB4qicPjwYQDcoERDcXAqVQwkoq0xjM4osYJJtdSJWdmPHlCQ51pol1S6L91EtxelfHSW0tQ0WipEvJgAD5b1DDAcnEfTNOKZBNKvfmX21/W2XkNPi4UsGyTrNg9NDzNXOpEg6KqM5XiU6jaqLDHYGmXL4AAB7Tw8z8FxiqhqDFk+cUL/02ev47uHvkvYHGcQnR7jQu50agy2RFHLcY7PV9k9XiAe1BACUmH9Cc3HWLZsGa2traiqimEYKIryG79/ZUUBfvP1n2rPiCTks5/9LB/96EeZnp5m9erVfPKTn2TLli2Pu97999/P5Zdfzpo1a9izZ8/vvqI+3/9WnsdsvsIvf3mQ7ZPT5DBRQjXkYB1Hc/AkiXDCJNjQaStMsLw4z5R3gFnFpto4FzMd4lGpByUvcf5whqC7naKwKGQuYDbZj2S6rJ0ZolHvoSYbHI/tAlVGtxMYtbU8pMzRLU0ybckcV2UMRSNRKdFmh+iZChBX2tDUw8wR4b71DapGjRBdaG47l9ujeOZBZrRzmNQ7qMkZdikJlknN6LKgO2KTr9dQKxE0qYJcnsOVTVTVIJLp5Y8TKxnKjHGkMYTpeDiizN3RALLqkamHeO66Z7HpWQMM7Z5jUpsjlNI577LlqIpKvm0twZ//gnt3HcORDdIhOK+llQvf/BKMRBRrZITiT3+GnQ+SetHruLj4KeJimEwkzQUbV/LgQoq67TGHx5guWOso9B+vo0fauV+COTTyAw7GgkRzOUCwxSK8qogU0Ui0vQhVjdDS243neSiqCjQvNmm6RTB7+bOp5uoEmnVKdZidm0bJ/xxUGfv8F9M2McaFGzbQ0dFMOmST3XcrUmUMVxGU0v1YQzkqo3MkUykGLljJmgtfgxYIYAqFb90/wpGDWSbU5VzZW2JNk4CmAWhdi4i2sXPnTsrlMocPH8Z1Xer1OoFAgGXLlnGwsY9gAYxIgMSGNvS2CInJCoWZDMn2K0i1WEwP3Y3nlkl5LomuZobvewC35pCJppE9BSWqE9rUzEa986wvbUmSkCQDgHhQoyMZZDJfpylq8OKNHbieYKFi0pEILg6lAMiyiq6nTynLUAye0/Mcbjp2ExOlQ0yUT2y7LZpiTXs7dx2a454j86TDJ4ZcHq8X5L+3JROLxZ5Q7DPN0z4J+e53v8tb3vIWPvvZz3LJJZfw+c9/nuc///kcOHCA7u7ux1yvWCzyf//v/+XKK69kdnZpfh3Q53umsl2PY+OT7Lt3D7kjQ8yEQ2QjaTwUPNUlFM2SFHl0p4Ju1Qk7Fmm3iGcHKFebmFSmmI/oLAQ6aZJHWVC7yUkhfqlfSl+rzcCCwfHUMNMtq1BdiZZ8lV2mTkqxEIFRlMA0K0yHS0sRRsQ2JnUXW5i0zxc5lh6kFLZpa+RZnp+jyQrjBFVaL1yGuiGOPXEIw5VYHu1hXbUdmSaM4Pn0UORAsMa2c+IYTavwqjrPJUSrPIxz3Obg2BRRL8FUPkS9UiKc6mIwPYjTbrCivY+e+vm0dCQZOXI3h2f20RwSrBjYArbK/nsnseoO8WCMNed1oionPlqTre1c/ZevpGfdbor5Epu2XIAe/O8Tj9bdjRwK4dVqNPbu5bwxlXZ6WHX5K4l092Eez/LAUJY1sSDvXN+OKNscrs0AUS53/p6j3kPMK8dId5W5snM1gYCOHgiSyVyJqkYAkGQZRT597F+SJNqXJzi63SS74AAwkGpiKhHGkD3W3nsb6yMBotvmiV79PETeRttZJNnaw4xwsMNdWLkirlunb/UVnHPBc1G1E/umAX92YTfftFx0VWHwijfBr80/kDjx7X737t1ks9nF+qxYsYJUKkV+4MTwQ/eqPoyWEyffeHMIgEYFSmqUVPsqSgsHmD62n9LCNI1wAxWdltZ+1IRBaEMTkvbkv/E/d2ULxxcqrOmIY6gn1o8Hn/jQRXuknZZQC7O1WR6eeRiAdDDN+s44uarJI+NFFioWcOp8kD9UkhBCLHUlzuaCCy5g06ZN/Od//ufispUrV/LiF7+YD33oQ4+53ste9jKWL1+OoijcdNNNT6onpFQqEY/HKRaLT1n2ads2N998My94wQvOOJbnW1p/6O3jeR7F3Q+x8OB9VCuzHDFLWOEoR1PNTCrtuPUYuqeSqRVpCzxEqzeGDRSLCax8grhSQ102iqVA5UgPJTPNVFM7qlxjdXo3c2qMg6ykQpyQCBKxdRTNRsgqsbKNnZujEDBwpSrF4BBNdZvVTop4aI5w3SXvBJiKFIiEFWanZEqxMr3ROG3yBkplFVrbkS64hNnqECPTW2n2Erxm4kq0hktYQDCiEVou8Mxb+ao2QL3zQi5KRrk0HoYHPwtmGWfZ88iLJAKJuekFmjo6mM3Oks3lgBMnyYsvvhhNkig/sotARzduNM3B+6dxLBeAjhVJOgaTT+rYV+69l/qeR0CSQAj0nm7if/RHv2oXwUS+TlsigKacOInXyxauI1BUCS0gMzo2SjgsEGIvqhollboYRQk9oW0LIdh/zyS1kkUkFWD5uS3c9d3vUR8doUnXWJFO4NUbp6yjNmXQn/sccrPT5KanODg8yh//31ej6/oZyxcCZPn0YRCAo0ePMj8/T3NzM+3t7YRCocX1TNMkEAicEr/37gnq5RMncFmV0LRhqvlp4ESy1bN2A23LzjnxK/dnGHr5fdm/sJ9fTvxy8fHmls1c0HYBAHsnitx1eA6Av7ikl2jgd/N5s5SfaU/mHPq07gmxLIudO3fyjne845TlV111FQ888MBjrvflL3+ZoaEhvvGNb/D+97//cbdjmiamaS4+Lv3qFyBt28a27d+w9qc6Wc5TVZ7vqfWH1j5ezaY0MseRg9somcepHB7BrXk4cprqMpeRri5m9RRC8hAiT5N0lESxQEIbISpqlGyZUqWTqOxiRLM4jU7mPRs1WMLuqTJT2IBrGHTHhqhgIOoBlluTpIP7GJL7yYZ6CCg6fVKDSCZNNVSn3bTZFzxMRylOu9SKpQOdK6jMy9QWxtiYXM/5z7oaJaLx/ZGbAImu0gocV2Kmo595z6NYHac9HOO6rvNI9Xfgmi7NfVEkVUaWBPKDt/ES+xhT2lpWhzPYc4eQ6wXQgojmc0jIv+rBaGsHIJKMUti5E9u2CYfDSJKEAwTXbwJOfID2bUhxdMc8gbBKpjv8pF9DysAA7q5di4/1c889pYy2mAaei+2dSHTUgIT6qx9dE4hf6xHuOdG2HnjeE69D36Y0lbxJoiUEssfai89nVJZYfu5Got1dVO+8C3PoGHIwiL5sGcHNm5FDIVpjcdK9A4xUGou/sfNYXPfMy3t7e+nt7V18/Ov7rSjKaccyktapFBsoisTA5maMUBNjj+7GCEdo7htADwZxXOcJ7/vvSk+kB0lION6JusTV+OK+nNMSojnSjuV6BJTf3WfOUn6mPZltPq2TkIWFBVzXpaXl1PvZt7S0MDMzc8Z1jh49yjve8Q7uvfdeVPWJ7d6HPvQh3vve9562/Pbbb1/MzJ8qW7dufUrL8z21/je3jz07hJgfQfVqWGqDfDmBR4CwE0QTrczFM4z2Qz6i4wmJRkMjZo+yTtpFh+mRD2o4QrBAinl7gLhuUtGgrqjMlsL0lpYTDu7BjoMcOY4uFCS7gOtqlKaXs6XtYWyjQLDsUrUnqKmd6FUFOZenPRpFNoLYlW5KchnXsQmJBJUjDgKQlQwzNfj5bb8gmUwyzQy5Ro5CvUC72k6yWqUga1iNXaieyfG5JrLyiW5+jv/3MWgrFInVxzAnG9waX09n7gHC5gy58CDz+dvPeNxM06RQKBCNRh9zaFd4gA3Dt/0GDSME8elp1EoFs6WVyvbtv0EhT7FokNnDh+DwIRACuakJLxiEchnuvvu08N/X+8ZzwMwpaFGP6W37/vuJ+RyMjP1e6vBE5a08M+6J81R6LM1h+fCS1GMpPtNqtdoTjn1aJyEn/c8MWwhxxqzbdV1e8YpX8N73vpfBwcEnXP473/lO3va2ty0+LpVKdHV1cdVVVz2lwzFbt27luc997h9kd//T3f/G9jHrdSq5McZGdjHx6FYUy4KUh1BdVGA21c+EvYyo5SJ5EnOZEESK1CUbqThGf2Eny6smmVGd6dYyZrAdiyQzRje2FiaXUClpOkVbR9JcSrZK0ttMi3yUuJwl6FUxPY/p8Y2slxdwNQfFa6KvrZ+ejecxNxehVCphmibxeBwhBG1uG3XqrOpfgzmjMTUxT6myQKlSYvX53ZRKJRRF4bzweTw49SByQua5G55LW1sbk5VJtOPHCapBXrrypcjSGe6BkB1E3v8D0CN46y5E3rEPiOKd91oIPrlhlKeSvX495sGDhC66CDkSWbJ6PFn/G983T5W15bX8fPjnqLLKn6z+kzO/Hn+HlrJtTo4mPBFP6yQkk8mgKMppvR5zc3On9Y4AlMtlduzYwe7du3nzm98MnBjrFkKgqiq33347z372s09bzzAMDMM4bbmmaU954/0uyvQ9dZ7J7WPWSsxN7OXw6C4Kw9vQzVGEEcAWOpIRgKCMB1hekEej/SyoceRckVnLoxrQiRhzNDvjiNoIwVKJNssmOdpgWpOYqLcRmTcwkiprtCMMKX1IcgiheGS0BYx8nLyRIF9vw3F1VkZ+SULPE3ISXNaexknXkQLthIKd9K0dJJO+nN5ehePHjzM1NcXJqWmZTIaVK1eeeD/2Q1+lmYXJEjv23s+6des4dOgQuVwOvaQjCYmyVKYYKNKtdTNVm0JRFPqSfRj66e9nAJqWgx4Ep46y679AliHVhxJrPnP874nW10eor29J6/DbeCa/b35X+pJ9XGxfTFSPPvbr8fdgKdrmyWzvaZ2E6LrO5s2b2bp1K9ddd93i8q1bt/KiF73otPhYLMbevXtPWfbZz36WO++8k+9///v0PYPf5D7fmVhmjaOH7+PORx5mXGQpB6KU9BCieS0D9W7OqY2juw6OFcCqxzikJbm7pYmQ7tDVKLHSHGK02kunXaFfPoAQBbx8iKBmMi+p3NsXoSmr4dZbmTNCXCyPEpYq6K6HQzMpz0aPVJCXryZVegTsDDORJJWZLiSzymAwQuriGoVsA6seZ/XGPyWa6Fis/+DgIAMDA9TrdVzXPXEzqV+7kiMY0WntjyMfOnGZ4po1a5iYmMCyLERZcMQ6woMzDxIPxDlePDHu0hPteewDpqjQexmM3AvOr+aBdZz7O2kb3x82SZLY3LJ5qavxtPe0TkIA3va2t/HKV76Sc889l4suuogbbriBsbExXv/61wMnhlImJyf52te+tvgh9euam5sJBAKnLff5nkkq9Qo7d9zN8flxRnOTOEgoikpFkVmQA1ihEIasYQuo2wqalWDE7mPY20jEtFGFx1QsQtHQsRST+Owka0uHiUZM+pNZXNnFVFTMiU4CsxZSWwoSzawqTGJaQSakJAQiuN3rmGuSKSRLUC6gl2qk1T7ywRg5uwa1A2glnYSTYr29hXjHDCgy6bYU6fQVRCIdp+2boihEnuAQhKIo9PScSDKWiWU4Qw5TlSl+dvxnAMiSTFes6+yFdJ0HnedCPQ+uDdHTe1V9Pt/vx9M+CXnpS19KNpvlfe97H9PT06xZs4abb7558YNoenqasbGn14Qkn++3ZdsNxsbu5cCRX7Jr/AiakmIoOYiLipxqASEhECcmbQowPIdItgLZGdbmdZrVzRzIGIyoWfJKmflEKyEpTqgRoH+izNodR6gHE+QuCdMsFRGyw0QgjXIsSJoGSinM5rDMvBxlNNaMLsVJBmUyfV3okSAz6RnCLGPT+DJCBJFaohxvOc7B6peQyhIX1VeRUg2k/ouwYxFisQ0oSuBx9/vJkCSJZ3c/mx8e+SGOcGgJtXBO6hwM5Ql0fUsShFJPaX18Pt+T97RPQgDe+MY38sY3vvGMz33lK18567rXX389119//VNfKZ/vdyCfn2PXQz9mYvgRCrkCCwGHTEZlb3Q5niSh2w0SZp1gzcZpCCJmjCZXJVNWENU4VSlESmRQGwqh/CFa3KMc7VxNew2ciMzg8CzG7DiO4zIcbyc91wHpQ1iJMkF1Cy1t7YTlO9HVImapiBIOUWpbTapusqK9jdXr1hGPxxevGmuoBczhItLRGusv3sT6K86h8ot9eFYWoxv0rmefmHfxOxLTY7xq9auApb0vhM/n+808I5IQn+9/O6dm8fADt3Jwxx0Is0y9ZCM5Jsv6auwIXUHQ1WnKztIycQcLjoRwAmjmcuoRWIh4aEYvhogTdgQhJ45Hg0S+SEPoJIfGibqzxByJsivhqDqzsRA9bR5t5RnGzXOYiHXQNZumpzVM5/oXM/vw17AtBXtwLWLOIqQq9K5eS1tb2yn1Nvpi2LNVvJpDfX8WOajiBdqQE51oF3fAY9yk6qnkJx8+3zOXn4T4fEtodmgfB279GUMz81QrNkKAMA2iYoJQe5bR2OV4dgh9WpCc2E/FaqZuB6kE2nEjveQjZY6kHsZQc7xg7lzWZCvsiRcxSmUiooQsK4T1CN3FKjN6GVUOYcXCpFvCUFZxPINYLMuCWI+ISVzbHmH1xiShUZUD0zKzcy66pEBTC73dp0/4lBSZ4Mo01Z2z2HP/fW8Aoy+OpPjJgc/nOzs/CfH5lkCtVuPAQ/dx5LabqEZqOJqHlhAE5RIBowKaSz2YZiy4HAoZ2obuJad0UV3wGG4ZIKN1YQiTZraxesZiMtHJoUiQGVlCcfP0ZQ/QwKLR2kbG6GOkvUa7t41CsJuCvZIO6xi2HiTa2iDFLHu9Cmoqg7Q2iTJ9Dz2dCR4s61hKAF2SkQbXkNbO/HGhpgKENjRhz1Rx8yZyUEVrf+bc68Ln8y0dPwnx+X6PJvM1hkenefRnXyYaOIjoNgkAkgDFMRF6FUEUy25jJxeQbSyjvVogUihTkVPs61tHWAmRsBzas4dJT+SIagM0zbncPQhlVWX16BxhW8KIVRDxFo6qadoSKkq6h2ijwrLxcVQ1TalNQXTqrLFNXuHNsq1ngIfKeVbNHqCKoLLp2TA0gda7jEQ8jnaWoRWtKYTW9NTeXdjn8/3v5ychPt/vkOe5FGam2XPoUW4dPkR90iVgVhlsfhRPcyjISYbEclYUHiCVGaXZ1tie28jh2sU4Pa0IT6VSrlMzdYKqSae5QIfRRawyRfN8gYDZTi7RTtQyWTF8P9G6SU+hhuJJHGp7NrnUuQhPY1nzKoQwkJ2D9KWqhFvS3Lf6QgqVWYqzd7IlPs3hoIK+sI/ZepWinqDSsYpI91pqnkeT7n9U+Hy+p57/yeLz/Y4Iz2P/L+9k5/gu7pvNESrFSVKhq/UAhmxSqcfYJW9G1fNMNvdzXn6auWo7jyidlDvjtCqCdKPBqGJzoG2QvsoUK6o1QuUpVNvFCZhIaoRAY5yi7LJ8IU8lFOZoSxOl+AZKmTUEVZUrlqWJ2xKOeT6kz6cR0hh8Vicrq3W2zoUYmdJotao8p36Ioex+JhoWY6lBkCRCinwiCfHvhunz+X4H/CTE5/sdefTBHfxixw5mKh4RL06aGsta9iLJFRxL5Yi1iqamIpJhUpfa+Jn+YubdNIVEE0m1RsQO8P+3999hdl31of//XruePnOm99GMmq1i2Za7DSQONjh0kuCQ301IAveGa+DGMTf3gUvyYLh5Yr4JEOBHTCC/BC75JtgJoSU2MXKMbQm5ypZVrV5Gmt5OL7us3x9HGmssF9nWFEmf1/Mc65x9dllrLx3vjz5r7bWXjZfIBHHizS2koj1Y5SxhuUopVkVddg2dLgRHD2KPTTNCkrHlK/Euvpo0DldVLSxDcd2aFgzT4PnHhtChpmVJCmUo1iSiPD7tcKRhDX2ZZ+kffoxMuchEAI9H++hWBurE01olEyKEmAvyfxYhziKtNdnJEj/98b0cOvw8FmVaADdWpDN5lEBVCTyT/dMXUexM4DuaznKeB80r8WJRIq7PUj9DWxhy8USWg0bAlbkYpu1gGh6WWc9g8zgqanLdDb1csnw9G//6m3iROM/2X4bb1csHljRzWU+a/HiZStEn1RRFKcXyK1rJjJVoWZIEwFSKq+oSPOhdwWO2y9qxJ8h4AVsjPRwJLK5yLY5Vao/kbpIgRAgxB+T/LEKcJUPHhvnZT59kMvMLmqx9LG+soIICDhUCyyEINToL+6fWMLDiEkYjNmpEk5tsJ5o0CBp92gslrhjOkkh2MpQsMRwcpCGTgkqcklXBi2eJpT3CyEE6dtZR2D/KJckYZl2K9/76WzBdF/PEANL61tkDRetbY6ctW5uI8sR0ngONlzAU66Bxej97Iyuos0wmvIBAaxxlUG+Z83YehRAXDglChHiDisUSD/zbRvbv30FT/VN02XmsIEPMm8L2LSacDsolk1zR4ZCxgtGLLqZiOsRGq8SmS0xWkzSOFFk2UeXigUfo6L6GnG2TtTUtGRipH8UJXFytMVoKOFc20burBTtbxqeMEYuSete7sKKvfVp0y1Dc2Jji0akcXYkeLu5bwRWh5sej0+SDAKhlQWRCMCHEXJAgRIjXyfM8Dmzdys9+tg2nspvehn1YVQ+7OEpqLGCPfRWuvYpqzufppgTj6QhOJIppeEwWp3hLuJ3eRMCe4hXEQ4f+EFa1drM/HSXZkWKZsgnCAvuCERxTs/JiuObqD9IUb0G1j5P58Y9QtkPdu9+NlU6/7nqsiEdYEZ8dwHy4q4nHpwvsK5ZZlYi+0VMlhBAvSYIQIc5QGIQMHpzg4IGH2HXw+1TGuihOddNsHqG+ax8EJazxHF42ycbklfQHvYwZPts72gisCLZdojk3yBPZFlqDgEs6bJKFXuqSo5iVLuqNgIzbgRWLYl/Uwu9d2cXoMZedO6dobnNYfclvYJonAoKuTtK/9VsYrosRO/vzc9TbFm9vruPt1J31fQshxEkShAhxBg7vPMSWx/5fSsFjFAfa8LK1B8rF3UFi3XsJqhOU8zGG/DZwltIZLmVnU4ID9QqURauvuXngIJsqVVqCBN2xNIfsX+XytV2oX2yk0fZwq3keaozA8hS/ua4VwzBo7V5JstHGddteCEBOeCPZDyGEWAwkCBHiFeSy0/z8B9+mWv1PMplGgrFrqWhFySqRTA6TbD5C6IRM6haOGxdTl+zFMxt4urGekAy+LtKcy/Fro0Vs32GLV8/SeIW3Dj1FOF3HoLcO6pqwJo+xP+GScwKuuHg5HZHa4+iVUsTjSxf4LAghxNyQIESIF8lPl9i38wgDRx9horCB0LfJTy3HmEoTU3EazBD6tpFOHKNqmowUGgin1tBjL+GZ9BJGoi7TdpXOySxXD+zksuwOEk4zh4y3ckmoqD+yicaGJIPVMtUdz1HpvJp9bhfHk+O49U28paN1oU+BEELMCwlChDgh9ODZjcfYt3sHxdIT2I278G2NYfnUNxzCiU4TG+sm2TlGnW0wHaQ4OJ2E8VWMJxrZ29jEuOEx7nqkp6dIZ6bxIrW7WrY47UQqMZZUpmhr6WWy2SbQUQ5ST0+1Ss6yyDc28fYVK0jI7bBCiAuEBCHighdWq0w++FOeP7SX+0rHWJo4QFdiKzkzQqGSxM6aNBpTpM0i0Z5BksYkfpjAGbyJ+kwdu9Mxnk9HyAUeDflprt57GLdYYrSlmX2tyxiuv4SJiQh9xSqXxupoWnstsSua2HvkOE1PTmFWfBrDad579Q00L5OuFyHEhUOCEHHB0mFIZuP3eeqffsim/k6GuzowVZlDVgoriBLkbHIHu4gPlGipu5jsigArup3j5iTu6DoGy53sanMYdR3y1TL9QwPcOPg82XhI1mhgjBjjiR6ybd2Y5iCThVEG3OV01TWSmHSJWO1EWiOQybHiXdfR3Ne80KdECCHmlQQh4oIUaM1z3/5Djuzax+OXX0IhGcNUHvHpCoOByzP6V7hh/zZWHN/NoO7Bb7iYxukpRooHKWmb+0lhxwYp283YhQneumcLK3yNqo5TTnVTrG8jdFMsrWukrTFOKl/iYKKZfW1N1B2v4B8ukgxDookIl/3KMuq6Ugt9SoQQYt5JECIuOLvzJZ75yd2MHZti37rL8WyFsnx6jh8jOxVSalqGbyUYi6VZwX5WdVk0qSMU9SSHA5+N/jocu0IlGidRmeTqgztwkhbPt9UTZhpprW/BXXY1F9nwkbdfTn5ogH378vSlHHY1JnjOrrJkfw4LxdLuelKdyYU+JUIIsSAkCBEXlI1TWe75jx9RmJ7GWtaLNhWWOU7jgSiZbA9FO0Nd1mOgwWVz2yq6/UGusppJqQLafoKKEaWr8RBH7BU4nsGagQPEEwmmbvgVksc3E8Ytqmvewq8sXcLazjps0+DI8QEAVnd2sKS5jp3REp0NKZbkfJJL0zIluhDigiVBiLggBFrzt7sP8+iTjxKp7seuC6kPJkhnhykfd7FKHYS6gF0JMY0CXlKjjChH7fUsLUUommOMtuaojwQ8afVR8aO0Zaex+/qY7FxC08X9NI38DNMwufGqZRzbvYvn92dYesXVTA8PAdDQ2U1PIsrFMg26EEIAEoSI85zWmtLUNN974mG2Du8ibRdoDY7QlT1IYgLGBy4mH+skZkUoBRUyfpVcogkdRklGffymdtTRCUa8caq5Xp6MXIKv4zSWilxTbzOZbiZ+2ZXcnBxkT72LX4zy/C82UsxMAbD9Px8gDHzcWIJ4vcxwKoQQp5IgRJyXdBhSfOYZRp59kn+pDDKQgogZcHF+E0EwiTfYQm5oDUYsieO24GiTrrCRgcaVxFIprqvm2ZZMUaw3sXPH0IHP9v7347lx3MwY60v76exs5T1vfxvx+gbGRp4g2ZIgdywxE4BYjotfrQDQ2NUt3S5CCPEiEoSI806QyZDdsIGfP7OZp22Lqf4IhhnQUXyWB4MEzUeb6B9fSYOdZjBp0YZNPIwwbpoYVoz2qqajGDAW1UwnPTb1d5KLryTjJknFk6w9vpe0E5Ds8CiUH6IwoiiXjpNqjVMeqT3wrbV/OR0rL2bHzzfglUs0dfcu8FkRQojFR4IQcV4JMhkG/+5veeLoXjZGmpnobsBOlOnN7eexYgNUPOrzbeQiLgPJOpJ2ERUocpUo9ziTrGxsoimoEvErLEtGeSRtUIh2EXPjOLlpVux8klipTH1LN409UcrlwdqBlaKp9Uqia9NUi0X6Ll2PYZpcetOvUi7mSTQ0LuyJEUKIRUiCEHHe8A89w/A3vsa/VVt5tHsdvu0QjWXpLR2jUjZY4pvU5RIk7DqKVoS8U6A5jBHxYxwMqqQokE+GtAQ+b7/sEpLrV+NsfY6JQpHWpjrcyQFGCjmUgtXXvoe2vm5yuZ2AIpm8GMtK0viiWMOORLAjkQU5H0IIsdhJECLOeX61wuFffI/n/vmf2OP0s7O3i8CyaFSTLC/tJlEp8JjfgHJsmqppLG0QGg7x6BS92WZilRjl8CBN0ThdymOpEVJ3+cUYjs3VPV3s3r0bZ3oCUvUoBYl0Ax3LV2AYJun01QtdfSGEOGdJECLOab7n8fAPvsSTA4+D1cjWJf240QYuGS+wNL0T7RcZHa8joUuUEg2UwyiTEQdjqceN2QJ1vkkhLNPQkibb6KIUrGxKY7guAC0tLRw8eJBKpQKGSdu6K1l/5ZUYhjxkTggh3igJQsQ5bd8zD7Bh/AmiUwb7e9cSt1tpzpVo98Zx3BBTR+ifXkOrzlIYLDJiFtHpJM2jbRjVFSi/SqM7za/++o38fw8eI9VQz2VrVszs3zAMOjs7OXjwIEopLlm/nrq03GorhBBngwQh4pxVKRb492f/lULVJjTbSNmdmIFB7+QUucYx4s40fiVNzEnSUooSUWV6KYNKU/TjVJRJMeKxbGWaRxL1YA5y+bI+3GRi1nE6OzspFAqk02kaXzzoQwghxOsmQYg4J4VByE9++P/jUGkSp2BRSl+GNiO0T44zYoYkGvcwmBxkn8rQlWzjmkI/llNHIt6GYUHJyLGzwSbenqThstUcq3goDeteYjZTy7JYtWrVAtRSCCHOb8ZCF0CI10qHmq2bdvOL4U2Y5YBWfSXKTmAEVfySj21q2mMT2EEcL9vPpeEAdd4PmKrsolIf0tCfRaX3UVleB5dfxkblANAWeiQtGeshhBDzRTIh4pyitebQc+M8uO1fqQR51k8vZ1fnEoomNI9P4xk+0bpR0r6PztdxU1jiosQABS8kFt2HtaSffDBBsi7KTe3tDEccIoZBAs2kX1ro6gkhxAVFghBxTsmMlvjF1sc5PP0Ul+e7yTSsI28Z+OUcyXKZihUjmT6MWzZZXskQ1xX8MuTNNJFYH8XiBFU0NPextr2dG5trYzw8z+N+9ALXTgghLiwShIhzRhAEPPizB9m75wH6dBcps48t9XVMhmXWjI2jXJOKmydmlShX64lNpMFNMZWZpNl1ceM5xt1G6hubabnuFpLJ5EJXSQghLmjnxJiQu+++m76+PiKRCOvXr2fjxo0vu+6mTZu4/vrraWxsJBqNctFFF/FXf/VX81haMRey2Sz3ff9H7N6xEUsp4nYrz7Q3M2oG1GUzpCtVKrjo1HGihTqmvaUENFFKJUgl2kk7AU2tcdb3NbD0+vdLACKEEIvAos+E3Hvvvdx+++3cfffdXH/99Xzzm9/klltuYdeuXfT09Jy2fjwe5+Mf/ziXXHIJ8XicTZs28Qd/8AfE43H+23/7bwtQA/FGhJ7H4S1b2Lr7eQ7t2k9o5Okw04ykUhxMJvHLVfrHpgm0y4Th0+5bpIwYg3o5Dy5bzUfWxEg8e4AgMoj1y++BFatAnmYrhBCLwqIPQr785S/z4Q9/mI985CMAfOUrX+GBBx7gG9/4Bnfddddp61922WVcdtllM5+XLFnCD37wAzZu3ChByDlEa830s1vZsWkTR4ZGyBaKhGaReLxCwo2ztb6DvLZYNj5GU7bC4XSKqlVlpVnBc212u73c8uYr6W5OMP7INnBT2F1LJAARQohFZFEHIdVqlS1btvCpT31q1vKbb76ZzZs3n9E+nn32WTZv3syf/dmfvew6lUqlNi33CdlsFqgNVvQ873WU/HQn93O29nc+01oz9OCD7Ni6jfHpHNlKES/UZCJpGp3lbE82MUgSNzdN98AEnpdhui7FkkDRYOc4WhcltWQl6xtilIaGCAIfI54gcByClzn/0j6Ll7TN4iVts3gtZNu8lmMu6iBkfHycIAhobW2dtby1tZXh4eFX3Larq4uxsTF83+fOO++cyaS8lLvuuovPfe5zpy3/2c9+RiwWe32FfxkbNmw4q/s732itKT6/lfJgjrKKkbFDtvdeTD4aoeLYdAQtGJjkVcjFh8ewMjvJNjdiGXBpaZywcBzLamf1sf1sGjxA5MgR4vv2UW1uIXf//a96fGmfxUvaZvGStlm8FqJtisXiGa+7qIOQk9SLUuha69OWvdjGjRvJ5/M8/vjjfOpTn2LZsmV88IMffMl1P/3pT3PHHXfMfM5ms3R3d3PzzTeTSqXeeAWoRYYbNmzgpptuwrbts7LP883E1AT/fPddeJkK2qqHIMfBxiVk44ojiQLd1RhNxRyWUcUjR2/5ITqdAaZbDNJmM42No1Rdm772NVz1tncAkN+wgYrWxK66iugVV7zssaV9Fi9pm8VL2mbxWsi2OdmbcCYWdRDS1NSEaZqnZT1GR0dPy468WF9fHwBr165lZGSEO++882WDENd1cU88NfVUtm2f9cabi32ey7TWBEGef7//AZ558D6azRiaBPhlpqMuo2mX8USB5WNbeN/YdbS4R9jdfxwz1CwvDhIxS2xNQ2clgpXIUTUc4rHemXOsJyYxDZNIR8cZnXdpn8VL2mbxkrZZvBaibV7L8Rb1LbqO47B+/frT0kkbNmzguuuuO+P9aK1njfkQi0MYVtm/49/416/9Pxz+z+fpUt1gNNBgNdNl9TLRfzl2zOb60gC/qVtJp8fQfTuhbpz+6hHS3iS5uEGhtJw2ZxptVMGKEZ1SFB5/grBUIpieBsBqaVnYygohhDjNos6EANxxxx389m//NldccQXXXnst3/rWtzh69Cgf/ehHgVpXyvHjx/nud78LwF//9V/T09PDRRddBNTmDfniF7/IJz7xiQWrgzid7+fZsfU+tt+/g8lcnJRVoawMoqaLHWgG0s1oM0F7WOQac4h4Io5pDzKULBEol/qJDMoOyY23ELsoTXPkOcIwwMzVYe7fSXFwHH90BAAzlcSInv5gOiGEEAtr0Qcht956KxMTE3z+859naGiINWvWcP/999Pb2wvA0NAQR48enVk/DEM+/elPc+jQISzLYunSpXzhC1/gD/7gDxaqCuIUWmsyk1n+Y9OPmdx6BF1wgAyGmydGM2Wq7I8OM9CaRFkxLgoPo7RFtmqRCzPsDFfj5W3WFfegWjXp5z16xgeINh9DhyHOvgpmcy0VWD1S+3shWRAhhFicFn0QAnDbbbdx2223veR33/nOd2Z9/sQnPiFZj0XsZ/f9gp3bdxCUx7DLiqGcwcpYBqXbCAxFyRpnoGGcKTdC1Rhntd5BztcUDkYY6VlKtlJHemAabzJKNO4T68rSHTyPWSoTjoYYVQe3sxOnuZXq4cOABCFCCLFYLeoxIeL88tjG7ex4cieJYhlX24wYJh2JMsrqBG1ScCfY3rWdloZGOnWa/qxNg+8zFEuzuWsdg01toDSth8aZHm6ibEegXRNtyWPE4xhTKXQ0Qv073kHil38ZdWKwsd3WtsA1F0II8VLOiUyIOPc988ReHv2Px6lTZUwLNClIRAiqU6hKmZxd4MGG3dQbFjGnj0Jsinh4lEokxqDqpNpoU580SXgl3LCFCgZHi22ko6M0OB6O00ahpwu99hKiLa0opah/33vxJyawOjoWuvpCCCFeggQhYs6ND0/z0L8+TmBm8G1FyfLZUR/FiLlkKg2gJzlmP40X5Ljq4A0cuswhoqZYXTdCPt7AVK6D9d5WluWOMlnqoTfZil91eCy+jNXHbVaGUSI6TT4RJV6fnplDxmpuxmpuXuDaCyGEeDnSHSPmVLXq8893P8i0OYJ2NAXX4KhRYjw5RilxkMA5SKGUpcplrA76CRN96MDFUlmizjBlEph2HZeZ24l7U4yMLGVZU5zOehen3sJYUk/CjeGVS4SJOIl0w0JXWQghxBmSIETMGd8L+P43fsrRynEKTog2NdFqnKAQYkQslKpwU+aHJMqTNJiKSvNqnus3CPwqPRxi2rQZqTZxReUp6nSRYqWJFdVBUnGXSG8PV6WOsWytjRVJUfU8dCJOXIIQIYQ4Z0gQIuZEueCx+YHtPDuyl+mIAZaHE0bpyE/gRQOMiEkzg6RCj2v1k6StkDJxcIq0VMZoVUN4hglBkbXVp4lYMbqburg0NUUQlHCX9RGGFSqBJv0bH6Sw+iKwLOL16YWuuhBCiDMkQYg467TWPPXEEe4+9GO8oERd9ijpIEGzXyJaGiFMWVgRk8uzo7jKpjkScPn0Xmw/oEcPstp6jmGjjWIYZ1nlEClL05K6gu7V12MUqnjBJHQ7APhlmzCaIohFMS2baPLsPOtHCCHE3JMgRJx1zxw8yJ2j/4ybqdKUPUZXUKCjWiAReIwrC681RZM/Tc/RUUrVGBN1XSybGuHXHnueXzIOMJ1MERAjW2mmy3NwnPfQ/sufxR2LAOA3+gTO8drBqvVkTsyMeuqgVCGEEIuf3B0jzqqHjz3Onc/8GC+XY+lwSMpXNCci+FQxyhXy9c24bpxl2V3UT5YZt5czsLSL6q4STXYjY4FJNqYhjHC1v5YmK6TBSlDedQCOFkAZhO0RDLuIG49gmWmObHsWQMaDCCHEOUYyIeKsGc6P86eP/TOZcpnrDuRJlzUxQ1EfixCzqqSzhyi2NBELy/RmhonkoqC62TN9A8eiq/AcTeyZMj1D41ykl9IKJI4PYh85RmHzY4STGRwnjeqqRxmKZVdej1IWYRgAyHgQIYQ4x0gmRJwVmUyGTzz4d5jVItcOZ+kbd1CYmOkuQpXD8gOcsMhog4/SFToyo1RKSaYTKdYe2U9/95tYVngAa8gjeqyfSAGqySqmYaMMA6enG29khHj/leSiEwB0LLkBVR7g+J6dACQaGhfyFAghhHiNJAgRb1gQBNz+ow0cDI5zcbyeYlcHeuowTqGNljqDYkVj+gX2dF3OWAr6ioNYuZDDCZdnIsd4k/H/Ye11K+kPDxOOOpT8ZRQPTuDmCmA7xK++itiVVwKgdUA49jNsK4XjNNK9up5idhpABqUKIcQ5RoIQ8YYUM9Ns2HOE5/PbWG2GlBJ1WBiMLm9lyUGoxyTjKexwlH0dPVStPJ25AbyCx9NNDs2RXi69bjV9lzTBY1MYjkX82rdg9EyS3/gobn8/0SuumDmeUiatLbfMfDZMk4tv+KUFqLkQQog3SoIQ8bqVC3n+4cf/zobjA6ysHqNw8VKi1QDTjDOYcFndeZjqSBv5Sp64m2W43iDhFekoHadQtcgsb+Pdq29h+ZWtqMCDSr6242ia6NoOIhetBMuSO16EEOI8JUGIeM10oCluHeUXz+/mF0dGSecPML2yG0tDR75KuRKl2FlkoD5FKn+E0liBfEsSpSrUl7IkvWmOty7nTVe/nV+69AoMQ0FxurZzOwJ2FABl2wtXSSGEEHNuzu6O+fVf/3W+8IUvnLb8L//yL/mN3/iNuTqsmAfVgSx7nx9geP8I7ZlRxnq6CZM2CU+zfMBkyXgOVWrisNPKfe1dbLtqBU+3XYoZ+rQUjlMKYuRvfCu3XPI2DPPEX8HSVO3PqNzhIoQQF4o5C0IeeeQR3vGOd5y2/O1vfzuPPvroXB1WzLGwGrDvmQH2HjuOWcwx1dmN1WLhqIA3HRshXjLpq4S0TNqYE/VM2hG8hEs+WY8OoDEcYbKzjzetuoWYHXthx4Xx2p8ShAghxAVjzrpj8vk8juOctty2bbLZ7FwdVsyxfc8eY9/RY1RKQzzfHiNo87DsKr828gzl8XZcyjSX6njrrmOMeeMcWTJCrD2DUvW0eAM0RKv0ven36G1YOXvH2cHan8mO+a+UEEKIBTFnmZA1a9Zw7733nrb8nnvuYdWqVXN1WDGH9h2ZYPfTe6nkBvlFeoqx9hyuXeIdw0/R/8QhGser1OXrUH4AnkfJzRIfVjRk83TqCVJ2kUhbmtbWK2bvWGvIHqu9r+uc/4oJIYRYEHOWCfnTP/1Tfu3Xfo0DBw5w4403AvCf//mffO973+Nf/uVf5uqwYo7sOrKXHf++izAzxZZEiWKjT1xnePPYPpbsa6TIMTCbiTlpStrjSLvJcFsz5lQOM5LC6qkQwSPa3oHjNM3eeXECvDKYFiRaF6aCQggh5t2cBSHvfve7+dGPfsSf//mf8/3vf59oNMoll1zCgw8+yFve8pa5Oqw4y7TWPL//UZ740QHKgcFATHM8mSOCzyUjT9NxZC1hxCboGydWbGcqSHLAsahPHSJtDpGNNDPYfwPRpsdpDceJRNoxDBsqORjeAR2XQeZEFiTZAYa5sBUWQggxb+b0Ft13vOMdLzk4VZwbtNY8+fxP+edHJsg2NBFqn5w+RtypsG76KSoTHpOJNGY0Q2PxzZTDViZ1kgHyrIoNsQ2fkh1FJxtQ8TWkvDGSiVUQBrD9+5AbhuI4qBO9gtIVI4QQF5Q5GxPy1FNP8cQTT5y2/IknnuDpp5+eq8OKs0RrzQNbHuKLj48xZaUIgFAfpz0/yOXTvyCdGyWnVvJ041MY1jhl3UhRRRm2fa43p5iuq6NqxFFuHtsfpd91ScSX47ptcGRzLQABGNkJE/tr71NdC1ZfIYQQ82/OgpCPfexjDAwMnLb8+PHjfOxjH5urw4o3SGuNP1Hi4Ye28P8+d5hoEKclP0VHZhPhkV1cWf1P0pVxHvNWoXUvCS9BJhilHNhME6EcVajmDobSl2Iri2ZrnOvDR2kZ+BcoZ3CyE7UgBCBSVxuUWi3WPksmRAghLihz1h2za9cuLr/88tOWX3bZZezatWuuDivegKDoMfbYXp4fz/KT6f3YZj19U5NY4V4eUke5xhpHmSGTfoJK6VcYV3BRPksmaGUqLDCNpi8WIUzHqDpV6sMUDekqPdYx8CvEho8Qx6x1v7RcBD3XwtPfrh083jQzU6oQQogLw5wFIa7rMjIyQn9//6zlQ0NDWJbMFr/Y+LkKh3/wOAePHOM/Gh0yToyuqWnypf0MVEK6bLhIlYjhUKouZQkeJaMAFPGDNFXlcIMTUox4jF7ZQ9/Op8iGddSlTWjvJTldoCnvoBLN0LAUeq8Dy4Wm5TC+D+qkK0YIIS40cxYN3HTTTXz605/mxz/+MXV1dQBMT0/zv//3/+amm26aq8OK18EbLTL6k90cPvA8P+hOkon4pIJRdGkveXeQdxdLtJUKhJ1V8m4Cna0jqnLU20MoHaWKi2MH2LEsl13SQZYiz0xOYCiTvt5309rTgrusFaXD0+9+WfF2iDfX7pIRQghxQZmzIORLX/oSb37zm+nt7eWyy2oXmK1bt9La2so//MM/zNVhxWsQej5TD21n+okJjmT28e+9NtmmKSwzz8XFR1CdAa0DDaQNKEYVnmPie1GSukza2oPvaPzp5VR0HTDErsII1ckYQ3v24lUqtNenaO3qJ+ImagdUL3H7rZuAfrllWwghLkRzFoR0dnaybds2/vEf/5HnnnuOaDTK7/3e7/HBD34QW56OuqBKuSrH9kxRvPdHMO4zHgvY2KoZqHOIGpprMvuJaheTkErQy/5qhIaW57C0z2Clh37lELdzlMIUebuNrlSMvF1AmXD0WG0wclNdHVe/7RYiicTCVlYIIcSiNaeDM+LxODfccAM9PT1Uq1UAfvrTnwK1yczE/NJakysW2LnxGP5Pf4JRqmciodgVmWJ7Qy9O4HH51D5SwwGYMWKxEooyRsnEiigIEtjGVUw29JJw9uGEjbT3r2TFVUuwkhUGDh4gOzGGoRRX/dKNRGLxha6yEEKIRWzOgpCDBw/yvve9j+3bt6OUQmuNUmrm+yAI5urQ4kUqQYU9x7ay4/lN5J8Zo2nvfpLOW5lOBBxxpnimsx0z8FgxvZc1/kbG8opyKUpTuyZqZqjUN+KHDuWgg05rHemWBKtuuIpDz42DUjR2xnEidTS3tCx0VYUQQpxD5iwI+cM//EP6+vp48MEH6e/v54knnmBycpJPfvKTfPGLX5yrw4pTFEslntr2LM9v/DGV4CC2k2GINlpib2UkEjBpZniyM0UQ86mzs6zO7+B4Kso2twEmk8TrsrjKpqzBdKA+eCd+XpEZKzF8sPYk5LrmKE5E7nYSQgjx2s3Z1eOxxx7joYceorm5GcMwME2TG264gbvuuov/8T/+B88+++xcHfqCFuqQJ48+waNPP0Z4aBjD2sVgcowxI0kiu5Ybh1cyFatSNoo80wq5uI8RK7A8e4CtTY0oN+CYa7PMS1K1TQzLxAgqqGofzZ09lHI+dsSklKt1rzV1yZgPIYQQr8+cBSFBEJA4MSixqamJwcFBVq5cSW9vL3v27Jmrw16QRidGee7IUzy1/XGODXrkowX8VBk3Pk3bZJKu0hKuKi7FKNoUnDxaVxhMlMlHG8ApUZ/bw16/wjKGiPhFEhnoNrppW3sdscGfM50x0MblpJpiXP62FjKjJQ5vH8e0DerbYgtdfSGEEOeoOQtC1qxZw7Zt2+jv7+fqq6/mL/7iL3Ach29961unTWAmXruSV+K7j/wje7fvIlVqw6IOt1JPa2yQg80t6DBBR6GdifoI40ozbOdJOnmssk8uUmakLk1cR0mOgwrihHGPNj8g7Vtck1xKY3oNjrWa0aHtqEqUK99zOS397SilaO5JkmyMYBgK05yzmf+FEEKc5+bsCvInf/InhGEIwJ/92Z9x5MgR3vSmN3H//ffzta997TXt6+6776avr49IJML69evZuHHjy677gx/8gJtuuonm5mZSqRTXXnstDzzwwBuqy2JRmThM4fCTbP7nv+Y7f/nHZJ84zNJMB4P1yzjQ2I4daSJ0r6K1vI4l0x00lCuEYYmM4XEoZrCtzmRbW4oDLcvJRNrQHrRUMvSbTbwp38kqkvTE2omoZorRLiaOHcPPN2ObTTQt6Z01sDgSt3GiMhZECCHE6zdnV5G3ve1tM+/7+/vZtWsXk5OTpNPpWRezV3Pvvfdy++23c/fdd3P99dfzzW9+k1tuuYVdu3bR09Nz2vqPPvooN910E3/+539OfX093/72t3nXu97FE088MTNp2mJ3fLpEY9whYpu1B7wNb2dqfISf3vcgJS9KoEMULfQUXWJlm83NFcpBjk1pE9MyMUKPdaPDJEpFjsQUUULqchm0U8dU9yoSuSJBeYiEKtDcGKNt7Zt4a38rO3f/JeXsBGbDcpasWEV5xw7GTJO2JUswzZeYaEwIIYR4A+b1n7INDQ2veZsvf/nLfPjDH+YjH/kIAF/5yld44IEH+MY3vsFdd9112vpf+cpXZn3+8z//c3784x/zb//2b+dEEDIwWeT7W46Rjtn85lU9OBPPc/i+P+HAcCOF3y0Z/AAAMs1JREFUsAsPjwoaXc5D3mTAgLLZgDIDygp8SiyZyJCaGmfU8Niz5FLe+/OHaKMM7RH0oUHypYOUUlmuuqabxrd8iHS6Fd/P0VZcSalcZtnS3yASiTD15JM0uBGSK1cu9GkRQghxHlrU+fRqtcqWLVv41Kc+NWv5zTffzObNm89oH2EYksvlXjEAqlQqVCqVmc/ZbO32U8/z8DzvdZT8dCf382r7OzCaJQwDJvIBP3zqIJftu5vMLypMtXfiuSFZcxQvD0aQouo4eLEmTFeRiVu4+SlUKc6SvdvRJY9Sdz9veezn9BWHKbztegauuYI3PbmBIzsOk8xbtK69hUiigUo+T+HAcwR2hVisHtM0qRYKVIeG0TqE5uazdh4WqzNtHzH/pG0WL2mbxWsh2+a1HHNRByHj4+MEQUBra+us5a2trQwPD5/RPr70pS9RKBT4wAc+8LLr3HXXXXzuc587bfnPfvYzYrGze/fHhg0bXvH7x0cVUxWF7/scnNpLunCUWGwtBU8x7no84dfRXYzRrmy8RAOjDTEGG2KEbhXL6WT5cIWrR8fxqxVcM6S5kKO+o8o9S1ZRmjZxWi/Hem4QVQh4+m+/T1D/IM7wCMrJ4PcN4dV3sz3ahj0xQWrvHoJIlOlNm87qOVjMXq193igvZ1DNGERbfQx5esFrMtdtI14/aZvFayHaplgsnvG6izoIOenFY0hePPvqy/ne977HnXfeyY9//GNaXmE2z09/+tPccccdM5+z2Szd3d3cfPPNpFKp11/wU3iex4YNG7jpppte9tk5fhByaONh0p5H9tAO2tU+bL+P4UgUFWj22HnqcvUksUgHjZS9BiZbpylFHSKhTd9UkauODdFUzTFhOpjxGB2tMey3r6Or73ISlsG7E6t5dmKQ8PARLm5vrx24bwmVRIZMrIRdVbS3plANjZTyedyVF5H4lRvPyjlYzM6kfc6G5zcPk09WWLK2kaZumWPlTMxX24jXTtpm8VrItjnZm3AmFnUQ0tTUhGmap2U9RkdHT8uOvNi9997Lhz/8Yf7lX/6Ft771ra+4ruu6uK572nLbts96473SPkfzRfwgZGr/Tpqye0jbEZTZQQnNtDdANvBoLQVEMQhNiwZjEz12gOdZ9I2b3HroF+jBEj4elUgS1dVN7+WKpzvWYpgGyxMxCEs4zc1Eunup61uBPzqC09NDuTFHeVcB40AJb+cujGgE0zCJ9vZcUP9zmYs2P0lrjVcOMQ0DpYwL6ryeDXPZNuKNkbZZvBaibV7L8Rb1JA+O47B+/frT0kkbNmzguuuue9ntvve97/G7v/u7/NM//RPveMc75rqYZ8Xo6CgP/8P3MLbsYM2RHMurLfQGvVRDk0xQIRcUaMiWcUwL04mRcKdJtT+JMrM0lo7RX3yYWHGK9kt+iUpTJ4XGRlJ1JvGYyaFoFwD9MZdquQyAk0wSXbOa5I034i5bRkgVu72DyJIVAISl2np2Z+fCnJDzkF8N8au1ZyaFgV7g0gghxMJb1JkQgDvuuIPf/u3f5oorruDaa6/lW9/6FkePHuWjH/0oUOtKOX78ON/97neBWgDyO7/zO3z1q1/lmmuumcmiRKNR6urqFqwer2b705spTvm0lDx6iZO3wAmKaD9PVk9DGNCRq2BZ0/TUu8RVhkjo4Vfi2EoTMUsk0lfjBDHSlksumSCW8sle/OtMl2xMpeiJOIyXSwA4kcis4wdhbXls1TqMoSH80VHMVBLzLHVHCSgXXhisFfrhApZECCEWh0WdCQG49dZb+cpXvsLnP/95Lr30Uh599FHuv/9+ent7ARgaGuLo0aMz63/zm9/E930+9rGP0d7ePvP6wz/8w4Wqwhk5PnyERK6KX8mQM0uMW8NMswt/9AmsoIjrBzRWSsRcG8dSGFaBzOFG4oe6CYkRN+pJdF8EKkTFNW5TSLx7BQejtUxGd8TBMYyZTIgdic46fhjUllt2nNTb34bd2Un0iivm9ySc58r5F4KQQDIhQgix+DMhALfddhu33XbbS373ne98Z9bnhx9+eO4LNAfy4xnqwzSlyiS7YhZhbIjGwk4KqhWLADOoogNFXTKJCgKUWaIp38WOvgShA/WTLrEreijt3Ekw1Y7u6iXeeynPF2u3HvdHa2NevBOZEPvFmZCgttwwopjJOurf/755rP2F4dQgRLpjhBDiHMiEXAi8wKOU9wBFxVTkq9MYhQzhNGTdCFpp3GqO7pE8jYNTGEGAHZZpDVopJl0gJBGEGOk0YTaLFyrCxg7saJTjldrTbvtiJ4OQE2NCXpQJOdkdY5qzgxNx9kh3jBBCzCZByALTWvPkjichdPFMl7xjo7XGHZkgn4/gWTZKebhhCccDbcVBKeJKEyiHUswFrUkFoFwX7Qf4YYCORplUFoHWpG2LBruW9HqhO2Z2sHGyO8YwZwcn4uwpzeqOkSBECCHOie6Y81F2osSBLWO47VU2Hd2EhQFoipEEfflJ4tUMVqjB1FTimiAXYbwhgm7rJuF4YEcoRGJoO0ShSTkR8Gt3XviOC4bB8RMp/5NdMfBCd8zLZkIMCULmgg41laJ0xwghxKkkE7JAMiMlvIrPYzufZlthG6bhgZGnbB6jv1CgMe7TRQHMEM828HWEZu1TFyYxwhBDe+STTSgC3LBKrKmNMJtBa40frWU5xsPaha474gCgwxDvxPT0p2ZCwtBDhz4AhiHdMXOhUvLR4QuBR+hLECKEEBKELBD/xJiA8YkR0nuWUlepQ2koWBM81jCADg0CD6qWwrMUFSuFqy1U4GNRBl+TTTWgtE9UV7CbOwkyGYIwQMdiKKXIn2jeOqv2BFyvWgE0oLCdF7IjYVjrikEZGIYzn6fhgnHqoFSAULpjhBBCgpCFElQDjFKVYr4MgSLppYh5dUDIsXiRPXUeBRQQok2FitiYuBhVD8soE1Y1uVQ9Cp9oWMFp7SLIZAmDkDAWwzAtSmHtQhe3as3snTIeRBkvNH1wYjyIaUbOaDp88dqdHJTqRGs9oIFkQoQQQsaEzLeJQpVtxyfwnn6e3L4nmUhPYCsXBZihRf/kKg7UDTMYrdJmmWhDgWNhWBqlEqhKBdOsUHETFK0QCIiGFdy2Hio7niQIA8J4HG3Wsh+mUsROBBzVl5mozPcKBEGIoRyqJR8NoDX61OukBl37z6zl+uSHmeUv2u4c4XsefkmRnyxj2cFZ339ushboxepq51gGpgohhAQh86ocwI+3DlL0NNbYXvbUb6NipogFLoEKAZO418ySqSvwyFMyS2gTtBGhf+p5AmMVRrWCYZQoxFrJ+wVAE8UjV7DJHRmmkK1Q6HTwCwGlXJU602R6pIhSiqmhacoFD9NRHN87RW6yTGG6QtU/gG9lMHSE0R1HX60a56UgDCkcs3n+8RFMY+4ShPGUy/RwUQamCiEEEoTMm6of8sy4oiXu05SMMspRUuNFMulGUjiEQMkIcHBJldMEmSspR3x8o0D/2AQdx0cZSV1C6Ploo0RW91AKiqA1ru+x/8F9WAMZSipkIgtlv8RkWMAKDfYdrM0Vkhk9zvRQnnKxHmVMvVA4o5YhUSqCMhS1HpkT3TIKTvbQzOqqUaBq/znx3Snfn7LNuSIIAkxbE4lbmCeySGeb7Vo0dMQ5vneKMNBn/DRoIYQ4X0kQMg+01mzYPUqmqmgpVmjITDJankYTEKm6uIYJGFRVQIoCU3qcxkrAtGFhqGbqpyqERZOgLooKA7yYh+PHCGwPFCRMjVuYxopaVJsaiCQcvHgEN2qTViYJFUFrTWE6xHZNUo1JGrsSJOojJBsjTGa2UPHqaUivJp3uW+jTtSA8z+No4TnWvKVzTp84GZycpExrwlBjmhKECCEuXBKEzAOlFN3pKKbSLPFyZKbGyJan8VSIFToYgYlG4RES1QVyHKDT3w3qKoqqDYsmiqkk2nZROsR0PeJuEq9SRSlFc32ELquCHyQxV/ZRsG2M+nqa6hNcXBdnVUPtIXSWdRA3kqLv0i7al7cA4HlZquODKGWQSFy0kKfpgmCcEnSEvmaOki5CCHFOkLtj5kmrp7hKm4STVdDg6yoVU6FQ2KFJCPha44YjmMYAgfaoqDwlwyVQCYbbboBkAssuYY/kMComFRNAkzQM/LExAPzGRgDKRu3qljzlKlfO5wBw44mZZfn8LgCikS5sW56YO9eUUhhm7WcXyNTtQogLnAQh86SUraKzJl4lQGuNDnwCw0IZYGCgUHhoKCmUNsBz8U2ThK5ghprQcrHqXBrM53GGilCAiq1QSpHM1W7/tJoa8axacqtyYnDlydtztdaU83kAIonEzLJcfjcAyeTqeT0fF7KT2RAZnCqEuNBJEDJPTNsg9BRBEKA1KK3RJ4KQk7mKUAF+hfqgDsOPgLJIhQUiQQHXyNDRWETFfLQXwPg4WoWgID55YhbU7h48rxaQlFStaU9mQvxKhcCvPSQvciITUi4fw/eyGIZLLNY/n6fjgmaeCAxlwjIhxIVOgpB5YloGYVUR+AGB9jFCDco+EYQYgCLQEPp5olgQGASGhYVPV2kr9c5BbMuk2h5B6xDGxzCDKvFCCWOoCIDT3TUThBRPBiEnZkstF2pZECcaxTBNwtBnYuJRABKJFRjG3A3GFLNJJkQIIWokCJknvh8S6gBlZDGjo1gYpIwmDKUwDAuNJkRjaA/T0OgQQsOoPScm9DGiUZRpUG2LE1gK368QmciTGsxDYGC1tGB3duJ5Hl6oCU0LhSJ+YvzByfEgkUQSgKnpx6lWxzHNCPX1Vy/YebkQnQxCZEyIEOJCJ3fHzJPxiZ+S6nscJ2oQOjm6mlyGvHrQDnmrjNI2QRBSDRVxpQkw0CisIERpHzMaBUMROgbDlzegt7eACoiFFSJr+6n/tfcTqlp3T1VrsCxipoF5Yh6Kk5mQSDxBqXScTOYZAJqa3oplxRfqtFyQXuiOkUyIEOLCJpmQeXJwZICiOUkVD609YvVFfGVgaBOFQdmoEIQBQQimDvANE5TC9atUOipQDxgBOtSUUy7Z9m4qbTHsZSbRS1egLGumK6YKYBgkrRea94VMSIKpqc2gNcnkKuLxpfN+Li50hiXdMUIIAZIJmRdaa8rJdgb2mxhRm772TTiuj2lXwHcxMAlUSBj4hDrEIKRiu4SGiRWZptxcQTdn0bmAgABCm5IRoC1NwvExrNpA05NBSGCYtbtmZt2eW8uEGG6Jcrk2L0g6fe38nwyBYcgtukIIAZIJmRdKKdb3XIuhXTzf5FCuhFaQiGdRKiCSnEAZHuGJl5uaIIiYKAPs+im0AmVZhFaVivJmghClNAnTw7Br3SkzQciJ4OPkeBB4oTvG0wcASCRWYlkJxPwzZzIhEoQIIS5skgmZJ1kjw2hskLjfSjbjoOtDEvEsyUiJZLSEG0swkutCNeYxI0X8ionr5okYJUJDYRChGnoUwyroFCVDgwpJmh6mXRtsOtMdc3KishN3xgS+h1cuoVURT+cwlEld3eULcyLEC5OVSXeMEOICJ5mQeXK0epgpe4q8lSGXdQi0iW1ViEZzaMCKZkkmplCdWcpdVVRXAQyIBVXwXVRg4VtFSlRRnknJUmCEJC0fw65lNKrV2oPqyi++PfdEV4yKjGIYJrHYEhynaf5PggBOGRPiz00QUnxujPwTQ+hQghwhxOImQcg86bH6QGumjAnwNeVyEqVAo6gW0qChqXUAs7uIh4UR98GPkNpbhxk0gIaKkyEkRIUWJaf2tNuE4WGcmG59ulxmV77ExIlrT4M9Owgxo7XBqTI76tmhtWbT8U08Pfz0a9rONOdusrKwEuCNFgmyVcKid9b3L4QQZ5N0x8yTVL4N5VtUVQXLrJKd7Cah80yXW7BzrdR35LCsIoFhEWgbDLAwMPMOSsfQWlG1S6A0obYIrRBTQVopDDtBJQx5aHSKvB/gWDa/1JCirlLi+OEDVIsFtCph2B4og2i0e6FPx3kh5+XYNrYNgHUt67DPcMK3F+YJOfuZiiBbmXmvKwHIsB8hxCImmZB5oLVmYMdxVmW6cQKTwCwSOzqJv6sHsgmM0CQ/3INhBFTKcfKlOgCikSKhUthhC2hFVfkoMySIRDGcgAhVYrhgOWyaylOsVnENxTvam7iyLs7BLU9yZNszDO3fgzamsByHiNuGYbgLfEbOD/lqfuZ9oVo44+3mctr2IFudeR+Wg7O+fyGEOJskEzIPlFLkB0dpLi+hw5yi+XAOQ0M5ZqFxMbSiNF1PWG3ATvg4YRYjUiISmaZipzHCFKgCVeWD0gRuFOV7RPGwrXoGQ4dns1No32dpLEJjNILWmvz0JBofhUVoTmJHo0SjPQt9Os4beS8/6319pP6MtpvLadvD3AtBiK74Z33/QghxNkkmZJ5MNSt8LNZMJYl4moodJzSjmIRYIRjVMlFzkqjKEeQjmIQ4dVVIdeCXUxiugadCFJpAFVF2njhlrGQ/P5vModF0mIp6y8S2baqlEp7aQRD9BSvetIrmpWmiyZQEIWfRqZmQUwOSVzNX07ZrrSUTIoQ4p0gQMk/GO7J4+NR7caJmPYVEJyhF1C/j+iFB6BNNlmjmGNZ0gFP1sCwLEiUKlQArmsQnxMQjtKfBKeBGJtlpKMYqZSJK0XPi4uY4DvnpEUJrGNO1yZY24cZcTCOC67Yu7Ik4j5waeOSquTPebq6mbdeVgLASzPoshBCLmQQh82RNz3IGjDJ21aRTL6ca7UEbGisMMbWBZwZYZpVIpUrv6BGsfIgRKPzYBKXmIbKFJJ4R4lhlyoECNBFV5Yg3QkPhQa6KKFQYYBgGsViMzOQuIMR2XdC1f3FHo90oJU1+thS8F8aBnJoVeTVz1R1zahYEmBWQCCHEYiRXpHlyUVMPRyhghpCIdhA4cbQKMbXG0gpf+ZiGxigoQmVSLqUIC8cp2k/hdFYIiDKWsAldn3xooCsu06oPz4iQDoeoy/wErX1isRiGYZDNPQ9AMn4Jtl0b6BqL9S3kKTjvnJr9eG3dMXMzbfvJIMSscwAZEyKEWPxkYOo8STkWFV2krEPy9fUkjQigMQBDK0LDQykwKorQMCjnosTqhiHtUd+WpRBVJIMqytMcs1oZpRPDjZJILmON+gXF7CAwTTz+DoKgRLl0FIB0w2U0tS+jXD5GPL78zAusNQRV8ErgV8Avv/AyLLBjYDqgFCgT7AgYdu0zAOrEbnTtvaoN0D25vLbK7HVnL3uZ5bO+P4M66BCUMXu7MKjV7VSehxFWa/UjeInjvOizUhQq2dq+gHwlC8GJi/6Jhw/OOp5frpXHiZ8ybfvZzoTUbs+1m2MEmSphNUQHGmW+hnMmhBDzSIKQeaC1Zsf+b9OmJ9mWbmJg+RLilQhd2RADsDRoqwpoVNVAK0W+4tA6APbFEKbyZNQ2osUMoJjQjRStKMlokuual3JxpJmtz30DzXEMYz+ZbI5quQR+gpjbAXkL1+vGGzkOk8dAa7TW6EoVXfXAr0LooaseuhpA4EHo1coDoE5cLBWABq3QWkFooEOF1gaECq1PXHuVrr20QgdG7XtAnVzOif28AbVr/EtcXE8NdHT4wnGUccry07spQh2yanyc4uS/YpxBl1WIpqM8MfPZpET28X9EnQi4UBYYCoJgpjsMAMMgMBPEc91gWGQfGTgRnJ2hV1j15BgQqyGCMhU60OiKj4qd2fwlQggx3yQImQdKKbbu24/tlxlJ9hAoh8GUQzwWobNYqWVCnCqKEBUotFIULQdVsmlyqkwZCYrVCjosYfoafIt6I8+t6WZWhhX8oks524tfeJp86RdUDhpUx3KQaaAUDlKp7oHCOJSzL1G2lyu1/cIKyqr969448afWtSAlPHlxDSH0a8trG/HC1VIDczU24aUCmZcLbl6668MwFKZpoLVChTY6MAnPIAiphD5WYKNOOaLnG1gz2+oTLwW88DRjAqBawCgVIJIiLAco4+xlKgzXxEg4GK5JUPQJywGGBCFCiEVKgpB5EvPbiWX2MNgexbOqaK040N7KsqMlon6INn3CEIxAUzUtJuujuBGPaDXk2NEr2ZsaJx4MUq0qmoJJYr5JbluVbeEAZtFidMTHSjRSlypTDotUMhqOKcamH0UT1F5GgHYioEy0UmhTo80T3SnKRJsKbRknuhPMWvBxIkpRKGpX0FpAoS2NVoBBbV9YnLwcK/3CRTVUIRj6hSu1Vic7ak4/SfrlAojXsi4vZB6UcSIDoiE8GRToF4KqE/ovu4K61nZ2P/SfvPXGX6ndlTTr2C86loZcYZjDR35G0klS9StUwgqX9L2ZRLSxlknyq7WMi2mD6da6rtBw7Gn00ScoHK2Hpnbcy1twItZp+3+9jKiFMhUqYkHRr2W2hBBikZIgZJ5oM0ki1JQjDlaoiYVlcrbJo339xCsGfqWZoKQwghANeLZJYzIg59SzObWaXcqgx3+Oo2oFUa3p8idI+s1ESmkqOR+lclDtx4k1UZwaoTS6g5g9TDmVAycOiRZIdoEdPaVQp1/tzuTf5KfmO15tm1k5hVcKHF7tmG9g25fdZxgS+B5jYwOkl/fhOwojFcG0Xz1zUAh9KjFNczIFfplsqUIhpmmue7V50vthdBPoaULHRMVszPjZz1QYbi3ICssyOFUIsXhJEDJP8oFNUNeKZygayiFXjpZ4qqGCYcfIOSZj6SVsLtxAYewAyofJRAvb61azK72GsaY+8sUSDxfeTbyQ5ZpihA/ZzSR0FNqXMZrOk9YOTX1tXHrppRx46AdEpjy62lvoefP7oOeaha7+olTK53j2pz8hOzaKX628+ganOHk3TNyOYxs246XxM7tDJtkGhoWpq4ReaU5mTQVQJ4MQuU1XCLGInRO36N5999309fURiURYv349GzdufNl1h4aG+K3f+i1WrlyJYRjcfvvt81fQV6BzzzPS3EOgFI3lCCsLcd76/HHet/MwFw8O4SiPCaeFLd3r2Lj8Kg63tfEfzjUU/RjGdAWjWMSoeliBzWXTIQNFhe+VsYrbCZY4mPUuUddhYMdWJrY/ChqiPeug++qFrvqiFU0kidWl0TpkenjoNW17cl6QpJ0kYdeyH2c0YZlhQqodw9BQyZ7123RnDnOii0fLrKlCiEVs0WdC7r33Xm6//Xbuvvturr/+er75zW9yyy23sGvXLnp6Tp+CvFKp0NzczGc+8xn+6q/+agFKfLowDDGmXaYa6wiA1gJ4SmEpAyvU9EyOEUwcpVKpJzFd4lhdE0pnSZRsluZiTCdzFAb/k3QuT2PVI738zRRdg33T21kWCRg9OMmIl2bq8GHipVHsfBErGqO47CaOTZeYKnjkyt6JO2XVC3e7UhuYaSiFbSpMQ2GbBqahsAyFZRpYhnrpwasaqkFIsRrgvY4Hsakz6vh50TavY/zmq22Tj6aZPD5Mcdd+BguwdySHZb1698i+sXHGixXGowpfG0zkK+xVYzSarx6INJrNmMYxKGfn5CF2cGomRLpjhBCL16IPQr785S/z4Q9/mI985CMAfOUrX+GBBx7gG9/4Bnfddddp6y9ZsoSvfvWrAPz93//9vJb1lYwlWvAcGzP0aCj6KK1wlUJpjQ59GqtFYqMZVhweYDRWRzLRRFCJM2ykmBjeCIVJWvJZ+sMWyq09jA2PUMw3s/PIHnxvklwYR7sN9PrHaEg6HO+8ji07p4Cpha76oqYLFnokD6MH2BftorhzBOOUQasv5/nCIMUgT5grEGqfQ6U8gxODTI6+ekalvmSwolzBtnNz1h1jRGp1kKnbhRCL2aIOQqrVKlu2bOFTn/rUrOU333wzmzdvPmvHqVQqVCovjAnIZmu3snqeh+d5b/wAWtNvFpjwcrhhCTdoxtAGUa3QQKh9YiWFXS3Xbuo0HOpJMKFg0KpSqByjYlZYkQ9xnAb27DuGHh/AL+Uo+w5Jf4oW8jQ0arpSEULLZbDtEpLaQAPpqE0qaqPUifm7ODHQ88R7P9QEocYPwpn33inLXu4yaZsGMcfENl9jr97rGGT6Wrc400PoVDP5wQR+uUhb9jANUzZ2XSNWfTPKfPlg5LBXwdQm3al6Au0xHppEzArtKecVjxeEmnGvianCdpJ2lko+i+e98javR2howjAgLIZUK9WzehvwfDv5Gzwrv0VxVknbLF4L2Tav5ZiLOggZHx8nCAJaW2c/dK21tZXh4eGzdpy77rqLz33uc6ct/9nPfkYsFnvjB9AaP2+SjuaJeP6JG10VDgZVQsLAw6w4uKEHQUhJVWmtDFMOEzzX0Iq2qywfqmIVIkxVByjsPY6hNLYBRszBcQJSxhiGN8zwUEjebcfP/QuGrk02ltOaHKBeiEBQGgzfx/ADZl/iaxcrm5mZQmpVQL9k38YLN+2+QvVf8fr3Cl+qE8d9DdvNPtbsbfXLbBNM5wjyRVqA0pPbKAEodcqFe/Z2Gk17mAHAtkax0PQEQ5hewHj5YcxXGeehAzgcJoEY25/bfFo5z5aViXUopfB/dO5fIFzg0f84sNDFEC9B2mbxei1tM7FckVjaf1aOWywWz3jdRR2EnPTiGSW11q9tlslX8elPf5o77rhj5nM2m6W7u5ubb76ZVCr1hvevteaPy2OUwjzxQ1UqoYWvNLYO0EqhtEe5nKQ+PIrj+5iGSTRWxbPb8JOriYaT9BS3E7VDUt44KWURdUySgJnVaMtAVR10cZIgDIkm8kSNvW+43BeKMNSUQp9sNkcikcDzQ4LwlQODGGAog7ZYiEZjFBWBPjmF/St350QtKJZ9dDi3XSXloEDUTGCpc3+yMo1+XeOIxNyTtlm8XkvbLF+6hMt+9e1n5bgnexPOxKIOQpqamjBN87Ssx+jo6GnZkTfCdV1c1z1tuW3b2GcwZ8Sr0Vpz49QjTNsWpVg9VXsFfuCiVW1GTSOs4pU6iIXbcAJN/XSJxKjiub4umjxF31SV1ikN+Ty2Cohpm7ZEAtOoTUWuUCi7HtLdhIkoGCeelaLUiWzCC++VYZzIFii0a4NtoU8J6F72r+vJZ8C87HcvTb3ef+S/eJ+nPkbmlfb5kmVRr1xGIAhDSgcO0Ll0KYZS+FVvpsvq5TRFGmmKNgEQhD4lK8RobkSdQeBa8jwGj43jKHAt43UNun1VIRjeuX9x8MOQA/v2s3T5MizjnLih74IhbbN4vda2WXbtNWflege8pv0s6iDEcRzWr1/Phg0beN/73jezfMOGDbznPe9ZwJK9NlprckMdtMR3MWEZTBseVWUSmhoVaBr8cXQ8SWqijNYhiUBRn+zCcFpIBiaXFwMUUSqqTEv/Cvouv5KOi1djpFIo20F7VZRlYSQSZzVDdCHxPI/J++/nml/91bP2Q3w1qy6fl8Oc8zzPY+T++1k/j20jzoy0zeJ1rrTNog5CAO644w5++7d/myuuuIJrr72Wb33rWxw9epSPfvSjQK0r5fjx43z3u9+d2Wbr1q0A5PN5xsbG2Lp1K47jsGrVqoWoAoZhUJksMnC8nSDWSBgP0IaPZ1nE/AqulyPh7EB7HoEyqUvFGF+6hkjzUnoyBZKuJp/PYJs+iYsvpufmt73oDo74gtRLCCGEeCMWfRBy6623MjExwec//3mGhoZYs2YN999/P729vUBtcrKjR4/O2uayyy6beb9lyxb+6Z/+id7eXg4fPjyfRZ/FUAoPjeeZEGqUVcU1/VovQzUkY1r4boKEH5J0DAYjDRBLscS0MXQFPwyI2A6pto4zuoVUCCGEWOwWfRACcNttt3Hbbbe95Hff+c53Tls2F88ZeSPCMGTINsnHfVw1QtLoIWHU7ljQKEaCVh5JLuNt1mYirolhKY5MGVSyB2kpThEm4/jVCk4kQrKxcYFrI4QQQpwdMpJoHhhKcYk3Sd3kFIliFrcSEAkroBRVZaJ0yCGvlafVKopOA4VInFxJY2pNZ2Yaf2IC36vixKIkGpoWujpCCCHEWSFByHxQCn/pRWTsJG5FkwjKGH4ZgIoGR1VoyYxghOC5NuPJOlAmLV6VtGEQnZokhsaMxkikGxa4MkIIIcTZIUHIPDmaXsW41YxHlJSRI9A+QWhSDcHAozE/hakDMm6E4WQDGCa9/b2YStEBpAyTRHMLxivM4imEEEKcSyQImSctkQgKjaEiRK0cfljG0zba8FAaGooZDAVTiQSHOnpwutvpX7MK5TgUKrWsSbK9Y4FrIYQQQpw9EoTMk85Knog2cIw4Fhm8sEhoBGCVCZVBvFomHlQIIw5mTxNWUxOdiRhOfx/Fai0Iqes+/anBQgghxLlKgpB5smT1MlqMKKEyKTOFF1bwsdCWIlQm8UqZROiRcGp39jQ4DjHTwO7vp1StoByHOsmECCGEOI+cE7fong+aV6yk2YihVZ6poITlj1C1uzCtaZKYOEEVTcCylEcjOVbUR9FhyNHRQezeHiLpBpzoWXiYnhBCCLFISCZknvjHC8QVaArkfU2FEgc5QqSugK8MPNPkeFcXdcsb+VVGWJpIsH/LE0wcO4rT3s6KX7lZpmQXQghxXpFMyDzRlYAkMKnzqAB8Q7Gu7jjp7jYey6wmmxunp7WOfrf2GPixoVHGDh9EKYMV19xAuk26YoQQQpxfJBMyT4ykws8PgK6iMagoC9sKCA2bqWiKwDRpcEyCskcQhBzdsw+A7jWX0NjZvcClF0IIIc4+CULmSfXgCM2BxjF8lDapaAOlypQLBcoafNMlapsUSx5D42Wq5RJuLEHH8osWuuhCCCHEnJDumHmizCJJQiIqJMChiAFWSLVSoYqBslxc2+D4UIZyaEM79KxdJ5OTCSGEOG9JJmS+hEVsKyBqhKBNAh2laCoCLDxMfDuCY0Ch6BFog2RTM03dvQtdaiGEEGLOSCZknoS5DMqpkLA0U6GFby9hOpFmMtNBqBXVWJq+/masyBCR1n4a3nSj3A0jhBDivCZByDxJvO1tTO9/hvrBDL6vibXWc7TtVzg2cRQo4NgWff3tQB20dYAlTSOEEOL8Jt0x80RZFpmoxrVMLGXSV+9T5x4EszYle9RR4BVrK9vRBSypEEIIMT8kCJlHlaBEOqZIx5vp7V/DZZ0aN+ECkIxFwCvVVrRlZlQhhBDnP8n5zyPl5XFiAcsb+0n1raZj6U1sG36CvWqC/ou6wDtUW1EyIUIIIS4AEoTMk2KpiOmXqTo+zf057PoyangHv3pRN6HdxqUrmmFkZ21lyYQIIYS4AEgQMk/Gx0YAUG4MN2bAnvvBr9AL3BZNo1LvhmMnu2MkEyKEEOL8J0HIPJmeGAPAjKVrC/wKmDagUeUp2LfhlIGpkgkRQghx/pOBqfMkN1XLhNiJxtoCw4S1vw5X/QEoBdnBWmACkgkRQghxQZAgZJ5c2apoj2kS3WshmoaL3wXpJRBJ1f48SSkJQoQQQlwQpDtmnrh1rah4C5He9dB28ewvWy6GyVPujJGZUoUQQlwAJBMyT3TXlQw03gCNy07/smklGCfiQRkPIoQQ4gIhQchiYEegsf/Ee+mKEUIIcWGQIGSx6Li81g2TbF/okgghhBDzQsaELBYNfXDtx8COL3RJhBBCiHkhQchi4iYXugRCCCHEvJHuGCGEEEIsCAlChBBCCLEgJAgRQgghxIKQIEQIIYQQC0KCECGEEEIsCAlChBBCCLEg5Bbdl6C1BiCbzZ61fXqeR7FYJJvNYtv2WduvODukfRYvaZvFS9pm8VrItjl57Tx5LX0lEoS8hFwuB0B3d/cCl0QIIYQ4N+VyOerq6l5xHaXPJFS5wIRhyODgIMlkEnWWnmibzWbp7u5mYGCAVCp1VvYpzh5pn8VL2mbxkrZZvBaybbTW5HI5Ojo6MIxXHvUhmZCXYBgGXV1dc7LvVColP9ZFTNpn8ZK2WbykbRavhWqbV8uAnCQDU4UQQgixICQIEUIIIcSCkCBknriuy2c/+1lc113oooiXIO2zeEnbLF7SNovXudI2MjBVCCGEEAtCMiFCCCGEWBAShAghhBBiQUgQIoQQQogFIUGIEEIIIRaEBCHz5O6776avr49IJML69evZuHHjQhfpgnPnnXeilJr1amtrm/lea82dd95JR0cH0WiUX/qlX2Lnzp0LWOLz16OPPsq73vUuOjo6UErxox/9aNb3Z9IWlUqFT3ziEzQ1NRGPx3n3u9/NsWPH5rEW56dXa5vf/d3fPe13dM0118xaR9pmbtx1111ceeWVJJNJWlpaeO9738uePXtmrXOu/XYkCJkH9957L7fffjuf+cxnePbZZ3nTm97ELbfcwtGjRxe6aBec1atXMzQ0NPPavn37zHd/8Rd/wZe//GW+/vWv89RTT9HW1sZNN9008ywhcfYUCgXWrVvH17/+9Zf8/kza4vbbb+eHP/wh99xzD5s2bSKfz/POd76TIAjmqxrnpVdrG4C3v/3ts35H999//6zvpW3mxiOPPMLHPvYxHn/8cTZs2IDv+9x8880UCoWZdc65344Wc+6qq67SH/3oR2ctu+iii/SnPvWpBSrRhemzn/2sXrdu3Ut+F4ahbmtr01/4whdmlpXLZV1XV6f/5m/+Zp5KeGEC9A9/+MOZz2fSFtPT09q2bX3PPffMrHP8+HFtGIb+j//4j3kr+/nuxW2jtdYf+tCH9Hve856X3UbaZv6Mjo5qQD/yyCNa63PztyOZkDlWrVbZsmULN99886zlN998M5s3b16gUl249u3bR0dHB319ffzmb/4mBw8eBODQoUMMDw/PaifXdXnLW94i7TTPzqQttmzZgud5s9bp6OhgzZo10l7z4OGHH6alpYUVK1bwX//rf2V0dHTmO2mb+ZPJZABoaGgAzs3fjgQhc2x8fJwgCGhtbZ21vLW1leHh4QUq1YXp6quv5rvf/S4PPPAAf/u3f8vw8DDXXXcdExMTM20h7bTwzqQthoeHcRyHdDr9suuIuXHLLbfwj//4jzz00EN86Utf4qmnnuLGG2+kUqkA0jbzRWvNHXfcwQ033MCaNWuAc/O3I0/RnSdKqVmftdanLRNz65Zbbpl5v3btWq699lqWLl3K//2//3dmYJ200+LxetpC2mvu3XrrrTPv16xZwxVXXEFvby/33Xcf73//+192O2mbs+vjH/8427ZtY9OmTad9dy79diQTMseampowTfO0CHN0dPS0aFXMr3g8ztq1a9m3b9/MXTLSTgvvTNqira2NarXK1NTUy64j5kd7ezu9vb3s27cPkLaZD5/4xCf4yU9+ws9//nO6urpmlp+Lvx0JQuaY4zisX7+eDRs2zFq+YcMGrrvuugUqlYDabWq7d++mvb2dvr4+2traZrVTtVrlkUcekXaaZ2fSFuvXr8e27VnrDA0NsWPHDmmveTYxMcHAwADt7e2AtM1c0lrz8Y9/nB/84Ac89NBD9PX1zfr+nPztzPtQ2AvQPffco23b1n/3d3+nd+3apW+//XYdj8f14cOHF7poF5RPfvKT+uGHH9YHDx7Ujz/+uH7nO9+pk8nkTDt84Qtf0HV1dfoHP/iB3r59u/7gBz+o29vbdTabXeCSn39yuZx+9tln9bPPPqsB/eUvf1k/++yz+siRI1rrM2uLj370o7qrq0s/+OCD+plnntE33nijXrdunfZ9f6GqdV54pbbJ5XL6k5/8pN68ebM+dOiQ/vnPf66vvfZa3dnZKW0zD/77f//vuq6uTj/88MN6aGho5lUsFmfWOdd+OxKEzJO//uu/1r29vdpxHH355ZfP3FIl5s+tt96q29vbtW3buqOjQ7///e/XO3funPk+DEP92c9+Vre1tWnXdfWb3/xmvX379gUs8fnr5z//uQZOe33oQx/SWp9ZW5RKJf3xj39cNzQ06Gg0qt/5znfqo0ePLkBtzi+v1DbFYlHffPPNurm5Wdu2rXt6evSHPvSh0867tM3ceKl2AfS3v/3tmXXOtd+O0lrr+c6+CCGEEELImBAhhBBCLAgJQoQQQgixICQIEUIIIcSCkCBECCGEEAtCghAhhBBCLAgJQoQQQgixICQIEUIIIcSCkCBECCGEEAtCghAhxAXh4YcfRinF9PT0QhdFCHGCBCFCCCGEWBAShAghhBBiQUgQIoSYF1pr/uIv/oL+/n6i0Sjr1q3j+9//PvBCV8l9993HunXriEQiXH311Wzfvn3WPv71X/+V1atX47ouS5Ys4Utf+tKs7yuVCv/rf/0vuru7cV2X5cuX83d/93ez1tmyZQtXXHEFsViM6667jj179sxtxYUQL0uCECHEvPiTP/kTvv3tb/ONb3yDnTt38kd/9Ef8l//yX3jkkUdm1vnjP/5jvvjFL/LUU0/R0tLCu9/9bjzPA2rBwwc+8AF+8zd/k+3bt3PnnXfyp3/6p3znO9+Z2f53fud3uOeee/ja177G7t27+Zu/+RsSicSscnzmM5/hS1/6Ek8//TSWZfH7v//781J/IcRLWJBn9wohLij5fF5HIhG9efPmWcs//OEP6w9+8IMzj4+/5557Zr6bmJjQ0WhU33vvvVprrX/rt35L33TTTbO2/+M//mO9atUqrbXWe/bs0YDesGHDS5bh5DEefPDBmWX33XefBnSpVDor9RRCvDaSCRFCzLldu3ZRLpe56aabSCQSM6/vfve7HDhwYGa9a6+9duZ9Q0MDK1euZPfu3QDs3r2b66+/ftZ+r7/+evbt20cQBGzduhXTNHnLW97yimW55JJLZt63t7cDMDo6+obrKIR47ayFLoAQ4vwXhiEA9913H52dnbO+c113ViDyYkopoDam5OT7k7TWM++j0egZlcW27dP2fbJ8Qoj5JZkQIcScW7VqFa7rcvToUZYtWzbr1d3dPbPe448/PvN+amqKvXv3ctFFF83sY9OmTbP2u3nzZlasWIFpmqxdu5YwDGeNMRFCLG6SCRFCzLlkMsn//J//kz/6oz8iDENuuOEGstksmzdvJpFI0NvbC8DnP/95GhsbaW1t5TOf+QxNTU28973vBeCTn/wkV155Jf/n//wfbr31Vh577DG+/vWvc/fddwOwZMkSPvShD/H7v//7fO1rX2PdunUcOXKE0dFRPvCBDyxU1YUQr2ShB6UIIS4MYRjqr371q3rlypXatm3d3Nys3/a2t+lHHnlkZtDov/3bv+nVq1drx3H0lVdeqbdu3TprH9///vf1qlWrtG3buqenR//lX/7lrO9LpZL+oz/6I93e3q4dx9HLli3Tf//3f6+1fmFg6tTU1Mz6zz77rAb0oUOH5rr6QoiXoLQ+pVNVCCEWwMMPP8wv//IvMzU1RX19/UIXRwgxT2RMiBBCCCEWhAQhQgghhFgQ0h0jhBBCiAUhmRAhhBBCLAgJQoQQQgixICQIEUIIIcSCkCBECCGEEAtCghAhhBBCLAgJQoQQQgixICQIEUIIIcSCkCBECCGEEAvi/w+XpkyqkvPM+QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAIhCAYAAACYF2qHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9Z5Qcx3mo/XSYnGdnc0ZcLHIGCJJgEKMSKYuyJUu+kk37XsnpWk70J/uKipatY1uyjylbclLOEilLYiYIMIAkiAzsAlhszpNz6lDfj1kssNxFIkFClOc5Z7CYnuru6uruqrfeVJIQQlClSpUqVapUqfIGI1/tClSpUqVKlSpV/mdSFUKqVKlSpUqVKleFqhBSpUqVKlWqVLkqVIWQKlWqVKlSpcpVoSqEVKlSpUqVKlWuClUhpEqVKlWqVKlyVagKIVWqVKlSpUqVq0JVCKlSpUqVKlWqXBWqQkiVKlWqVKlS5apQFUKqvGm4//77kSSJaDT6hp73gQce4L/+678uuXxHRwcf/OAHX7f6vFo0TeMTn/gEHR0d2Gw2urq6+Kd/+qdL2jeTyfBnf/Zn3HrrrdTW1iJJEvfff/+CZf/xH/+Rbdu2EQqFsNlstLW18Wu/9mscP378gufo6enBZrMhSRIvv/zyvN/D4TAf/OAHCYVCOJ1Otm/fzpNPPjmv3A033IAkSfM+t99++5xyQ0NDC5aTJInvfOc7c8r+27/9G3fddRcdHR04HA6WLFnChz/8YSYnJ+ed/2tf+xq/9mu/xvLly5FlmY6OjgWv96mnnuI3f/M36erqwuVy0dzczDvf+U72798/r+yzzz7Lvffey8aNG2fbaGho6AKtWeFKtSnAE088wfbt23E6nYRCIT74wQ8SDofnlTt9+jQf+MAHaGtrw+FwsHjxYj760Y8Si8XmlPv2t7/N9ddfT319PTabjaamJt7+9rfz/PPPzzvmvffey6pVq/D7/TgcDpYtW8af/umfvuF9QZUrj3q1K1Clyi86DzzwwGyn+2bmIx/5CF//+tf51Kc+xebNm3n00Uf5wz/8QzKZDP/f//f/XXDfWCzGl7/8ZdauXctdd93Fv/3bv12w7B133MHatWsJBAIMDAzwuc99jq1bt7J//36WL18+bx/DMPjN3/xNQqEQExMT834vlUrcfPPNJJNJvvjFL1JXV8c///M/c/vtt/PEE0+wc+fOOeUXLVrEN7/5zTnb/H7/gvX9/d//fd73vvfN2bZ06dI53z/+8Y9z44038tnPfpbm5mZOnjzJpz71KR566CEOHjxIfX39bNmvf/3rTE1NsWXLFkzTRNO0Bc/7pS99iVgsxh/+4R/S3d1NJBLh7/7u79i2bRuPPvooN91002zZJ598kieeeIL169fj9Xp5+umnFzzmuVzJNt29ezd33HEHb33rW3nooYcIh8P8+Z//OTfffDMvv/wyNpsNgEgkwrZt2/B6vXzqU5+ira2NgwcP8vGPf5xdu3axf/9+ZLky943FYuzYsYM//MM/JBQKMTk5yd///d9z/fXX8+STT845fy6X43d+53dYsmQJdrudl19+mc985jP8/Oc/5+DBg1it1ou2R5VfUESVKm8SPv7xjwtARCKRN/S8K1euFDt37rzk8u3t7eJ//a//9brV59Vw7NgxIUmS+OxnPztn+2//9m8Lh8MhYrHYBfc3TVOYpimEECISiQhAfPzjH7/k8/f09AhA/NVf/dWCv3/+858Xzc3N4otf/KIAxL59++b8/s///M8CEM8///zsNk3TRHd3t9iyZcucsjt37hQrV668aJ0GBwcFID7/+c9ftOz09PS8bfv27ROA+NSnPjVnu2EYs/9/61vfKtrb2y/5mJlMRtTX14ubb775vMf8/Oc/LwAxODh4wTpfyTbdvHmz6O7uFpqmzW577rnnBCAeeOCB2W1f+cpXBCCeeOKJOft/9rOfFYA4cODABeucTCaFxWIRH/jABy5YTgghHnjgAQGIJ5988qJlq/ziUjXHVHnTMTo6yrve9S68Xi8+n4/3v//9RCKReeW++93vsn37dlwuF263m9tuu42DBw/OKTMwMMCv/dqv0dTUhM1mo76+nptvvplDhw4BFdPK8ePH2b1796yq/nzq9QsxMjLC+9//furq6rDZbKxYsYK/+7u/wzTNOeW+9KUvsXbtWtxuNx6Ph66urjlainw+z5/8yZ/Q2dmJ3W4nGAyyadMmvv3tb1/w/A8++CBCCD70oQ/N2f6hD32IQqHAI488csH9z1z7q6W2thYAVZ2vfO3r6+P//b//xwMPPIDX611w/x//+McsX76c7du3z25TVZX3v//9vPTSS4yPj7/qul0KdXV187Zt3LgRRVEYHR2ds/3MTP/VHNPtdtPd3f2qj3mGK9mm4+Pj7Nu3jw984ANz7t8111zDsmXL+PGPfzy7zWKxAODz+eac64wWym63X7DeHo8Hu92+4HPySi70TFV581AVQqq86bj77rtZsmQJP/jBD7j//vt58MEHue222+aovT/72c/y3ve+l+7ubr73ve/x9a9/nUwmw3XXXUdPT89suTvvvJP9+/fzt3/7tzz++ON86UtfYv369SSTSaDSUS9atIj169ezd+9e9u7dO6fTvRQikQjXXHMNjz32GJ/61Kf4yU9+wlve8hb+5E/+hN/7vd+bLfed73yHj3zkI+zcuZMf//jHPPjgg/zRH/0RuVxutsxHP/pRvvSlL/EHf/AHPPLII3z961/nnnvumWdvfyXHjh2jtraWhoaGOdvXrFkz+/uVxjAMSqUSJ06c4N5776Wurm6eECSE4N577+Vtb3sb73jHOy5Y/zN1PZcz217pb9Lf308wGERVVRYvXszHPvYxCoXCgsf+3Oc+h9Vqxel0cu211/KTn/zkkq5v9+7dGIbBypUrL6n8pZBKpThw4MBrOuaVbtMzz8b5yp777Nx11120tbXxx3/8xxw/fpxsNsuePXv43Oc+x9vf/nZWrFgx7xiGYaBpGkNDQ3z4wx9GCMHv/u7vLlhnXdfJ5XI899xz/NVf/RXXXnstO3bsuEBrVPmF5+oqYqpUuXTOmGP+6I/+aM72b37zmwIQ3/jGN4QQQoyMjAhVVcXv//7vzymXyWREQ0ODeM973iOEECIajQpAfOELX7jgeV+rOea+++4TgHjxxRfnlPvwhz8sJEkSJ0+eFEII8Xu/93vC7/df8NirVq0Sd9111yXX5Qy33HKLWL58+YK/Wa1W8Tu/8zuXfKxLNcfYbDYBCEAsW7ZM9PT0zCvzT//0TyIQCIipqSkhhBD/+Z//uaDpwGKxiP/9v//3vP2ff/55AYhvfetbs9s+9rGPiQceeEA89dRT4mc/+5n4vd/7PaGqqrj++uvnmDUmJibEb//2b4vvfe974plnnhHf/OY3xbZt2wQgvvKVr1zw2tLptFixYoVobW0VmUzmvOUuZI5ZiF//9V8XqqqKl19++bxlLmaOudJteub92rt377yyv/M7vyOsVuucbRMTE2L79u2z9x4Q99xzjygWiwvWd/ny5bPlGhsbxbPPPrtgub1798455p133inS6fSCZau8eahqQqq86fj1X//1Od/f8573oKoqu3btAuDRRx9F13V+4zd+A13XZz92u52dO3fOOvUFg0EWL17M5z//ef7+7/+egwcPzjOPXAmeeuopuru72bJly5ztH/zgBxFC8NRTTwGwZcsWkskk733ve3nooYcW9PzfsmULDz/8MPfddx9PP/30eWf3C3Ehc8prMbWcj+eff569e/fyjW98A4/Hw4033jhHYzE8PMxf/MVf8PnPf36OY+erqeO5v33605/mwx/+MDfeeCN33nkn//RP/8TnPvc59uzZw0MPPTRbrrGxkS9/+cvcc889XHvttbzvfe9jz549rF+/nvvuuw9d1xc8V7FY5F3vehfDw8N8//vfx+12X0pzXJS/+qu/4pvf/Cb/8A//wMaNG1/VMV6vNr1Q2XO3JxIJ3vnOd5JOp/nmN7/Jnj17eOCBB3j22Wd5xzvesWCb/vCHP+TFF1/k+9//Pt3d3dxxxx0LOt6uXr2affv2sXv3br74xS9y8OBBbrnlFvL5/EWvs8ovLlUhpMqbjleaFFRVpaamZtYkMT09DcDmzZuxWCxzPt/97ndnB3dJknjyySe57bbb+Nu//Vs2bNhAbW0tf/AHf0Amk7li9Y3FYjQ2Ns7b3tTUNPs7wAc+8AH+4z/+g+HhYX7lV36Furo6tm7dyuOPPz67zz/+4z/y53/+5zz44IPceOONBINB7rrrLvr6+i5Yh3Pb51xyuRzlcplgMPhaLnFBNmzYwLZt2/j1X/91du3ahRBijn/L7/7u77Jq1Sp+5Vd+hWQySTKZnB1QstksqVTqovWPx+MAF63/+9//fgBeeOGFC5azWCz86q/+KrFYbME2LZVK3H333Tz77LP85Cc/YevWrRc83qXyiU98gk9/+tN85jOfmWOiu1xejzatqakBOG/Zc9v+b/7mbzh06BCPP/4473vf+7juuuv48Ic/zDe/+U0ee+yxeRFLACtXrmTLli28+93v5pFHHqG9vZ0//MM/nFfO5XKxadMmrr/+ev7gD/6AH//4x7z44ov867/+6+U0UZVfMKoePVXedExNTdHc3Dz7Xdd1YrHYbGcZCoUA+MEPfkB7e/sFj9Xe3s6///u/A3Dq1Cm+973vcf/991Mul/mXf/mXK1LfmpqaBfNJnAmbPFNfqDiKfuhDHyKXy7Fnzx4+/vGP87a3vY1Tp07R3t6Oy+XiE5/4BJ/4xCeYnp6e1Yq8/e1v58SJE+etw+rVq/nOd77D1NTUHCHu6NGjAKxateqKXOv5OONke+rUqdltx44dY3h4mEAgMK/8jTfeiM/nm/XNWb169Wxdz+Vy638pDp5CiAXLlkol7rrrLnbt2sVDDz3EzTfffEnnvBif+MQnuP/++7n//vsvGip9MV6PNj3z9+jRo9x5553zyp7b9ocOHaK5uXme0L158+bZ+l0IVVXZsGED3/ve9y5YDmDTpk3Isjznmary5qOqCanypuOVs6nvfe976LrODTfcAMBtt92Gqqr09/ezadOmBT8LsWzZMv7yL/+S1atXc+DAgdntNpvtsswer+Tmm2+mp6dnzjGhktRKkiRuvPHGefu4XC7uuOMOPvaxj1EulxdM9FVfX88HP/hB3vve93Ly5MkLqqXf+c53IkkSX/3qV+ds/6//+i8cDse8RF5Xmmg0ytGjR1myZMnstu985zvs2rVrzufP//zPAfiXf/kXfvrTn86Wvfvuuzlx4gQvvvji7DZd1/nGN77B1q1bZ7VK5+PMdW/btu2C5TRN47vf/S6hUGhOXc9oQJ566il++MMfctttt136xV+AT33qU9x///385V/+JR//+Mdf8/FejzZtbm5my5YtfOMb38AwjNmyL7zwAidPnuRd73rX7LampibGxsbmRSvt3bsXgJaWlgvWv1gs8sILL8xp+/Oxe/duTNO8pLJVfnGpakKqvOn40Y9+hKqq3HLLLRw/fpy/+qu/Yu3atbznPe8BKmG1n/zkJ/nYxz7GwMAAt99+O4FAgOnpaV566aVZbcKRI0f4vd/7Pe655x6WLl2K1Wrlqaee4siRI9x3332z5zujRfjud7/LokWLsNvtrF69+pLr+0d/9Ed87Wtf461vfSuf/OQnaW9v52c/+xkPPPAAH/7wh1m2bBkAv/3bv43D4WDHjh00NjYyNTXFX//1X+Pz+WZnklu3buVtb3sba9asIRAI0Nvby9e//vXZTJbnY+XKlfzWb/0WH//4x1EUhc2bN/PYY4/x5S9/mU9/+tNzVOqf/OQn+eQnPzkvYdTDDz9MLpebNVX19PTwgx/8AKhEGTmdTlKpFLfccgvve9/7WLp0KQ6Hg1OnTvHFL36RUqk0Z6BdSCA4kwV048aNc4TF3/zN3+Sf//mfueeee/jc5z5HXV0dDzzwACdPnuSJJ56YLffMM8/wmc98hrvvvptFixZRLBZ5+OGH+fKXv8xNN93E29/+9tmyH/3oR9E0jR07dtDQ0MDo6Cj/9E//xKFDh/jP//xPFEWZLfvud7+bhx9+mI997GPU1NTMMet4vV66u7tnv/f09MxGYE1NTZHP52fbqbu7e7bs3/3d3/H//t//4/bbb+etb33rPFPRue0TiUTYvXs3cFZT8fDDD1NbW0ttbe3sfXo92hQqZpZbbrmFe+65h4985COEw2Huu+8+Vq1aNSfi6Xd/93f55je/yS233MJ9991Ha2srx44d49Of/jT19fVz/LmuueYa3vGOd7BixQp8Ph9DQ0N86Utfor+/f04E2k9/+lO+8pWv8I53vIP29nY0TePll1/mC1/4AkuWLOHee++dd81V3kRcZcfYKlUumTPRMfv37xdvf/vbhdvtFh6PR7z3ve9dMPHTgw8+KG688Ubh9XqFzWYT7e3t4t3vfvdsIqXp6WnxwQ9+UHR1dQmXyyXcbrdYs2aN+Id/+Aeh6/rscYaGhsStt94qPB6PAC4a7bBQsrLh4WHxvve9T9TU1AiLxSKWL18uPv/5z8+J1vjqV78qbrzxRlFfXy+sVqtoamoS73nPe8SRI0dmy9x3331i06ZNIhAICJvNJhYtWiT+6I/+SESj0Yu2X7lcFh//+MdFW1ubsFqtYtmyZeIf//Efz9vOu3btmnddnBOdcO7nTKRGsVgU9957r1ixYoVwu91CVVXR0tIi3v/+94vjx49ftI7ni+QQQoipqSnxG7/xGyIYDAq73S62bdsmHn/88Tll+vr6xJ133imam5uFzWYTdrtdrF69WnzmM5+ZF53x7//+72LLli0iGAwKVVVFIBAQt912m3j00Ufnnft81w3Mi5w6034Lfc6NKNq5c+cFj3suu3btuuTzX+k2PcNjjz0mtm3bJux2uwgGg+I3fuM3FnzvDhw4IO6++27R0tIy+4zee++9YmRkZE65P/7jPxZr164VPp9PqKoqGhoaxN133y2ee+65OeV6e3vFu9/9btHe3i7sdruw2+2iq6tL/Omf/ulFk+xV+cVHEmLGAFqlSpUqVapUqfIGUvUJqVKlSpUqVapcFapCSJUqVapUqVLlqlAVQqpUqVKlSpUqV4WqEFKlSpUqVapUuSpUhZAqVapUqVKlylWhKoRUqVKlSpUqVa4K1WRlC2CaJhMTE3g8ntdlYa8qVapUqVLllxUhBJlMhqamposulVAVQhZgYmKC1tbWq12NKlWqVKlS5U3L6OjoRVP1V4WQBfB4PEClAb1e7xU5pqZpPPbYY9x6661YLJYrcsxfVKrX+svJ/5Rr/Z9ynVC91l9GfhGuM51O09raOjuWXoiqELIAZ0wwXq/3igohTqcTr9f7S/0CQPVaf1n5n3Kt/1OuE6rX+svIL9J1Xoo7Q9UxtUqVKlWqVKlyVagKIVWqVKlSpUqVq0JVCKlSpUqVKlWqXBWqQkiVKlWqVKlS5apQFUKqVKlSpUqVKleFanTMLyjpzDFy2T4U1YmqeFBVD6rqnvnrR5art65KlSpVqry5qY5kV5lUQWM6XWRpnXtOOFMi/jyGUVhwH4vFR3Pz+6uCSJUqVapUeVNTNcdcZXadCPOzI5P0R3Kz24QwZgUQf2ALXu8anM5OrLZaJElG01KUStNXq8pVqlSpUqXKFaE6lb7KRLMlAEYTeZbUuQEwjHzlR0km4N82R0MyHX6YXPYUxeIoDkfzG17fKlWqVKlS5UpR1YRcRXTDJFvSAZhMFs/ZXtGKqIprXsY5h72Sh79QGHuDalmlSpUqVaq8PlSFkKtIpqgjROX/kUwJzTABMPSKEKIoznn7OByVhfVKpUlMU3tjKlqlSpUqVaq8DlSFkKtIqnBWiDCFYDpd0YYYM5oQRXXN20dVfaiqByFMisWJN6aiVapUqVKlyutAVQi5iqSLczUZk6mKEHKuOeaVSJKEw1ExyRSLVZNMlSpVqlR581IVQq4iZzQhFqXi9zGRrETEnDXHzBdCAOz2ikmmUBh9vatYpUqVKlWqvG5UhZCrSLpQcUpdVFuJiplMFRFCzEbHLGSOAWY1IaVyGMMovQE1rVKlSpUqVa48VSHkKnJGE7Kkzo0qSxTKBsm8hm5kgYXNMQCq6sFi8YEQlEpVv5AqVapUqfLmpJon5CpyRggJOK3Ue+2MJwtMpAq4jQubYwDsjlY0LUWhMIrT2fmG1PeVlAt5sokEkiwhyzKSrCDLMoZpIgzjqtSpypuTYjYLEthd7qtdlSpVqryBVIWQq0RJNyhqlYHa61Bp9M8IIck8ix0V35CFQnTP4LC3kEkfo3AVnFPzqSTjp3qJjgwhTHPe74ZhkhwYQL/tViwWyxtevypvDkzTID4+xvTAaVLhKWRZoWvHTvwNjVe7alWqVHmDqAohV4kzWhCHVcGmKjT6HECC8USaxXYBknRBIcQ+k7SsXIpgGAUUxfG61lcIQSo8zcSpXpJTZ01ADq8PWVYwTQNhmpiGQSmfxzQMsvE4jurM9n8kQggKmTSyrKCoKorFgiTLSJJEMZdleuA04aEBtOLZ9ZFM0+DEc7tZcd0N+OoarmLtq1Sp8kZRFUKuEmecUr32iqag0WcHIJbJU66VcNidSNJ8lx3TFAghUFUXVmsN5XKMQnEMt2vp61bXxNQEI0cPkUsmZrZI1LS00bSsC09NaF75nmefhpMnKaRTr1udflEQpok4k3Hul4wzgkQ6PE06GiYTj1NKxC66n14u0/vs02RikTnbJVlGUS3o5TJQaTOr3UFd5xJqOzoZOrSfxOQ4vc/upvv6G/GG6i67vqVcDsWiYrHZL2vfKleefDpFdGSIhiXLsNpf30lSlTcvVSHkDUKPF/EkVYxMGUvQMqsJ8TkqQojLpuJ3WoikykTyCp2u+VoQIQTH94xjGoLVN7Zgd7RQLscoFl4fIUQvlxk6cpDw4GkAZEWlrnMRTUtXYHefX8Ph8PgAyGd+uYWQYjbLocd/TnZk9JdGEBGmSXh4kOTUBOlIGK10djkBwzDJjg4xeeoEbStXL7i/Vi7Ru2cX2URsRvMhYxr67LH1ciWay1fXQMPipQSampFlBYDl26/jxHO7SU5P0vvM03Rff9OCQu5CpCNhRo4fIR2pLOxotTtw+gM4vT6cPj8ufwCnzz9vGYQqrw/ZRJyePU+hl0vkkglWXHvD63o+Q9fIRKMVYTkWxVffQEvXytf1nG8UpmGgl0tYbHYk+ZcvlqQqhLxB6OM53BkLRrwIQddsojKv4+wtaPQ5mE6UiWQtLG2YP8iXCzqFTHn2/w57K+nU4dfFLyQxNUH/yy9SLlTChRuXLKele9UlzTAdvooQ8ougCUlMjpOcnqK2vRN3IHjR8sVcFiEEDrfnomWHjhxAK5Uop1NkYhFqGt/8CwqOHDvC+Mnjs99lWcETqsUbqqWYz9PX18fw0UMI06Bt1do5g7pWKtKzZxe5ZBzVamPlzptx+QMI08TQdQxdw9B1FNWCzTlfyJYVheXXXM+J53aTCk/R88wuVl5/E+5gzXnrm45GGD1+hFR4CgBJkhHCpFwsUJ4qzDEd2pwualrbqW3ruGoCiWkaREeG0YpFFIul8lFVFNWCarXi9Pre9ANNLpmYFUCg8g6mwlNX1MQmhCAdmSYxOUE6GiaXSCDEWf+0VHgKCYnmru4rds5Xw/TAaQxdo3Fp10WfN9M0GD1+lEI6hVYqoZWKaMUihl4ZKxTVgjtYgztYg6cmhCcYwmK3Y+g6+VSSXDJBLpkgHYuS6D3CcacVtz+Aw+PF4fXi8Hixu9y/cM/XVRdCHnjgAT7/+c8zOTnJypUr+cIXvsB11123YNnJyUn++I//mP3799PX18cf/MEf8IUvfGFOGU3T+Ou//mu++tWvMj4+zvLly/mbv/kbbr/99jfgas6P7LMCYKQqQkT6FZoQgCa/nYNCI5xVF/QHKebOZljVSgZOXzNIElo5jq5nUdXX7n+haxpDhw/Maj/sLjdLNm/HW3vpqnGHxwtAIZ1GCHFVOvtCNjOr3geY7DtBoKGJ5hUr56n5hRAkpyaYPH2K5NQEkiyz6oZbLjgLT05PER8/myxu8tSJN70QkgpPM36yB4Cm5d0Em5pxB2qQlYqmQtM09h86DMD4iePo5TKL1m9CkmW0YpHje54in0pgsdlZufNmnD4/UDHDqFYrqtV60TooqkrXjuvpfeZp0tEwPc/sYvHGrahWa+U5mnmUDF1nsu/krJAhyTJ1HYtpWbESxWIln0pSSKfIpRLkUylyiTilfI6Jkz1MnOzB4fVR29pBTVt7pWO+wDOqlYrEx8eIjY9SLhRweDw4PD6cXi8Orw+HxzvbRhdCmCanX9pLdHT4vGUq5qnF1HUuPm+kkFYskpiaoJTP0bi0C/UXyPk7l0xwfPeT6OUS7mANDq+PyNAAQ4cPsuYtt1+RviAVnmbk+GEy0bnmPpvTjbe2FllRmR7oY/joQVSbjfrOxa/5nK+GdDRC//4XAXAHai7ah0aGBhk/cfy8vxu6Rio8NStwQ+V5KReLnDFvQkVjaWoamViUfDI+5xiq1cbqm26d7aN/EbiqQsh3v/td/u///b888MAD7Nixg3/913/ljjvuoKenh7a2tnnlS6UStbW1fOxjH+Mf/uEfFjzmX/7lX/KNb3yDr3zlK3R1dfHoo49y99138/zzz7N+/frX+5LOizIjhJjpckWKX0AIafDZMU2NaE5FWkAIKWTPCiHloo4n6MZqDVEuRSgWx3G7l7+mOuaSCU48t5tSvhIi3LhkOW2r16Kol97JacUi8bER9FwGXStTyuewu9xohslUqkhBM1BkCVWWUBUZVZZQZAlZkmZNGmdeJ1mSCDgtl9VxGbrGWO9xJk71IkwTSZbx1daTnJ4iMTVBYmoCb209LStW4Q4ECQ8NMNV/imI2M3sMYZr0vfQ8a2+5Y8FrF6bJ0KH9AASbmpFO95GYnCCXTODyBy65rmcoZrOEhwZwer14QnULagkuhhCC4aOHMLQyi9ZvvuzZjlYucXrfXkBQ17GYjjULvyuOugYWrVjO8OEDTA/0YWhl2tdsoPeZXeTTSSx2R0UA8fou+xrOoKgWuq69gd5ndpGJRTi5d895y0qSTG3HIlpWrJwzaHtntDdnMA2DxOQE0dEhEhPjFNIpRo4fZuT4YSx2B25/AFegBlcggM3txdS1StTOjFnq3Fl2PpVgLhLe2jqWbN52XsFBCMHpl18gOjqMJMvUtLRhGgaGplU0RJpGuVCgXCww1nuMsd7j+Bsaqe9cQqCpiXwqRWJynMTkBNl4jDNvSTGbYemWay6/kV8HXimAdF93E8I0iY+NkkvGiY4MUdv+6tMJZGJRRo4dnh2EZVkh1NaBr64eb20dNufZlAaKxcLEyR4G9r+ExWYj2NTymq/vchBCMHR4/+z3ib4TFxRChBBM9J0AoK5zCYGGJix2GxabHYvNjqKq5NMpsvEYmViUTCxCIZOmPOPYbbHZcQWCuHwBbG43YSGzdMtWtEKeQiZNIZOhkE6hl0tM9ffRuW7j69sAl8FVFUL+/u//nt/6rd/i3nvvBeALX/gCjz76KF/60pf467/+63nlOzo6+OIXvwjAf/zHfyx4zK9//et87GMf48477wTgwx/+MI8++ih/93d/xze+8Y3X6Uoujuy2IiSBKBuYeW3WJ+SMYypAyGVDkcvkDYlM0cEr5+HF7FxNCIDD3kq5FKFQGH1NQoiha5zc+8ys0LB40zZ8dfWXvH8+nWKy7wSRoUE0TaNcLNE3NEX+6AgZ1cNkqohhXr7fRGvQyV3rmlCVCw+qQghiYyMMHT4wa0LyNzTRsXYDTq+PQjbD+IkeIsMDpCPT9ESmZ1X3AIrFSn3HIkJtHZzc+wzFbIbBQwdYsmnrvHNNDfSRTydRrTYWbdzCocMV7cDEyV6Wbr28ASGfTtGz+8nZzgRmZnShWjw1Ibx19Zc0oI8eP8rEjBbDV9dAqLX9kusghGBg/77KvXd76Fx/4Q6qrnMxNoeDvpeeJzo6THx8DNM0sNoddL9GAeQMqsXCimtvYODgPvLJJAIBQsysOl15jjyhWlpWrLok05msKNS0tFLT0opeLhOfGCM6MkQqPI1WLJCYKpCY0aoYhkmir49BrYAy89y5/EFqWttwev0Us2kKmTT5dIpCOo1eLpGOTHPkiUdYsnk7waa5GjEhBAMHXiIyPIgkySzbei01La3z6vjKkOXk1MSsZu6VofAuf4BcMklkeJCalvZ553yjWUgAOaP5au7qZuTYYUaOHaampe2StEbnkk8lGT52mMRExewsyTL1nUtoWbESq2Nhgb199Tq0UpHI0ACn9j5L986bcPguf4LwaomODpONx5AVFdPQiY+PUcxmz+tLl5yepJBOoagWOtasX1Br6PIHcPkD1C9aAlQmDoV0GrvLhcXumJ2saZqGevQ4Na3tc1IkxCfGOfHc00SGB2lfs27WF+tqc9WEkHK5zP79+7nvvvvmbL/11lt5/vnnX/VxS6USdvtcvwWHw8Gzzz57wX1KpbPpz9PpNFC5mZqmnW+3y6JYKpMXgmJJR5/KUNJ0JCTsiphzjqCtQC5vMpmWaamde+5cuogx0xkVsiU0TcNiacAwDXK5Yfz+V1/XgQP7yKVSWB0OVuy8GdVqu+i1CyHIRCNM9p0gMTkxsw1OGj5esi5DzVjwPn+M5hUrkWUZl03F57BgmALdFBgzH80wEZWo5FkkCUqayXA0w+PHJ7m5q/aCGpHw0AAD+18CwOZy0b5mPYHGZiRJqryUNjvtazfQsHQ5k30nCA8OYOg6Tq+P+sVLCbW1z2o92tdt4sSzTzN5+hSe2ro5syitVGLoyCEMw6RteTdCkrGH6jHNMtPDAzQu78bmOn+SuXMpZNL07nmKcrGI3e1GtVgr5oNMmnwmzdRgPwCtK1fTtLz7vNcfHR1m+Njh2e+jvcfw1jdesgYpMjxIeHgQSZbo3LAFU4C5wL0/8zxomoavoYklW3bQ9+KzaJqG1eFg+bU3YHE4r9g7g1Spz8W47PNJEoHmVgLNrefY0+PkEolZuzpUws9r2zsINrfO0XB4zpnRViJyspze9wLZeIzje56iafkKWrtXV4QHIRg+fICp/j4kSWLJ5s146xvOW2dfQxO+hiaK2QyRoUEiwwOUi0UUVcFX14C/oQlffSM2p5Pho4eYPHWCvn17WfOWOy7J3HW+tnst96yQSdOz+0m0Ugl3MMjSbdchZt47gFDHYsZPnSCfyTB64jhNy1Zc8rHT0TAnn9uNoRtIkkSovYOWrlWz79iF6t2+ZgOlfJ7E5ATHdz/F0muuf83XeikYus7gof0YhklTVxeZaJjk9BSjJ47TsXbDgvuM9h7HMExqO9vntN0FkWQcMyZPXddnN5/vnrprQigWK6VCgcjoyOuqHbqcNpbEVXLrn5iYoLm5meeee45rrjk7e/zsZz/LV7/6VU6ePHnB/W+44QbWrVs3zyfkfe97H4cPH+bBBx9k8eLFPPnkk7zzne/EMIw5gsa53H///XziE5+Yt/1b3/oWzlehGl+I/ISKHLVQa4NEQOPxkoldEdzYNLf5B3KHOZ3y0GBvYE1w7rkzgxZMvTKwWD0mjgYd0LFYn0RCUC7vBC4/FK6cTpIZqgx43kVLsbgvbi8UpklubIjSTIctSWDx+Jl0NnK66KKcSmDGpwgoOg0hD60dLbhsCpdjEo4U4OWoBEh0+U06LzDhzQz3U04lsQVqcDW3XdQcYeo6pq6h2OxznStNMASY4TEKkWlkVcW3dAWypdLB58ZHKMYiqA4H3iUrZvdND5xCy2awh+pwNc2f5b4So1ggPdiHqWmoDgeezqXIqgVhGOiFHFoui57Los2YieyhOpyNLfMECz2fJT1wCmEK7MEQpWQMYQq8i5ZhuQQNgVEukerrRRgGzoYmHHWXlyhMz+coJePYQ3UoVttl7fuLijBNhGkgX4YZUpgm+alxitEwABa3B3drB8VomEJkGkkCV0sHtsD5nWzPd1yjVKw8p694poVpkurrwSiVsAVrcLd0XNaxrxTZkQFKyQSq01l5jpX5c9tSIkZ2dAhZUfAtX4WsXnz+q+WyZIb6EIaJxe3B1dSGYr+80GthmmQG+9ByWWSLBe/i5a/7c1oIT5KfmkCxWvEtW4mWy5AZPI2kyPi7Vs9rH71YIHWqB0kC3/JVr2v98pOVfs3q9ePpeP18ZfL5PO973/tIpVJ4vRceT666Y+orO9XX6sj4xS9+kd/+7d+mq6vijbx48WI+9KEP8Z//+Z/n3ecv/uIv+OhHPzr7PZ1O09rayq233nrRBrxUBo9EePmxo9TVNeFtsLNU0mnyO7hzw1k1qhCCvUfHiJ92U1+/ljt3nA27NQ2TA4+OImZMGr5aB8u2Vswlk1NlSqVJQjUrcLsvzxu8XCxw9IlH0JYupXFZF+2r1110HyEE/S+/QLSURa6vo7ajk4YlywmXVX5yeJLFhoEyepDV9R5yiRihtgCeoIPlO3ZethPdmtEkz/RFMZHoXttAR83CWobDj/2cQiZN17U78de/uoybp6YzPHUiggDu2Xkjk/t2k0sm8df4Wb5jJ4V0iqNPZhBBPyuuuxFfXT2apvH4449zy93vpu+FZ1FUhXU33YTlAp1lPpWk95ld1HZ04PL76br2Riy2hTueydMnGT58EIDauho6N26eVaOW8jmO73qc8uIlBBqbWbZtB0OHDzA9cBp/QwNdO3Ze8HqFadKz5ykyixbhCYXovu6mCwpvs9d6yy2/1JlwX8t1xsZGGNj/UiUKCB3D7wW/l0UbNlP3OjhIZqJb6dnzFEIIujasv+xss6/1npbyOQ49mkHUhlh9823n9YkSpsmxXY+RSyZpaG85r0bgDJlYlBPPPo2xaDG+unqWbb8O5RIEl4XQyyV6dj9FNhlnaOAUb/vgvXgvEHH1WigXCxx+9GcYHhdLtmwn1NqOEIIjTzxMIZ2mvWsZjUu75uwzsP8lwkIj2NzKsm07XnMdLnRP86kkR554BEmW2HCRfuq1cMaacClcNSEkFAqhKApTU1NztofDYerrL90X4ZXU1tby4IMPUiwWicViNDU1cd9999HZeX6HKJvNhm2BQcBisVyxztbltWEoAt2ATEZD9ikEXPY5xzeMPPUeA0mWyWkympBwWiu3KJcvIUsy4bE0QoDLf3Zft6sdXQuj6VNYLGsvuU5CCE4fPoCpa3iCNSxau+Gi9lohBIMHXyYxPoqqqiy/5jqCTS0kcmUeOzKCJMusafKQz1hwCA92pwOLzUY+Gadv7545tuJLYXNniFTR5Nh4isd6o/zaZgc17rn3yjQNtEIeRZHxBkOXfc80w+TpkxGOjac4E36xbyzLW7Zfx5EnHiETDRMbGSQ+PoYsS9S0tBNqnqvKDDY14wvVkk3EiA4P0rZqzYLnyiUTnHp+D6au4a0J0X39jRcMe25bsQq7w0n/yy8SHx9BCJNlW3cAgv6XnsfQyniCNXRdcx2qxUJr9yqiw4NkItOUc9kLOsqOHj9CPhnHarPRtf06rOcRhF7JlXwvfpF5NdfZ0LkYX6iWk3ufJZ9KoCgynes20bj0tTmNn49gYxPNy7qYPH2SkSMHCDS89VVFy7zaezo+NIAsSfgaG/FfJPpj0bpN9DzzFNGhAVq6us/ry5OJRenb+wwIk2BjE107dr5qAQQq17b6xrdw5KnHMPoH6Ht+D6tueMslhexfLiNHDoAw8dXW0dC5eHZC3dq1kv79LxIZHKC1a+WssK8ViyTGR1EUmdYV3Vf0vVronvpCtbP9VHJynKZlXefZ+7Wf+1K5agHDVquVjRs38vjjj8/Z/vjjj88xz7xa7HY7zc3N6LrOD3/4Q975zne+5mO+FqxOFSEJykKQ1gzMkjEnMgZAN/JYVUHQKQMyE8mziaKKOQ2tbGDqJoZmkEucNS05HJUBsZAfxjR1LgVhCqb6+0hMjiPLCku3bL8kh7GRY4eZ6j8FSCzZsp1gUwsl3eC/j0xQ0kya/HZ2Lg0h22zIM6GZS7dsR7XayMZj9DzzFKZ56YvbSZLETV11NAcclHWTnxyeoFCeu38xk6FkmGSE5bIl+0imxLdfGuHYeApJgjUtPmRJoj+cJWZYaZ+JEhk6dGB2fZP2BSJHJEmiaXnF1j3Vf2o2tv8MQgjiE+Mc3/0kWqmIO1BD986bLinvSl3HIpZfcx2yrJCYGKP3mV30vfg8uWQlHLZrx/WzA4/D7aGmpRJZNnGq97zHTIWnGOuthAMu2rilunDcFcTh8bL6pltpXbmGZVt3vG4CyBnaVq/F7nJTyucYPnLwgmUryyrkyMSjxCfGCA/2U0rESIWnKGTSGPql9R9QCeefHqiE8l/KYOZvaMTf0IQQJiNHDy1YJhOP0rPnKQxdw1tbT9eO61+TAHIGq8NJ9/U3ozqcaKUSx59+glR4+jUf91xyyQTTAxWzdsfaDXM0+qG2DlSrjVI+S3zibF6nqf5TmKYxk/ujdt4xXw9qOyoT8sjwwBtyvotxVc0xH/3oR/nABz7Apk2b2L59O1/+8pcZGRnh//yf/wNUzCTj4+N87Wtfm93n0KFDAGSzWSKRCIcOHcJqtdLdXTFDvPjii4yPj7Nu3TrGx8e5//77MU2TP/uzP3vDr+9cbA4VJNBliYxuIIribKIy0wBZwdCzADR4VSaLMJkqsKSuMjiUchrlgo7VoVLMaeTTZUzDRFZkbLYmVNWNrmdJpw/h92+6YF0y8SLHnu5jsu85ZAVautaRikiU8jmsrjKKNUNZS6CV42haEk1LYJplzNRypk5VHFAXbdhMbVsHQggePT5NLFvGbVN565omVLliUrN7vJSyaSRJZuXOmzm++0my8RgTJ3tpWbHqkttOkSXetqaRb780SjKv8bOjk2xqDxDOlJhOFxkcnWRoyo7V4SA0mmRj+8VnOEIIjo6n2H0ygm4K3DaV21c10Bp0IklweDTFM31Rfm3z0pmEZ5MANC1fcd4Bu6a5FbvbQzGbYXqgf7ZjzibiDB85OBta6A7UsOL6G7Fchu032NRC9/U30ftsJX8GVKIEll9z/bz6NC9fQWxsmOjIMG2r1s4JXYRKDpWTe59FCJPa9k5q2zouuR5VLg1FVWntXjir7EKYwiRdSpPTc+S1PHk9P/tXMzU6vZ0s9i9Gled32YpqYfGmrRzf/STTA32EWtvwhuooZNJk4jFyiTjZeIxCNoOhlefseyYLbu8zT89GAqlWGzank/pFS2lYfP5MzOHBSiIuh8eLv6Hpkq6zffU6klOTxMZG2P+zB7HYHVgdlY/FamOi72RFAAnVseLanZeVHuBiWOx2vIuW4fW5yMWj9D6zi2Xbr70iDpqVkNwDgKCmpX1OeDhUnoeGxUsZ6z3GxKkTsyHaU/19ADRdQjKzK0WotZ2hwwdmnbBfTVqBK8lVFUJ+9Vd/lVgsxic/+UkmJydZtWoVP//5z2lvr4QXTk5OMjIyMmefc3N97N+/n29961u0t7czNDQEQLFY5C//8i8ZGBjA7XZz55138vWvfx2/3/9GXdaC2JyVpjZVmUS5hCkrFU3I6Sdh4gBs+CCGmMnP4bPNCCFnNSGF7FkhpJTXKeU1ykUDu0tGllUCge1EIo+TTL6Mx7PyggvajfXGCA8dwtB0LPYQhlnL2Ik4htyHruzFX+/E5Zs7QCbGUoRP9eP1rqZjzabZzunFwTj94WxFUFjbiNumznpGO7wVIaSQThFsaqZz3Ub6XnqesZ5j1LS0XVbCHKdV5R1rm/jey6OMxvOMxvOzv6XTlf9bbDb2DydY2+K/aEjv7lMRDo4kAegMubh1Zf2s6Wvbohp6JzNMp4ucnM6yZPM2jjz5KLKiXjADoyTLNC/vpn//i5XkaE3NjPUcJTI8CFTyGjQsXU7LilWvSmXura1j5Q1vofeZXWilIos3bp3X2QG4gzX46hpIhaeYPHWCjnNyAujlMiee2z0bSrnoEqJPqlxZsuUskUKEeDFe+RTiJEoJTDF/ReozDCQH2Duxl5WhlaysWYnTMtdp3VfXQP2ipUwP9HHiuT0IIWbT5b8SSZax2OxY7Q4kVcUyNY3D48UolzB0Db1cQi+XGDjwElaHc8HwX2GaTPadAqBp2YpLHkBd/gCNS5YxefokpXxuNifRuXhCtay47oYrKoCcQZrJyjt44CUSE2OcfP4Zlmze9prylwgh2H98gFNDETpdCu1r1i1YrmHxUsZP9pCJRcjEo+RTKbRSsdLGC4Rsv15YbHaCTS3ExkYIDw1c9ZwhV90x9SMf+Qgf+chHFvztv/7rv+Ztu1gwz86dO+np6bkSVbuiyIqMrAiwyqQyBhbAa1chMQiGDpET6IGKar7J5+TlKZ3xZArDbEGRJYpZjVJBx+G2IKsy5aJBMa9hd1komyY/TNUilTq5zjZIMrmPmprrF6xHLllisn+AciFN/aIalm27GdNQKWQKRJJHoAzlvJ3axg5USwA9p5CazBDuewLTLOFtPpsKuT+SZW9/ZUGzm7rqZlYCPovD4yXJ2TVkQm0dRIYHSU5PMnBgH93X33RZ0n+tx8Ydqxp45PgULqtKncdGnddGVp7CkIsctDjJlQxOTmdY2XT+XBXxXJlDo0kArl8WYkNbYE49nFaVzR1Bnjsd5bnTUZZc08H629+OJEkXNVnVtncyeOwIR8NFwj/5KT5LZWCpbeukddWa12z2cAeCrLv9bWiFwmxG0oVoWr6CVHiK6cF+mrtXYbHaKknYXnyOQjqF1e6g65oro+qucnF0U6c/2U9vvJeJ7MSCZVRZxWVx4VSdlb8WJ07ViSEMemI95LQc+6b2cWD6AHW2Dii141D8sxFnptrMUGEKWSuwxKXjtllwBYK4A0HcwRqcPj8Wux3VYp2TU2IglWPtrXeiqiq6VqaczzN5+hThwdOc3reXdbfeOS8fR2xshFI+i8VmJ3SZmrSOdRtpWt5NuZCfSdCWn03UZrHZaVmx6nURQM6gqCpd26/j9MsvEBkepO+l55Fk+bJy60BlLOoLZ3lhIEbPkROUixZaFrWd9x23OpyEWtuJDA8yeeoE+VSlX2xcsvwNz9lR276I2NjIL0TOkGoP9AYhhMAhSRQVCd0wsZoyLiFBeWZGnxzB8FRUmkG3k5Hys6TKcYaTDXQGasgmSpi6icWuYrUrFDIG6UgBf62TwUKZRDKJJtoxrYOk04fxetdiscwfiCf7U5SyMRweC+2rVtCwqDKTTiRPUx6XiA670WI7KXkEE2PDFHMVE5HT0YHFP4mzMU6pNI2s1vJUb8UssK7Vz6rmmUXrtDxPDj3J7uJuhpKNxLVRHGPHaHadRpZkTJ/OxMRxpInD7H+xH1+oHlmSWRpYSlfw4nblRbVuPnLDkjnbDp3MkldgfXuQwwk4MJKku9F7XgHnpcE4QsCiWtd5TTfr2/wcGUuSKeocGk2yuePSnNhkRSHhb+fI4BA+1eRd3X4612644Ponl4vFaruoKcdf3ziT0CrBdH8fLStWMXz0EImpCWRZoWvHzvMmeqpy5YgWovTGejmVOEXJqPhxSUgE7UFqHDUE7AGC9iBBexCv9fzP7Ia6DfSn+jkSOcJgYoK9A/swzJdosq2i3no2h4weWkQ5nyfncrJ9aT3LOmqwqpfm+idJ0uyztWj9JnKJGLlkgr6X9s6ZMJyb3bNh8dLLFmQlScLmdL6qzMBXCkmWWbJ5+2yK94lTvZcshJwrfMSy5Zk1XgpIksyE9cILLjYtW0FkeHA2db+iWmaTj72RBBoasdgdlUR9kxPUNL9xmphXUhVC3gCEEBR64jhLNrR0CVOR8KgKZqrIeDTLZMZkrTmGUV+RoPNCpkQUQxj0J4ZpcfpnFq6TCLjTqMUc4xknyXCBtm4Yjsbp+O+H0J1O+JVWRHmURGIvdXVz18sp5jTikzlK+ST+ejueUOWFMYwiqeR+ykWd0SMyeuFpolEPiiqjqCr+hmbqWrfhdJ+gWDhNJPokk+XbyJZ0vA4L1y2tHGciO8Hjw4+TLqbRhY5pkSiLMlpRx1NKn+3EQk6S01Okho7QoC5DUVUmc5Ms8S9Z0OZ9wbY1TQozmpYNixvoPRQhmikxGi/QVjO/k0vmy5yYqoSPbVt0fsHAosjsWBLikWNTvDQYZ2WTd9Zcc4asbvDzcJJR5axAYJiCUeHDX9eAarNRt2Elbt8bv4x5xVG2m74Xn2Oy7ySq1TbrqLpk87YrKhT9T8YwDZ4df5ax7PxFJA3TIKtlZ7+7LW5W1KygK9iFx3rxHC7nosgKywLLqLN18B9jB/EoPRjWKSyuAbweC2uC25CkirAxEMkykSzywmCC45MZrlkcYkWj57K0jrKisHTrDo488Qip8BQTJ3tnNaCZWKSSDVRWaFi87LKu4xcJSZJoXbma6YHTZOOxC2Y0PcNEssATvRUfOACbRWaJUmZ1bZnniiEm0xrhTJE6z8IO5y5/AG9t/exqz7Udna8qydxrRZJlats6mDjVS2RooCqE/E/gpwMxyrKFQLKA1QYeVUaLJRlJGmgmRDI61vQYWGEin8CiyIDBSGqUor+bckHHK43ROvp9CjnI6neQiXoRQhDtOYFL17CmU1i06zEYJZs9ic+3HpvtbLjz9GAaQyshKyWsdjeeYIiybtI79Czj4QhjB5Jk4w1Ipk40Y4eGZvDVYiST6ENHcAQDtNcUsClDPDu+H5utmRuW16LIEgfDB3lh8gWEEATsATbaNnL7yts5NPYTTGHS3XwLFqcdU5joHRq9z+8hl0nizzcyGsxS0AtM56dpdl9e+uliLoswTWRFxefz0N1Y4tBokgMjiQWFkDNakM6Qi3rvhSNTuho8HBxJMp0u8sJAjJu6zrZlzjD43lScSLHMgGLDnDETnphKkyubeGZ8NXqnMtRfBSEEoKallZGjbkr5LAMHKtlkW1asumz1+f80DNOgJBZObPhKXph8geOx8y86JksyHb4OuoPdtHhakKVXH5BYKBs8dGgCyQiwpfZGujuSvDS9lzIjRIXMLe23YJEtbGoP0BfO8kxflHRB49HjUxwcTbCxPYBNVZClyrpMsixhGjrl8wSrOb0+OtdtpH//i4wcO4y3rg5PMMTEqYoWJNTe+brlmXijsNod+OrqSYWniI4N09K18rxlS7rBT49MkCsZ2CwyG9oCrGv1c/Lpx8hZBN11tUwLODiS5LaV518xuGlZ14wQIs3LGfJGUtexiIlTvRwfnMK+OEF7/dVZWboqhLwBSJJEsMPH8bE4hi5oK4IvIJOcmECb8UVLlwWh1BjUNjCej80IITCRm6CQKSNlJ2g1dmHTwxjYaSk9SiTsJFxsRxnoh2IGZBVtPIN3WRfZ7Ani8WdpaHhXJXV52SAykqFcSKE7i7wUH+W5fT9DLtbTID2HkcxRyAawOmzYazejtgaQ6+wYpiCTnkBIJoVYlHHRQkKbZCoxjLDYebzX5FvHH6LEFA6rwoqa5VzfcB37+/YQdASp9zWTTyXw6DaC7rMe9DVbPRx96jGYLhPwuSlQYDwzftlCSD5d0YI4PF4kWWZ9m5/DY0kGozli2dKcnCKpvEbvZCUD6dZFFzevSJLEdUtD/GD/GEfH0qxt8VPjtlEwTH4wlSCm6ZjCQEeQ0A3qLYIDw5UMsq1BJ6PxPCenMly/tBZZfnUvtxDm7Az3cpFlhaZlXQweehmAYHMrrSsXzl9yhrRu8PNIkrUeJyvcFxeeCmWD/kgWn8NCrceG3fL625ZNYdKX6KPGUUPIcWH196vhqbGneK70HF3xLtbUn7+9TidOczhSSZe/s2UnQfvZZ+pMZ+6z+XCor10I1QyThw6NE8+V8dhV7lrfjMfeQcDh5fHhxxlKD/GT0z/hjs47cFqcLKv3sCjk4tBokhcH44TTJR4+OjXvuKZpMDItcWtZxzfjLK0ZGsPpYWocNdR1LiY5XYlm6XvxeZZvv474eEXr83rlmHg90EyNY9Fj5M38vN9Cre2kwlPERkcuKITsG0yQKxn4nRbeu6UNu0WhmM2SS8YBiWtXd/LDI2FOTmW4dkkIl23h4TXQ2EzLitVYHY5LWvfo9cLp8+P0Bzl4Msfxp3t5742rWVr/xtenKoS8QWyu9/CkVUcxFFyKRF1WJyImObNoSrokqEtNotXUMpVPYFEkJEkiU8oxPXGKuvzDFK3TnLBJRBSBmh1C5L7Mzx47DIP95IppbIqL4tAg7VvfRi53ikJhjEJhGKezg6nBNNFMgRMTR5nM95DzOUmFe2hWH8NlL+FJBFnR3EqodhG6Vk+g0cXSTZWZ/wsvTFMoKJR0k2ShzKm4hsNi0BI6zKm8RsnMIUsyHnMN8fBivj89Rf+4hHZwAndRRi3q5JKJOV72npoQDUuWMnX6FOZwFLPFZDw7ftntWpgRQuxeL9GyTo3DwqJaN/3hLAdHkryl+6z24qWhOKYQdISc85xoz0dr0Mniusrxnj0d5bbVDfxoOkm4rKGKIqenHiJaLDFV3EQ+ZxDNlrGqMm9d3cjX9g6RLxsMx/N0hi5tPZkzCCGIxZ4mnT6CojhQVS+qxYuqerGoXmTFAcJECBOBMft/VXXjdHYiSRVhoK5zEdOD/SgWlaVbtl90prMvlWO0WMYUXJIQ8vTJMCemzq5AHHRZqffaqPPaqfPY8DutuKzKFZ1hHY4cZu/EXhRJ4c7OO2n1XjlVcl7LM5gaRAjBnvE9WFQLK2rmr3USL8bZNboLgPV161kZOv/gdYaybjKdLhLJlmgNOKn1XFqItmkKfn50kslUEbtF4e71zXhmFr5c5F/EO9R38PPBnzOdn+bHp3/MnZ13YgqTWDGGbovT1Bzh4MQY2aKO39JEwNKCV63FFBLZgqBkSOw+FWX7cjs9sR5OJU6hmRoeq4f3r3g/izZumTFXZDj29BOAINDQNLtQoRCCkXieJr9jdvIE0JfoY/fYbm5tv5U27/xV0S+V4xMpptNFfA4LPocVn8OC32mZc64LIYRg18guTsZOktDnroA8lshzIm9H1xVIxilk0gtG7SXzZQ6MVPbduax2VtiOjY8C4Kurp63eT5M/zUSyyOGxJNcsXlhAliTpvMkMLxUhBAdGErw0mKC9xsmm9gB1F9HsLkTO30ze6EPJJi67j7pSVIWQNwh30M7yTImn/Ha25yGvm+QTMYRdINntFLQCZjZNOJ9ESHX4bB4iQCQ3zIHBv6ZezVCyWZjy+MhrFoIpjWY9TseJJwnrdiadDpy5BIXxYRTThte7jlTqAAPju5gq3UbPnhGiuWHy5ZNIAoLBpSxpcFNjnkRK6MTzeYoMUN+xEa0P8qmKzdM0zdk1d5Yu6uDnBwbBqKXRO4QncIwuSyMOSzur/NdhaB6imTKnUllSFgsjiRxyUiAmUpzUTtGuBalxWZGkinOecLUyVThFNmkwbIyRqNVZ7U/isdmxqwp2q4xVkS84gOXTKSJlnSMlyIxH2OZzs6HNT384S+9kmmuW1OC0qqQKGj0TFV+QrZ2X5w9x3ZIQg5Ecp8NZ+o6NI7wW7LLMSjXCmGRQMmIcip/ElayoYFc3+3BYFZY1eDg0kqR3Mn3ZL3gmc4x0+ggAhlHAMAqUSpeWXElVPXh9a/G4V6GoNtbdeucl7WcIQW+2sppvSr94QrmiZnA6XPF58NhVMkWdeK5MPFee1ThBJc+L167idVjw2i0EXBYafA7qPLZLHkjOkCgmeGnypZn6Gvx88Ofc0XnHaxrkzmUgNYApTGSpsvjc06NPA8wRRDRD49GhR9FMjWZ3M1sb56+0DJApagzH8kyni0ymikSzJc4E99ksMu/Z1ErIfWFBRAjBkyfCDERyqLLEO9Y1zcsY3Ohu5F1L38VPB35KqpTi2ye+Pe84DX4ABZgGpjFUOx3eDpyijpdOjfGzoSGO5A2CrrP+CZlyhlgxRsgRYunWazi264nZPCON5yxC99zpGPuG4nQ1eLhj9dm08b3xXspGmcORw6/6/kymCjx2fOHn3m1TcVgVFFlCmTEvKXLF1FTrtrG8wUON28aB8AFOJytJ1c6Y2aZSRfYORBmKVjQjuXKQ7VKkog3pnp/DaPepCIZZmcCc+y7HxiopJIIzGZTXtwWYSE5ydCzFlo7gRVMFvBoMU/Bk7zTHZ/qzk1MZTk5lZoSRIA2eSx/Wh3Q3kiTRImcpZVKoVyFnSFUIeYNQVBmH3cSWNDgUsNCgl7Fls3hlHXvITz5dJlGAU5P9nFTTjMUMkpk8y+R+IprArXiJ1ixnrVPD7V9P71QKe+EAtbke6uwamSYv2VFI5WNoo6OYdWs4Mb2XZG6QkfAu0lkT01LCK2l01Xdzx1t/laJxkHBsFcdOjyFkC/l6lWezz+CJd9BpdKCXDXRTwzRNJEmitqmV7PE0khSh0QGnkxG8Hp3/ve738dhryOgGT8czqGkJueSAJhcNSi2R6dNouQz94Sz9r2iXor2VzGSE4VKCtGnjVHY/brURGQkFcAiJgCzjU2QsMx9VkVAkiCCYOnQaI5ci7TfRp7OMxvO8I+BFVSRyRZ1DI0muWRLi5RktSFvQSZP/8tTjAZeVbYuD/NuhMdKnc6zvruOeRSH2DO3GNdPJPD+yl+X6W7AoFta3+QHobvRyaCRJfzhLUTMu2VRRLE0Riz1dOXdgG07nInQ9PfvR9DSmUaoIZ5KCRCXD7p4BiYlEEr+9QK1rH7Xu/bTXLyfoX4/FcvGcLKfzJQozqzTnDBNDCJQLCIB901l0UxByW3n/tnYKmkE4XWIqXWQ6XSSaLZMt6himIJHXSOTnZpFVZIk6j40Gn50mv4PWgBOH9fxtZAqTJ4efIlfK4BZ5gq56wrrBw4MPc3vn7bR7Ly/EcsFrSlSSRy1WF7OqZhW9yV6eHn0aSZLoCnYhhOCp0adIFBO4LC5uab9lQT+PZL7Mt14aoaTNzf3hsasoskQyr/HgwXHes7kVr33hcFTTFOzui8xm871jdSPN53l2A/YA71r6Ln4++HMi+QhWxVqJwLHXELQHCSctTKYzWB1RMsYERb3IifgJDOM4pus0OSPIUNTC+oYu1tat4mD4IKOZUUYzo4QcIbyhOlq7VzHacxSXP4ivrqJhnEoVeXk4DsCJqQybOoLUemyYwmQ6VxEexrJjFPTCZZulTFPw1IlKBF6z34HbXplMJPJlSppJtqSTLS2cC2UgkuPFwTiyLULEfJEatwVVgoyu8d9HJhmOV3IwyZKEwyqTc3rZG0nhGx6eJ4QMRXMMRHLIksTOZXWzk6JSPk82HgWYdexcUuueFchPTGVmowbPJV/WefT4FLIksb41QGvQccmawkK5kp16PFFAkirO9cl8mZNTWYZjeYZjeUIuC/n8xdNZTCQLhLM6bp+PLYutV8UfBKpCyBvGy6f2MiTvJyvbSciNnLa5aDTz+DIJJtKQLOXJ5nJMm2H6rAYOs4kduRhph0QeN/Bh3l0TwZc8RMnqItOwnuQhg/r0CTzuEpttSZ4KOEmlEux//gj7mlZjM5cSLT+CEXdR426jrkOhJb0Wp82F1SmITPZSiuo02lfR4vchrW/lWKKHjJTkeKwH17DOotrKy2W323l5OIHd4WLNEjtmaQi9oGArlsgk93PCsYPnE1nKwqy82DIYDpVUc5BlYR8WFLxLasiVDRCgC5MTpTJj3kY8EScu4SZjlEhLUXS1Ed00K86eM++Fqkt4dQmvkLAhMS6ZZDFoTqdQTROn6SCT1RiXTL6aKNKSMRgI5zg+kWb/cIL9wwkEAlmCr+0dQpIkVFnCYVGwWxSc1srHPvPdokhnBR7giEiTs+hoWYE5liPij3A6NoGhCXTTzmA0hkU5zvVt2yhqJrpRxmGR8TpUUnmN0+Hsgh3SKzGMAuHpnyOEidO1CL9/SyWk0XbhlM6D0RzjuXGExWSqGGU4OYVhFJB7hwk4B9nY0cKO7psu6F9yLHPWXi4QpHWDgOX8XUTvZGUmtmImHNppVekIqXScM1M0TUGmpJMuaKSLGvunDnAqcZpUoUxZNzmeASYE4XQJU/ewqW47zX4vslQRUmRZwjAFJc1kJNfDQPYAhpaiU1lHxKrirpfRbGkeHnyYOzrveE2CSLacZSpX8ZuoU+rY0bQDRVU4Fj3GrpGK6aVklOhP9iNJErd13DYvadgZXh5KUNJM/E4LS+rcNPrs1HvteOwWiprBd/eNEs+VeejgOPdsap0noGqGySPHpmY1TTd31c9mTz4fLouLdy999+yAf2ZQyZd1njw8gBA+wIffsYxFoSIWe4TRzBAtdidu30ZsZhtqsY4WTwOxYozRzCgj6RHW11USRLZ0r8bp8+MO1iBJlfvyeM8UQoAqS+im4IWBGG9f20S0EEUzK0KnEIKB1AAray5usjqXo+MpwukSNovMW9c0zvGxKGoGybxGSTcwTIEpBIZZ0RJohslQLEfv9CQnos9gCI1kqpGyNM14Vqc9mkNRFFY0etnWWYNA8I29OoOTEzw7mmNFKolrJgePYQp2n4oAsK7NP0dTFJ8xxXhqamfD3WVZYl2rn2f6ohwcTbKyaW7Ydbak86MDY7PRNQORHHVeGxvbAyyr81zQdyyWLfHQoQlSBW3W5HvmXdu+WOPAcILjEynCmSJ9MZl1oym2Lj5/v3EmWeM1m1ay9gKOtK83VSHkDSIyOUlCSqLLMu5MjFFvGwG5hKnnEVEnumxH0mpYk3fjsW1hY9mJWQzwI/UgSTopKk7c+iTloSGKEzWobasoli1EMyHa3dMEgcXWMFohzVTPKcyGldg8LsSkBTc2OkPNbFlSx8jh/bgCQZLpfQjDID0mYVU9tK9YS3NrN53+bp4ceo7UdIG9/S8zkDqJ1/RikX0cHasMOreubeeJ4ReQRxqREfznaBjZP46qemiyWdnpc/DU8QxFi0JKsnE8X6bVpnBNyIrT42GkUOLxWJqi3UIHFuqWLaJzOs1pR5T6hjLXt7ehCUFe1xnLpRgv5ChqBQyjiG4WKBklamUnzZqFVo9CndVD88oGxgsR9uSd5HQJ2WbBnihS1AxeHk5Q1Ay8dgumYLYDuBCmMMgY06T0CUZFmgk1gDAFarzErqiNlyamsDknCahtFErLKZSPclwcpta2mIlkYfY448kCo/E8J6YyrG31z5iXKnZhCZBmIhUkCRAmDuMJVDGJKXnJKcuRBoZRFRlVlrCqMqpcEYxUWZpNUiWEYE9flESuTEvAiddZT4Ig2WyUUnGKeC5Df2SYSPr7eP3XzxNEJEmiaJrsylWyV9okibIQPFWMUn9ODgjd0DmZlPD1xyjqsHcghgQkchrP9kUv/g4Ux+lJ7AfA6RBYDEGhbBDLlYgWixhmlMdGYjRMXEOT1498TuetmRlG9T2YZoIQnRR1hXzRJJxxErMUUGxh+qa/xzUNb6He8ep8RAYyxxlO5PBZQhRSDp4fiKPIK5BKKYazJ/nnyYco6yY+h8rq4FZOT6icZv51F8oGjxyfwhSCzlAtEhJTqRJTqbMRNw1eOyenMozE84zEC1y7JIQyMwAVNYO9AzHiuTKyJLG5I0CqcGltfJazAmV/pDJLtqkyhikYiQuOjIMiBWj01ePIBulesobnTseZTE6RKei4nW5GYnnG4v34jElU+Yy2xgnjBaBAz2Sa3sk0NlVmW2cNe/oijMTzSEDcOM1IIl95wIXg4dwhEnWXvjBpUTN4rGcazTBZ1+qfHTAvFY8d8taXsZVNjHIIubCaSW2YnG6gmzrdTX5cVpWj4xWfsqaAi2NYOBor8++PHGTDhkrK/dPhDIfHUpW2M8ScexA50EMpkccX9JI6Z3tZN5lIFhiJ53FZldlw3XxZ59m+KJmSjsOi0Oizz9z/PC8PJXBZFZbUeaj12JCoCDTyjOk6WSizbyiOZghcVpVrFtcwligwljjb11gUma4GLz0TSaJF+O7LYyQLxoIOsrmSzpO90whgWb2HZ/uirGvz4z6PM+3rSVUIeYPYuGQl431Rsnk3DtOgXRTJSRp2CRzlWqymimbEWCJP4BIl2i1l4pLATgMJVHKOKMbEaWLZEicKJUZKY1jiSeymG7es48lmKVpk2mwxHOxjY/M7mfTbifbU47PY2bx6JcVUX2XW4iyQyw6QHE8ji0rSmoYlyzg0mmTXiSi61olmRiE+QUkZg7iJyK1Bdrhpr3HichYpSAWy9hC9ShcuzaSmMMCtHdeyxuNC13V8wuRXGgLsThc47nIxmknz/dND+BubOVWodMYuReHGoIc6yzIOJ0YZK47iMNOsdiugRQiHH2axWcSwQlyxMmXYCes2kqaFJjXBYn2cMbOfEhInYqcoK35Cch2aowubq5731ndwuD9G2RAIIbhjdSMNM85bQoBmmuRLOolilnghTbKYJllKESuEiWmTaIaGJiQilg4kSaaWGPZgmnA0yHRxAKeSwGoxMfObUVU/NnsOzdKHy7YJzRDoRsVUMRrPkypoZAoatguYZNwcRJXGKKMQEzuoeGVcXGBK5MucnMogSxItASclXeC0qjgC9ZSNWkajoxTyQ7w0MMmSukdIcw2zKqYZxjCYlA28QqYAJCWTfQmN+nPWuDRNg4GMhDKcYCJVYiJZwO+wcGwiddE66qLMydxPMc1p6i1+aiyNCKyYsoVsXiYkDHKWPopmhojYA+ntLK5pwKrKSBhEtJ9Sqw4RsDhZ5mggJ3Vj5J9mJJnHSC8mKpcZSUxwYurHrPLtpMF5+YLIydwxckYByVZDIgPKcAJZVhBiGelskhOJHgTgkVqxZgJEXLEFVdjDsRyTqSIeu8pgNMdgdH5qcgCnVWEolmMiWWAskWdpnZuSbnJiKkNRM1BliWX1HiZTxTlLOFwuPRNp0kWNtqCTOq+NWLbMdLpIvmwwEs8Sj0uYo0lMIZhMFXno8Dirm7xEizIlM8fTpZP41Llrw+RKOsfGUwhgaZ2bwViOom4Qy5b56ZFJLL5+klqBkHUR0fIAE9IgZnYCi3xpzpP9kSyRTAmXVSWWLRHPXfw9OIMQJqcLe8joEWyyi2XuHRiGynhKxqqASXmOM/UZfG4ng7Ekz/VNE7GF8NgtHBpNYpiCzpCLw2PJs+fQSjA0VkncVnAgDcXnHKs044T86PEpuhq8lDSDnsk0Jd3EpsqsaPSim4Jaj43pdJHpdIkJw6QvnOVCeOwqjT47J6fn1/8MhmFQMipOtz88MEZXw/wcMWeeUZ/DwqmZYy1rcFeFkF9mMseep3X4KVpUHyk1QCnrwSLHidt0RhU7aipCTsqSVMfxeHZhOLYSoZEaKU/cfpo0TiZPj1PWFUqGipKYRC1niVrqaLLJnM5vZlrVcFn66bZoNBz9D042LkPOu3A6FUJtVnp2j5PL9OBPl7GWNTIjAax2Jy0rVqIJaTYFu65IxHUHIt1BPC9h1VKklAl8vjw7u1fRn5ikaJjkLY04aGKx1MNNzghNog5J2sDg4CDxeBwVuLPWj62xgRcTSZ7uGSYZk1hS6+bW5gDXBTyUjSwnmCBRiCPJOuVigYHofpyFQwhhIMkqDkuADoufpaof1eKnYJicju6j71Q/+UIc1S4TiEp4syoud5hxBxxMTjMm2wmm3bgVL3UuC45inOFMkmQ5QUpLktJS5PQcppjrhOlWwO1Qcao+EpYlBOQQLRYf73a7yegpHh3q5bHwUYyyhyapjoFCHp9vNY3eQ3jkMbZ4NxBQK+GaAoG3JJjIllikWOkOuTFNgRAVDYYpKisa68YQmtEHWLFadrJCaUUIgYEOQkGfEWp008QwBIY5Y6oSgmeTWWolhcV+Jyutdji3w7HA4lAnu0chmxvGr43TrOzDNLYhzEr9hBCMWAQBQ2KdLhOXTCQFgrpg0TlNY5oSoqjQmYOxeImADms9NpryzMg00qxsU6mCQCKOJI3RU34WjzGOU7ayTfWiUlkQcDLvYLQYJCgLttcavJAPM5CzUjAeIRrewgZfO5LzEdJiACcym7gVW24DISQUtY2u2h5iRYNTiW30ll+iYExwvLgbt+1WVnprZ7ULFyNvZhgsxbFJEuukVkaLEyzKS8gy6CaMTi/FUS5TJk+tvIpoPgt2C91+F65zBMuyYXI6ViIgYKPPQd38iNBzUGnyeng5msZMlkmXs8RLGg5DELQobKrx4pEVmFGgzJr4xcw/Fzb5A1A0TE5mNALABtmKsyiDakcEbKTKOieTefo0mehYjvUhD7LQyBcMtKkCSz31jOsDuHJTLLKcFUJMIXghnMOvQb3DygpDYWq6QLsuk84b5At5HNIUfkWwVm7ntJEgbSZwizGa1YtnB02UNPR4iQCwLeAkULg8X4VT2mFUfZqQpLDRugNPsSL4RCUn00aa5nwZ3ytHPgk6/I3Io8OMlyRiI3EktxuvBj6rhW02B3J5VvVIMRYhq4Hq8OEznVCYez/qLXb2aEVIaXgsZYYTOZyGSY0qs9XvxaEpoAHILLc5MWocjOdLjGSLlGfMSwIwRaW9JaDFZWOFz4VSunB7mKZMUZIZ12VEWsOulml2nXVm1k2T/niJgAkbffbZZ1TWzr920etJVQh5AxBCMPrscwSGpsjXFckHVTALrGAAXykJdoNpi4ukVCRoAbfXwpF0gEysAZdLQ7f3EOY5sr48SqqZ7pCX4dEx0hZBytvEGNvw2VK4Shl65VrkbJZIrwP6hmlSTFobUxSO/QuJwy+haEVqvTK5fAhL2oFtkYv6ziW8MJSgXNTpMCVWrm3kidQoE4UyIUsj0ZIFyVLEao/zQuQRRtIjJIULn2sb/rzEZiWITR4nkXgBVW1ndHSUUqlEOp0mFAphGjakVJliMU5MrsMczhA7NMrPvWk0Pc6yrB131AaKxGH1BbT8i2zwNuO2LcFQNpHMZ0gWUiSLkySKKTJFHUno2Ma9eNN2lksraCnWoUh5aqJlAs4JvhUwGJW9RIoTSCloC0QZSZ91jJTRUeUyhrBgYMEhOXFILhySE4/kpV5pQpd9PG7REZJgqaYzLdKARKisEzK9mOUaegZdUNawiABWvYFMfIqnU3vYbr1hdvYRKsBAqkxvLkF7iXmzElOKoKm7AB3FXIGm19FvHOKQfoIpcrzT8hZalLoFX9bJQpliVsMtSWy02rHn5nckfhQWqbWMF0xGYnk21Z5GQUYRW5GQiUgmQgK/kFkvLJySDOKSjl2WaRRnz2pgkkFC1UExIKAohOxhjpWP0aWuolWtLAImKGJIJzHlfoSUJaxniBkT2JDZZl1HjegEdExR5sWkig1BlydLs9XJ2y1NPK+O05MtENGe5OVMK0IfptahsE69g05lWyXIAxCsR1OG8boSLLVHuL74Fh5MP8aEPs2x4nNoxZ1sCfqps188I+VJYwKPJFOrNNCmuCkh0SCrKLLMS4kMiYKOUlpEt9uORZaREBRLBofCaZZ7nCx229GFYDBVxNBMnKqM0wCXAd4L+NU0OlV8IZkXommyBR0rEg02C9fW+rAr8sKChvSKvxegL1fALcnUWFUWvyLVf5PDwhKrlR+HIwgk+uN51vucHE7mSOQ1uhz1pKUhdBGm8ZxMxifSeQzNxCvJ1MgKB8NZjBkJydBNInqKciqB32LFk1RpCrQgpBQlMUGjfOHcIqYQHE1mcEsyi1x2uh2X58yaNOMkjdN4JJnNtmtoUs76RNTIDrKAXzJoWCgzs0XlmoCXZ2JZ8vksecWOG4mdfg8hocy5F9PJMBISfn8Tvplw+Dn3w6Yy5bQzUShzIpZDBRotFnbW+XCqC2hDZWjxWtjqXdjvRwhxyY6jBiYZWabZ5+J4usB4qsgqp6PyPAGncgXsQsJrVVnjPOs75LjIulivF1Uh5A1AkiTUtjoS0WEyDoWI3YvbENQqWdBNNFlmymNA2YYph7Cn20klGhBlC0ZmKU49gRR8gURNifY1fhyndSzhEbAGMK2daJZabNYodfZhTmohYhk7ckqi5HDilIqIwWni6ReRNAsOuw2rZx3DY5NIRpqWrm5KBhwcTtAaLrLO6yA0kuNav5t8ACbkEmNOP976Bhqa45xIHmA8F2bc8NKkluku5kjioa6xBkOL0t//BFCJj08k07w4qXEqrpPNl2k1MtjLGQZSaaK6gXNKcKtw4xF2rEWZ5SWJ2nwD4ek8zzqcRCxFDOk5Sro681HQDC8CCRcutsVCLDZcWAqNJBQvwmVSLybo1Gz876jMY0HoaXCxNDSJC3ApFmpUDZ9SwCkXsclWLBJYZAlFkmd8MyRkdGCKh40CFtPCIkVimUVFlYNIkot0LMxSh4d8cjFDpLBoaeqabIT8m/FmnqQgJSGUo9HeAgJqdJNTx3V000RpcFLrsoIQaOYYRe0ImjGBHYUCQSZ1F/35R9BNjQmtTF7AXsdpfr9h6Uw0DLMKB1MI9p0M4w7YWFXrob3Rf16P+Ovr7fysXyYpbCi+/bhto7jsfjyua+nPRvEUyyxWstRZpkiUS9jLtaBaqPfYUZUAqhLENC2MpXophqwEZCfLQi7i1mNYyyYDHMHmKbLMJlMq9yKEhgB04WAgmcJnX8rqwDVsDV032+n1x3NYChEaVZk717RgVQS6EaejPM7uyNO8HB5lOjsKOKi1buCmdXdhUed2+PnCTaQyu5HkfhZ5t7DM/FW+dvp79CUSRMUJDksbWe61s7XVj32hzn+GI+Mx/GUnW0Jr6XDUMJbqpWN1DYPJIiOpJBkVuhv8eGZS929o9hPOlhhLFZgCpowihik4ls2hSyadPhtDNsEoZe5cFKDxPGm8ATqB4HSa54fjtPkd3NgZwiLLiBltx0wqoZn7Xrn5Z/yKLsaRnkkCVidb24J0NsyPkNJ1nU2pE+TqA0xly0wqEitrg0yki0wIlSlJ4LfnsXYqNHuCJAsaw0dy5OwSbqtKxqHg9Tiod9twWBTa8mWeGpukKMs4nSFcdhcOXyd+6yAGWRpaXTjU868Zc2w6jVS20qA6eNvqJhyXmfzucGIMf9JJm7OdHfVzV4dtGqthvNBP7VInnb6zwsmZd0YI8IVWwOEXeb5YwhFysKTGxfrOufk+dK1MaqqAzeFk+dZu7J5Kgq9X3g9Lys3PT1YihPwOK2/rqsf5BiTz03WdsVQv27e3UDoVIZYvM+lTuGlxqKLFOjJBwOrk2o4aFtWdTU5mdVwdcaAqhLwBCCHQRAHdkMlqNoo2A1nSkKwFBtN1fN+yFdPTR0tCQi43UYw248VOWgjsCFyJFjyFrYRDU9R3hcgHeykYVnJyE3abA9UjY609gjMfJe+NU44kMVJO5LogkukgnrMQztYiJA9FSws96XYww9itgtqAlWeH4rjjZerMSrIps2ziSRQxZbA7NVaHFLZvWYLdbsc9JnMwEcaqOHHKeZLJQQ4BA24I6sfITPgp6a1MlPP8y56nmZZdlLM5avNRlDIElBxraySS8Tq25hrwCDtumxXNL2MJCxyGhaZiI47cIppkyFoEpqoirBZwWJHsVtxWBw0pHXtyAFSTfJ2L/kYXJZtCSAS4TiRpz4xyU9ZKe1FhutnHPS1jqCIH2IDKbENRHBhm8Rw9d54zDn0nSm6SBR2nZLLDM4FVrtglCpIPvTxOg62Omzdey+d37SavTVLXYsHvqmV14yYGEkcZsB9n8/JVs+GbG9E4MZUh7ZFY3hImlTqAUY7iBPKGhWN5jZipIVlHcDktuKy1REs1TCUPMSlNkGmBlb65WV4HoznKYwohr4s7r22ft7bNuXQAI6rJcMxB3Oamwf880EfSHOJEuRFDkljqnEJRSwQtNmThIifrGOo4BlAyAazYAuP0ZlUUu5OWtgxTiRROOxSKExxOHyLq8LE91IHL0Yrft5G90SFcaj8+m4/bl9+KZcbB0TQFD4/HcPpsbFtUQ8uiM5FDfmARnct3sGT8WXYP7aM/XCJg38GLiSxvXd04J/dCUGxCGu+jXI6iuI/TEbqRD4Xu5sHTP2EkHqZQnmS0bCM+FuOta5oWDHGNFWKU43k8Tgcbu1YjmzJWn4laY+P5vjBjhTIdDW5uXtWIz2HhudNR+gtF3ru9jUS+zJ5TUVIFjViuhN1ZyYeybVktJd0kkinxTDjFPW2e864nAnBjm4ft6xquaMbZdFEjcxJcfhub19TNJjg7F03TcPhN3nFDBz89FmY8USCrQGuzh3iujDVXQ7gU5dsDx2iwLyWeK9OfzOGxqTTWu2jyO7hmcWhOmKn+XC8Hp5ws9rbhxEZelmitbyZejJL2RmgLzc/DARU/k57+aZw+GzevqKOtxX/511yK4hI2VrUup7ZmbvbPUMmHMiJw1MrUNiycGTTUsozE5DFuLBVRl7u5ZmX7vHsSHhrA5bfi9PppW3X+DM8h4WYSg3zZ4M7VDRd8P68kmqZh9ZnUt3u4q9bJd/aNMKFr5JxyxZxrlwl6nFyzvuGy8/S8HlSFkDcASZJYvPn9PPnkAxQUG6WiA48zz3DByYThJFNUKNiKeHGRNT2kNAuQx2b1o0plHEYZ2dAoplsYORBCy6rkPTYMxU7AZWJrTfPDyRVYShFanWOE3Rb88Qh2PU1M9VHO12AUrDhcMt5GN4rVire5jTZPjnxkmN6BBtrjJVrrPdiXBTELOpZYAUskjzcJwi9jnVlkqS81gm742CjWs25UQp+spWRqlDMGJeti1LROyShQTHtJ5jLkXQamCbJk4pA06mUHSy3dLHbXELMYTAmTUzUl3J4xlvgHOF0s4Pd006n4sZY9KLKE3aLMhtLarQpWRaLs0hjNWUg7CzTduoQ6TbC3P8qhVJEXNZl1Sic1qRgGEv44/LQQ4O1LCrgdLTidnTgcnaiqF0kSGEYew8ih61kMI0dWy3M0DDarwXZXjpC9EcMoUtZinIr3kM9PESSFV9rL7SsyPMMADmOaUsnE4TTRi8OMZHrYLSZZ6q2EvgUkiXTawosny7RaIpWkSrIFj2cVx+Jh4iKMJEG7t501oTXk5BDhSJJscZJscZrvjxxg+cq3oMpnVzJ9YaDiw7O21X9JHdyWziDDsTwDCT8bWm+gmHmagZIVXcgErTaW+Dux2UI4pQCuiSy6WcDusKLrMXQ9UwkfLpXJGmE8dsFQ9AjpXJQOVw0rPF5eKktMawYv5m28s/WthIsx+pL9SEjc3HbzrAAC0BfOEsuWsVnk2bwq5yJLMtc1X0e7t51YGp47WWYgkuOhQxO8fW3T7MqwkiRTU3M9k5M/Ip05hte7mlZvK9uatqDI+8gWjmKkC0xFBT/cl+a927rnZSo9k8iqzdOGTbGhmRqmgJ8emeTYRAqnVWFTe5AbZ9ZJGp2JaHj42BS/trmVxTvc6Ibgq3uHqHHZeMuKela3+NAMkx8fHGc8UeDBg+P86qY2fM7zL1F/pVPe9804HDb5HQsKIOdiUWTeua6JBw+OM5GsOK1uaAsQHWhiPDNBNNHPkFERgmVZYuuiGm7sqqOjxjlPA+D35JCmJdD9SCropsAhWoAop5OnWTUjhAghSBU0pmaSuY3E8pR1k3qvnVVNFw9nfyVFvTibm6TNMz85ml21z5Y7H4pqIdDYjDk2TJOUxG5ZNK/MmSypNS0Xdn6WJIk7z0nedjVo8Nlno4uePBHGNZOHZ22L7xdCAIGqEPKGEc3KFBUbmuyEtI2p/CpcSoacsGDTU0RVibKmEovW4CpF8DNJ1HIjsgVqLCYTrsPYzUZ84ToSmXasagyrbFDf5mCEEYrCim64aUpaOeYM0lgukB2pI9LejduRQy7HMEyFZTu20L5yK9LkYTj5ME+dmqQ+5sNrUwm1erG2VTypHYZJ/Mlh1IKEc1Rh+uUw09MR0hNZri030qL4WSwspA0F3SjjynnRsmWy5WHiZQtBXUKV7VjsdZwQCtTAmhqV1YuvwZE0MVwZgo40km+SE0MQLlhpDywmWIgz6Z1g8cpudgQ2YeZ1RFHHLBmVv0UdoZlIbp1iYxaPx4MpK/RMxBFUZlOJvMbjQLs/yEq9TCmvIY03c7DrGt7ir+HUdJZjx+LkyxFuW9nAkjo3quqeXexvbzSFbM/TbrXwlqaa2VBRTUvzVPyfUZQ0rU4fuWwfITHGEtcgheJB4sYyxo00S+0qBwppDkaO02KtmHpCDrDKfgplmaGUl02LVuH1riFZzjI2egwJiV9Z9ivUOesAeDxaiTjZWreaZ8YiDCdP8EJyK9cGKyr1oVieqVQRiyKxsf3Sshy2BJw0BxyMJwqcijdyTeevs3c6h99qYUfQS72/oiEyhcBum8ZE4K7dhFdVME2NfCHMyO4nsIWa6Goq0FcqARKL3DV0BFexuOld7Jo8SFbP88O+H1ZMB8DaurU0uM7mITDNswLUhrbAeQdfSZJo97bT7oVaZ56fHJ5gJJ7nwYPjvGNd0+x+DkcrLtdicrl+YrFnqK9/K8ucDnr1SRLFYVzOk/iNTaSyMg8e9PGrW84mCBNCzAohSwNLZ899MikxmI6j6SabFtfw9nVNsxqY21Y18I0XholkSjx7OsoNy+s4OZ0mU9Rx21RWNFZm2RZF5h1rm/jB/jEimRI/PDDGr25uPe+aIleaU9OVSIvll7geiE1VeOe6Zn50YJzpdJH9wwns1OFzWJEcObocXmRkti+p4fqltQuag/JanqKZoc5jw2XWUtQNrIpMJhMgbWiEM4O49GFyBZWpdJHCK1bPsygSN3XVvaq1lsaz4wgEfpt/wVWKZ4UQ48KRRqHWdmJjw8TGRmhfs37OdeqaRmqq4lQdvIorz14O1ywOcTqcreTqKWgossSaVv/VrtYsVSHkDSL25H/RmJlAySuY05OkVA8hNYYFBzukIxRsKZwsw66Ukco5AtkhTEsAw8zhlgtYPCUc8hBmoQbV0YSwChzlJKbdS1ZPYRb8mPkUaWuQQZ9OqxTDpoOm2hlfspLO3r2oWBgb6sezaBnPGCF8WoDJQUHIqtPaHsSxspKESAiBFHQwKhmoOQ2iguS+KRJGGLuwY1E8tPpcBJq8CF0iHo/hrvGSz+aYmvCQLZVw5kp01NSSNCysk1VqfB3ohQEyR/Zh+GwIXxGzLUmzIlhbdnA00sKYvIx69jGYnWYsN4bSbkX1LZzWOnmih6njRaayNkqWSlbFgNPKXeubmUwWGYrlZsJUa3D2xIgVdXpfmOaRmgQrTAV1ZoD86ZEJrltay4a2ygqSE8UyR2aSdr2lxjsnV0VSK1FWfAR869my+G2UCv1Eizl0U8Eh6VgtQfLWOm5rWsGYuZu8USJlW0l3cDmSJLG5kOXgaIGjMReTZTsrm3KEjQMAdPo7ZwUQgNFiJSRxe91ywsmXOZpO8vjUCVZ5NuBTlcvWgpxha2eQHyXGOTaeYmlzKxO6hiRJrDxnnRhZkvCqCkldJ60beFUFWbagiyDhQoCl9haamk3GwiuptbjZvOwe1JlsmO/2LObngz8nWqjkTQjYA2xp2DKnDqfCGeK5ihZk3SV2hq1BJ+/a0FzRLCQL/OjAOLevasBjV7EoMsHgdeTzgxQKIwyPfAVd11liDXKqHCGct2DXByhnXZRI8+0XR/iN7e04rCqRQoRUKYUqq3R4OwA4Hc5yICaBq0x3k59f2dgyJ3TRbVO5bWUDDx4c5+BIktagk5dnQjQ3tPvnmIvOrPXy3X2jpAoaPz44zrs3trzuC/2l8hpTqSKSxEWTnJ2L3aLwrg3NPNkbxhSCWk8QZ+QIqqpxz/Igje4Lz+yn8pVkb931TWQjdtIFjcNjCRgSeGpVCmaccvoYtdaKwKfIErUzWXMbvHZaAhfX2pyPkXQlhfr5UsTblEpfcjEhxN/QiKJaKOVz9O9/CbvLhcVmx2K3k0+nME0Du9uLcyah2S86VlXm5hX1PHiwsjbXsnrPVQnFPR+/ODX5JUYIgQ2dnCxhMTTKQsIlFKymgaHK6M4ids2CYmnCFOCR8iih9dhNP/lEDptWxKvIYNiQ8iPYJCsZn0JvcCliepS0Us+E4cGwOxlyFqjJniTnsGApl+ioCXGiXCDp8tKCnWRU4T/27mUyuBxzsom1eQuKpYSz1UtkIk8hUyYxnadc0Ejni+QlDZvFQp1Fpt8XY8Cepm3pUtasXoEsy2gjgnB/gkKNSUTKccIhyNdIBNMnyKt2FOGgQdJwaWFyadAVDWplbMt92B1d2O2NtLbVkXxpklimSD5rB5dJPB0hWUoSsM+d5Zum4Mh4iudf7KMQzSE1NuC1q2zpDNLd6J0dAPqmMzzWM814pkTaAg1RDb9uMOqUGQ2q/K+2WpKZMkfGUuw5FWE8VyTY4ObozNopq9wOWs6JqihqBoenT2CYgkWBdtzOZtzOZgrqIvqPTLFIbUWonfTnDfZP2Mlk15LiKD2pKdY33YwiK1zfZWJKYU5NZ4hlyzxxYoTe3Ev4nCobg8vIlnRcVoWcYRLTdCQkOpxOrm9YzUh+L+H0SZ6MLWGtbLlsLcgZ2oJOGnx2plJF/rsvDH4L7Q4rXlUhVdA4PpFiMJpjuFxG8llIhfTZdjg5nQUkGn12JgvHAOgKds0KIABuq5u7l97NntE9jGfHubntZtRzIhFMU/DiQGXA3ngBLchCNPocvHtDCz86WJmpf/X5IaDSyTqtCkJbiVEeJFuWyZZdqJZaLMo6EqXnKBancMi9jIVd9IXrOTiaYOeyOuLmUYayORqdHTx6LMLxyRQjsRyxokR3o513b2xZcLHDzpCLDe0BDgwn+NmRSQxTYLcoC2bFddlU3rWhme+9PEokU+Inhyd41/rm12VdkTOcCldMMa0B52VrXuwWhbeuOStspOVOTidPM5IZubgQkq0IIYsCLQibj0MjCSyyREkXeJUWbPYMHneMGzt2UO+1Ueu2XZF2EEIwmqmYSRYyxQDYlYubYwAUVSXY3EJkeJDw4OkFy9Q0t161NOevhs6Qi7WtPk5OZdnc8cavD3MhqkLIG4EQTPrrGV7sxFfIomg6RsiH19DpdTVwsL5EU6yDYLqNJiWPqVgpmAWKhp+SP4Skl1EtDUhmA4GcgZMsYc1BVDF52fQzbhgUFRknguZ4nJZyFtMD/pLB0myalws2siWZTLAdddLKPmEnNT7MzaNWsqbJC0aGHx4fY1OuTGt0FF/7UlSfF7tPxlQs1Db6KPoET5X7UTw2fmvxSmS50nE4ZkLowuEwk+kyQnUQ8ruwl3SGc2kkxwCL16XREgUKxwSW2sW07rxrdv8z3LC8lh8dGCdienHqboqZDOPZ8TlCiGkKHj0+xYmpDCJTydS4fkUrWzd2zOvIltZ7CLis/PfhCcohB7FYkXZD4i1FmbF6N4fReefiIDFF8MhonGcnY/iTaZbUuQlYLVwf9KAbJgPRHL2TaQYjOY5l91EycyQjKxgbG5jRQJQZjLYSLoPelERIEm6zhF20MJY7jN2S4ETiBCtrVmJVZW7pruf6ZbX0TWf5776nMbIm5ZKP50/qPH9yAKsqU5ThtFam0W2jV0mRzNRjZsoM5PqJjPVwyBkkaFEvWwsCFRPHmjY/pw6Oc3AozvKVITwY/OjAGCPx/KyPbiJfJDyV5geREqWldXQ3eumdSfDUFpI4mqks5748uHzeOSyyhZvbb54XViiEoGcyTTxXxm5RWLeAL8jFqPPauWdjC48enyaWLaGbgrJuUtZNoIlS2YKiOHB7PFhVhZDbSouQ6E08TCY/hWHZRSKzBC23hKdPgubqpWQWSIadvJQdns3f4rMK3rqq4YKp9ncsrmEskSecriTyWNvqw3aeCBy/08pd65r/f/b+M9iS7LrvBX87fR5vr3flq7pMm6r2Bh4gQIEiR5RI6olPnJFCI3EiJAUVM0MFyeBIEQx+eBEU9YV84pthUHoSKRKSABqBBECYBhrdaFNd3l1T15vj/cmTds+Hc+tWVVdVG6DRoET8KzJOVt7M3Db3Xnuttf+Lz53dYLPh8OeXd/gbp8a/bxPZjd22Ovw+hGafSc3sCSEPCtZ3C9u9oaliPD7OwckiB4sJjowlubbVYW60SIlNBD0OjmokjPe2/fbt0HAbdP0uqlAfKCjdMse4oXvfv9+JuYcfI57J4Q0cAtfFdwfDY+AiFIXR/e/Md/JXDR85MsJHj7571toPCj8UQj4gbGGwEy9geBF5p0Iu3keTIMwmCcUmGYwxqppM6wJdiREPBQksekKhrbTQoxkahkVTGZBuV8hHWU4HJvtvtvhG2mBJ1dEDh0KnRDzscClrkduqMb91DmN8klbS4oYeJ2nYdAOF49seGcfHMHosp0I2yLAeNhiPAg5VN3nhQB6zInFbErHt8eVolUD4TASjTMw79DWXKJL4vT5+qU+5XWPTM8Au8oiu8pVWgsArU1AsEr0QUxxhILcIanX6V6tounabVEvAqIA5KVgkiVtWiESN5YUbHGxM7m5TlHx9rc6Vag+BZM4fkLdNjkRx/Gt1fHa32gUSGUTIIML0Iz7rCXY8hSs5FXWnR2KtT9Pb5mK2z3kZoAgNNVAYOJKur9BaMnk2keMvX9rhZt/D3Z2V+6LBQK0jpIbWjFGjTo1hlGHRixFJH8vuo1oWE5Eg7kRs96a53rpMeucrTCRjqCh72y3HlYB0Z5FjQmHKP0S/1Kfth3jAzSigIiM0ofCVa81h+UUcXXboyhssNo/zEcviiG7TKW2CgI6M2BKSHvfyhEigKyV1IupS0o1C5qsdHDfk4rc2UNBQxPDGqZjJoaRJ4EpKHZ+tVpOvrHb4uqLghyGJrspg8QoDr8WYNorS6dLh/uyNUkoaXsi247HleGw5Pr3d6LyPFhJ4r2zfhw/27m3I3Mc3wAR+DA1pq3iRxAkj+kGEE4Q4yjgJTSFn6iQNFREJhDjKdlznxejfs6mUidQ811ov0XLSSK+FH6pk3BRFIRkxdY6lLVyvxROtkO4rW/cWLJJ7fGEvuPBfNjoIITio23S2Nx+Y9xjw8UjlTzfbXN3oEFvt8GTxexcS3oqGG7C5XEURMGbF6K7fwdh6R96RQ3bNkS2L3re3Ue+nkRCCTKTiNttsiS7Vyk2sB7CeBjJgsz6MQpzsgqNukwWOOB6Xtrqs7giKIya1oMqV+msctx/AGbL7vd/K422Cjgf3jRvOVbxeh0ljHLdf4X5iRjRoE+9ptJfKdJv3ade3IEUK2N3WrDJswN3dxcGlNl3a7/iOPdxJ5ndrqzXsbcN+LwR074QwDCnumPRf3UF9D9wf9qkiavy7M4V9L/iBCyG/9Vu/xf/2v/1vbG9vc/z4cX7zN3+T559//r73bm9v8y/+xb/g7NmzLCws8E//6T/lN3/zN++57zd/8zf57d/+bdbW1igUCvzkT/4kv/7rv45lvTvK4PcdQrBZn8AlYFOJiIwEdVfBYBQ/GOF0fYIpdPapFgYGfuQT0CIRqbiY9HGoiT43RZurmRLPtAIOOdvoSpoUFk/1HR7XXVp+QKBMMq24LOkWJFT8KGS07aJrRbSujaHqnKyGZAYCXdEYt77FJ8o9/shU8IwE29kEO4bJG0vbuI7PAVXFCEMuBhvYnsVjpRGury3SNwZ0B33c0KXhNKm7IaEYoNotLreaRF6ALgO0nsfStQKCLZrVm0S+T+PLJSanp0jZMRKGhSI0BArHQ8H1MEA2oK5Xmd94gzPNUYTUOFuPuNEO0aXCs2mTdncwZBtd9ehTgzAaTvC6gmKoCFOlJxze8M6zHK7RtwLKCYWHu+OMVTQuqhvUdR8LKEiFMSlZc13WpOR/r4MmTeIyT0EpcCo+gTCbZKIYs9osT+gjOGGEE0X0/YCO2yZZbFNMPcSOZlKUGk9ZKtX+PsrBDS6265wxljliHACGO4JvOAu4gcuYmubHEgcQ6WEAsE4Q8ntBHyMIedgTpEJBQlPYrxzjYtRkVatwIJ1kTJjM+x5bQcQ2ER3x3kavA0mb9X6XEQRxVXA0YXEsaZPaNY+Epkovo2N2AnLtgJobIKVkShGs9BeRMuKgNks0uDeKaTcIOd/ss9AbMAjvFooEgtmYwQnLJBqE9zz7XqEBSSCJAEVjj2XejYjc22kXmOQF/SGqSokNN0UU67DYGzr/FsQEp+Jxns4nmLENpIxYKKuIfkCovH29poC/MzbU1pl+RPQOrJNjKLyQivG1SpvXt1ukAjj8Nlt3vxvMN3pIL2TCNjEGISEPrmcZhaihQLoBkXL/CcvGIBulqYcN1lrrHNDn7nvfTlAicH1iik2sbxKKITlgXkI8gq4XYPdGiUSJxWiJo+GB77mst7De3yAKQsaVEcKuf997jEBFCQUD13ngPf8zIIpCNF8h6vmgvAcW1Oh9kIC+C/xAhZA//MM/5J//83/Ob/3Wb/Hss8/y7/7dv+PTn/40V69eZWbmXrue67oUi0V+6Zd+iX/zb/7Nfd/5n/7Tf+IXf/EX+d3f/V2eeeYZ5ufn+bmf+zmABz7zQWC/sEnLGGG8iGtJXC+gS4gubTRpENN0AhFSiyJKik+fKikRgVSpKjpLcY+uHeAlDS7YCs31LaQKWnKKpIxhKRExQwWZROoHeQ6VaHw/0YhC0hOY0iLe9gh00BFYMqCpSyZVj0ynxuONcywk9tFMpPB1l44e0U+6rGoJet0O8Y04MaGjDPrMh6u4ikukOyAiBgEEfgxVCOKai+slyUY2MrWJopn4VgtDF8RnDFprHeqtdYKch+JpqEKQUixSqkFaM3najjEfJqg4EY36Nlv9K3i9HH5fZz8wnfQwu02qbhnLzIBwQdgIVd1bHQUy5Er/Khe5RmSCSOmk0wnqKZ/WusoIaX7WHqN0SGJrEX7k40c+B90B5zartNwO2ZhGMe6RNMuUKIMEgyQPT51hIjm1165+4PONL0XEZ+Kkczp1maBtGGQLGX6yX2TjtW3W3fN8OTbPY08/j6IohGHA4o2vYXhJnhh7nkRq/PYAEIbYlTozCH5mJIepKCAgZB+dpTX0QZtBrMn12DBa7C3ziQmMaBo5Tb0vkaatKBQ0lZymklc1dAELtR6GojCTt4d8JuKWckow5rrEqi2ymsrPFTJst13Wal0Wr8/THo2IaRlOHHocQzO4xRzWcQPObjS5vO0QJlVIxompgrGkxWTaYiI1dD403s4HQN65Uv8uV4Z3kE/tVZAEr/cwon+WWWuWjyaf4U9vfoeLlQ3+5r6P8fTUNMqQB5/A86k1r3Dq0SKadp+V4a3Ig7sL28TtSILvKu+PAc5KnTc2mrysRIwdTr8tmdl7xdqb6+hWgpOHisTfao55S979MKDSvsypx0fR7ymr3FucHyw9xPnaBWoph1Pj91fpt2qbGNUEs8n9JCbujsr6UF7n3GYLkU9hKDdp4CD3x0no93GaFbfzOeyOu1qDKKLm+JTaLjvtAeWuSzFu8Py+DLWlHoZMcHjuFHEzd+87AenG6NcC5JiOdbSAKr7/xGG3E79dl3f1jbvKyd0hF75LBME79N8HQPnrSFb2G7/xG/yDf/AP+If/8B8CQw3Gl770JX77t3+bX//1X7/n/rm5Of7tv/23APzu7/7ufd/5yiuv8Oyzz/J3/+7f3XvmZ37mZ3jttde+T6V4ZwghSKk66UhDaOzWukGkRCAFSiTx1D7zSsA54fG6bWJQJBsZFAODSMmwFRugq30MH5oGRKMqahjgaQ08pYsqIIaGJXViqiBOhB0K4n6I0AYE+g6DmEFodxFGiS518kaP1kAll2szYS/TiCukB8M4BRgagYjIYxKVEwzCAZbu4qaaGIGNLVS0bB97osu1RZNeK4ERs7HSIZFjE/Q8ssks1ojk4MFJMtkQ32+z8ppLq9JFjepYsThhXzLwujhSoyx1bDVBMq+RCiy6fsgNyycWxpCmZCrjkk+F1OsuMuahZvp08xfQTBsrMYFhjbLaWOXlyuu0/TYyCikGSR4bzJLPGlT3wV90dcKyyYQvOOBpJGbnsO0ZxO6A9LeVCm67T++ooBRW2GyvsNa4TNfdJqZZ5OJ9RAIUZeisGfkCQ7cQhoplOgipUlUkSlJnJGXwM6ef4zdevc5iY4WvLPwexzMaDXWGHg6JWJKjU8fvctzc7vRRbI0J0yBeuM0sqQEnJk/i7LxOjTVM6yBjps6kpTNtGYybOoby3hz8Hso/2Caf8RVEt0tPCLSMxUzWZnwizrdvbhGzYhwqHMHODSe4zsDnjZUGlzdbBJEEXWEqY/PEvhzTudi7jt/y/UbaPUF38yKu2GSskOXnRv7mfe+TvopnRahZC03//qinX8iO01Jhqdzlz1dr/PQTM3vbhr8XVLsuTSnR4zqHD+bQ3sHxN/IVAkOiJg3UtynrrLKfi/0rbFFCzZr39WUpN2ootsbk6Axa7m6h6qiS40K9x46nMDYxSdkpccG7wodGP7R3z4X1Jtd32kOGaUWg7h6aIui5ITvtwa7vz21UWg5Wp4u0BEk9TXHswX42tieIdBCWRpgSmPoPSDP+fcYH0X/fT/zAhBDP8zh79iy/+Iu/eNf1T37yk7z88svf9Xufe+45/uN//I+89tprPPHEE9y8eZMvfvGL/P2///cf+IzrurjubStiuz209fm+j++/P2q7lUKTqWYNTzOIIUkoKnakobomwjeoGx1eyy/jKx7HTBU/MlHDiFmpYwqXcdWnK7sICUiBabkk2kNzSN0Yx1V1tuMhUoYYiRAjHhGpHvuqa4yGJUYyFeJ5A1AImwJ/QUUUIoxCQKR0KAiPGdPAJyAQBr4aw3B9NMegGk4gVR85ew0/bjJhxcl7CSxRQEvtZ8HaRgYhjfgMZnqEkXSdxOICsmvhaFvUVrro3QhkRC4l6S57RE2XrKmi2oIBPgN8QhkQALFpn2yvzLLi8DWljUxnmTGKeLEcZSw6UZWGUcY2S5Q61wnbIbIc0QhdypGLL1QCEWfMOIjen+Zm0+Rcf8DN0SaLpNk0fHqbglTFYXv1NWKqRz6MM+JmKWyNIYSgf7VHd3KV0OiQRidgBs1T+dKbXyIhvkiRIiNMYIcBhe1VaqpCvzQgiOu4CNY2bpISA3JyjTPKKhedDf7y2iJjI/t42XkZT45yIvEQrTfOs+OEdHzJvqTKDanghYKCJulsrww7j6qCEMwAr1SrpESNn9QPkfFS3HLH8HeP+yGSAZF0UEVsT9h6J6hSEnQCfCTVQYuYIhh4A6rtm4zXJ5jRTTo3bnB2x+GNkkO0OzdMJDQeH48xmZCIusOg/vbpfJCQUhJ1XYKoS63/IjF99r73BUGAXqnQX1hA075/Q+TzhqTSb1GrhfyXL9f4iUNpDPV7E9gubPXxaw6TaYNweYn7x++9jXdb1pQMiepNGrLGunydvJG56++RjFjfuoIX+aQ1h15j/i3PS4x2k54fkTeybAyucq72TSYaKhPWCFeqA76x9k65BU0RjMRURuIag0Byveby542rFLNV9iVT9BcW3rasZs/Fr9epz19B6u+dEO1/BHy3/VebmEAx70+J8F7xXubNH5gQUq1WCcOQ0dG7VXujo6Ps7Ox81+/96Z/+aSqVCs899xxSSoIg4J/8k39yj7BzJ37913+df/Wv/tU917/85S8Tiz04zsF7wZHoC5gphbqfJb4xiSoEO0EcN4ihiBg9o0ki0SeTKiGUgLTokaeOGZthZFBE9i0Wey43pU8Lg0jx2LdQou8O8MZPYcZjeH6bnVAy3mxxMBaybY0iK20qikU1c5gJfxUtkJgrfWrNLN2uRkoLGdE1FL1OL6jT6BgI10TRTCI/R6OrE4U2lST0jUdYjXpccdpM+C2m+m3U7Xnyukcuq6KrV9H8Dqbaoxs7gdOewBtk8Hpb9NZVFC+D5uUJujpOr8N8x0cdtRkoAUJVkUqE1AJQQpKRia479MI2QnTZcVfYcRRC3yLohUhCFMdAKQnQfYTmI9WIQDHIqimKpPH9BnV5lkSUxdw6SLvhkpB1dkKbkpNEkYKdvknVCACHoqdwqK8jFYEMBO3VHJdyETJUYWCCkGC5SC0gpqxT0F4j4QiipEHY9dhs34RKEx+LP/I8IjWgr6tEJNiRCVqexRuVOInBFlprm3PdaQZcYxhtFhQp6Y4mMdSIoLzJDde5uxNJWLJLtLQum6//IdN+8R6bb4QgUhRCIQiFgmr0yRbmUZQABUkUaUShQRjqRKFOr1/ECdKEYvcZRdBW25iRwVJ+P4Gi0ClvknEHtJUaO3aX+tUVBq+9yqKSoSt0BJCKPKajDjVcvnT+jgwDd0X2us+lDxJRuo1MdRH9v0Spvf1WxcX/9iff9/wMULmoFvGFwuuXBxyN6t911VSxWVAzRELQCRqU3+iDBIW71f8SgbzjFx5QVnnLMiIREhbjK7S0NrXX64x5I8NXimGf66sO1xILqFJBvKLtOV7eiZtKmm0lzvrNPoZRomrUuRotMd49xQ21gBQw7beZ7TdJOw4ikkQIQgQ6EVk5ICW9PbefSNXZsfexkL9BbKOJ7DVZD1fwVJXoAdqQZsKldO0Gzhs+yfBt+FMk7EnWe9fusK/tOdWLPfPWu8aeue6WqVDe/e4707gjnVuRdeVuZN09f1ZdR6gKQoIiIxSGv++1/47vm8FIxN/TMw9Cv/+24aPvwg/cMfWtqrP3Ei3wfvjGN77Br/3ar/Fbv/VbPPnkkywuLvLP/tk/Y3x8nF/5lV+57zP/8l/+S37hF35h7//tdpvp6Wk++clPkkrdG/TpvSIMQz7///n/oaaggIPobOG5ESJSAA1VnSaDJFe7ypZVYCs7RiM1QPMkmXicivchsr02nlyhqwo6Ik7TGHAlL8luucjOOj3rCLmmhikHKNIh3iwzp5bA3GRDH2c9to9qc5IT9VXU8iZmIHAHKhvLRwmSGbLFeWKegaao7Lg2g04SNbDQBjYDQHVU5FacbW2KddXiBi6nGxFpdZOEViEea2ElSujGcOI0i8v0mgfwnAIDESeMxxCKghLTiEYfob55jjAKCBMHEHaBKK4gExooCkQgrqwwXu6ipFvoBxsoiQ5+NMCNfIJmGSIVmUwg1KG6UQAqgoKIYUuB5Xkkoz5x6ZPSuxiWz6lGDl/rc7VRJ06ecTvLqJ5mXYWmGpCOkmi6Ts1wyHkGs2qWGbkPd8YkISNkFNGV27hcxHVr9Ldn8FspglCiqwFCgC1MNFR0QgxCdJHDSYySszdYYwkh2nTtIlljH4wcG9aVGAoh3UBQMw3MKGIwV6SjgPBBDCTKQCKckFQwSUW8wZYZknT3IwxBGAsI7QAUgVBVfNOmq9v4os+0/m1K5BAIbDUipoAh9gLRossuveApBAoaUPWuUQuGRGh9fUCkT9NOzmFJja3Ba9R7SbLxR3hNHiGSoAqYMSNy2nBQbO6+N6NeJaUsDf0kwohod8eSDEJ836LUO4VULISmgaYi1N1fRQVVRQx57dkb3aMIGQTIMIAgHP7eN1ifQGgawjQQunGPjT0SA/r6FkIqxCanIZTDySYati9RhAxDGo06mUzmnrFIqBpKPP6+2O5vYTyEeUdlE4iMiAnjvTvClHzBhjucntOaRLUmqL2L56SMqFQqFItFhHh7c14UjNDzrrEkDAbGPhLq7cBu9WAVx+uRUPM0zcfv+7weguOobAg4EZslGLxEO3JZiWwsMU1ekyStiDrQRFKMAiZDn8nQx5KSmqJSVzSqikpN0XCEgu8PaPbWaYk4lcSH6akPjpgsZUS1WkeLh9TNYwTq6LB/DgZI30cGPtIPIAiQwYP619tAEaAoCGW37946l0N/FsIQGYUQRu/93e8AYZooyQRKLI4UvOs2vRM/fvoE48X8+5KfW9aEd4MfmBBSKBRQVfUerUe5XL5HO/Je8Cu/8iv87M/+7J6fycmTJ+n1evyjf/SP+KVf+qV7+CkATNPEvI8aStd19PfBpqbrOrZyGpcVbLVPNDogrMTRhIZLC8OXSBMMVSGpdUg2dQZNk7VwBKgxmt/BCyXKwGVWUUhKj1ANQFVAjcj1b6C2HcxIIYaCokR0BehWm0KzTZA1eaM3QQeFyZpL0G8hhYKCwPL6tNoT9DtFErlNEok2B4wBre0CO4kaCS+LFdqMDjTslkNfh5IqUIMcoafTMTx8xSJoz+FWI4xYgBrvE2nbKKkmoZMm9NK0igaRGBBIj5wiGM2cpL9+EbmwjJZSUO0E2UeOoGoKfs3FTyi01q/glvPQ0MllU8SLOprdxOn0kZEgZs4ipA2RAdJADXWyoU8x8DAIkYpEJAyasU1I9SlOP05ifAyt7XPtpkvgWTxyJMvTRxJIJM6FLu6gQyhX0Eotoq6G8FvYo/uIDndpVl/D7Vdp7Nhsrh3H6SboexY16dJPK1iGTyE7SksRjJtNptw+oa8RaDrR4CS9aJOO4iOE5ASHeSheIKaoqBGEYcR6z2Gl4qJJgS1NkpZO3lbwOx3cdpeg10cPdbbzAk/ts2O8yf7GCdS6ihAawnCJ9A5SlBlXXNIzS4iYoG9MsKX8CANCOkGfjOUymY4oahdRQ4eHpMKgY7NYu0Ktf50R10OVIOwBHa2K47sYoU1GtnGbHQ5XPTRzk1gmyaG5UaxkfCgg+D4EPpFfRYRLw3PXZW8ZrgAGYPTYp5SI3FlgOOgTuNyzr1IIhGEMB+/g3l04D0QADABFoKbSqJkMajJJ5HlEfY1WqUHY62ErHpp67xbZKIrYrJeZtI37jheCAOvwYYzZGcR7DH8upSSsN1DicRTr9pizUu3zxurQdnXsQJ6J+wTaux+iSHJho0mj0mM/MJs3ODZuETdSRAy3gN6521Xh1sJ9qKuIwoBXX32NJ598fE91H8mQzfYijt/fbblhdOmx8ACUy8No0+oOY7kRjhROowqFc9s97PYkhwunOVx49IF51S5s4PUcTk6Mc5AYf7b4ZeLKOqeyR/nQwYP0IslmENEKI1pAC7g6fHhPSBgKDAGa75MyauQig0gbxZg4ylP781iKwv2sWkEQsPPNs6TGDB4ePcBYy2awsIDs36FxVABDgd1YWXtOvHtaiVtOsuG72E0yNEHvvVcR3DPlKmIoeCsCxK7wIiVE4a5AfFtgUQBV19B0A9XQ0UwDEUb45QohIVGvjfT6yPEJLsUtTj915j3NX7lk7HaU6u8R7yXdH5gQYhgGp0+f5itf+Qo/8RM/sXf9K1/5Cn/zb97fYezdoN/v3zNwqKqKlPKBYc6/35BSMjn5BJc6JqZyET0ZoIVFfNsl2F/BWOkQBSbJZMCbHMHebKAMQEYqHWljyjaBWiBtTLBfv0YGnw05xlY2YL2XJdPtcKy2xFpinKo1iqHGUIwcRzvLFBtJYh2Fj/UuM3/oKE2pEw8NFDXAQKD4AaGio6MSlqfwvDq6NqCVWsTw89iKYJICSVswokUYwqfnSd7smvSTVURmC9OMGFGSuPUDxIJZaHmEif9KJt+A5iihH2e2GxBGLjd7LXyvTiaKE/WahNJHkwb0DuN9Z5PUSIaRsTiGHtBPeix2DQZ+Cr8hSPTLxGIxXP8YhmVzKnMaoWsIXR+ufnUdJZlETSZRUimUeByhKKjX/pjm5nn68TojT/0ERyPJm19ZoLvaoxLaHNq/j7Dj4Sa2iaUzJD70NN7iIs0vfJnOoE750heIbrQYmHHW6oeptKZwvRShAsLuoTXKRJbFdiGNlimy5CjcDPIUcjeZ1q6zXN8g15vhqDdKU5bww1FygwH5YJ5kGAxXSTKiY8aY1HUy3TapZgsxNK5gCJ+k8FCFhx+3Me1jXMsu4/ou65klDjUeRfU1kBJtMCArlsiNn8PwPaxWjJG2ieu+SKU9oNbziKLhdub2+DpqukFQX6fcTHElvwlIDraLjPdTvDahs5D16bl1tnslkDBel5zobzOVrpNrm7QW13BCA1txSeo9dMWnU1zEt7oYvQyx+gTEbcilUbIZ/KxHT72O8HuknQyy6yB7XWS/T+Q4SGcA7gDp+bvf6+53KyVS05CmibSs4e99dtkIKRHdHqLbQQnC3clDQShib3dCGJUIZA2FNLo6CYYOhoHQddANIk1BaVbYl0sMY5hEklCGvKGusuNskxgIkvM6CTVOcvoQyakDJPQkqlCHbbn7zUv5FnV+u424cg1Rq4OmoxzcD4cPoVoWY4qKGPhcr/nc2N7mwKxGTImIwpAouv8WWz+SfHtHstWX6AzIZ9bodjd5ZSVkRM/zkHWQopZDubVz7D7amzAMmVy6TCGpoaoq1aDBm71LtMLufdPMyohO2COuJtipbBEsvcpT8UdwO2exowEH3AqFyjno9hCtFnQ6RN0udHtEvR4fqTnUBpKELtECybF8mXqiS4KrpL8wQgaYRNDXDUrxJKV4inI8ia+oZFyHrDcg6w7IegMynsub6RLC7JIo5yhEDexDIxSnRyGTHvpSvaWso1ubiLZD7BsLTDR3zTGWicxkkDGbyLaG/cu2kaa5q427F2KXV0fIoSZNSAlhiAhCRBiAHyDCELHrGyENA6lrYJhIXR+eq+qukCeR0a2+/paEbplqwgj2tIO3EIEOYjSJ2NxG2diEfh95XqKVyuTfeBmRz0I2S5TNIFOpe+rkTihPPQupD95P5gdqjvmFX/gFfvZnf5YzZ87w9NNP8zu/8zusra3xj//xPwaGZpLNzU3+w3/4D3vPnD9/HoBut0ulUuH8+fMYhsFDDz0EwGc/+1l+4zd+g0cffXTPHPMrv/Ir/NiP/dh7Im55PyGEYPX4BNWvXYJEREo1SAZdZNTGFAaR7uF3M2y2H6O5v4C0FHpGhmqoI4IqiubTsyc5Em5yLOphCYliOPzBkaepahY/eu7bPL6xiTk3xmupNOV4lsPmgCfKl1GkhuboTJbWGK+u0koIBpZBIWqSNDx8yycSY3Rxqagm7iCDFd9mPbXFeGmarJFGH1PoC59WcQTdbVNdbZGRywirxUBvk4plmTIyhBM+MxMK7bLB4nyOeHKReGKJTuUAg2qbeO8imjqgj0c3ypITeTqeC8EKiqnj+QVUrYSmaUz1XkfPBEw99RFeuRrgOlna8QlikwGWApnRcVIvfPRd1X9+8gVam5cZ9Lfodm6QTB3lxKEC1dUeGztdZhwf6rsq2UGb1hfP0a6dpTu5it/vErgGN1sH2a4dwvdiSM3ATgecmjXYl0iw8idfZdDz2FrTiGZLbKYO0PEE5264vJRPc6h4nXz2Go9sGJTrCTYt2ExusyQinu1fQyaaSKOHm5glDMY5vNQhKfps9EL6kUI/lUEUMhiFIumUwSldMiNneVW5gm9s0kl3Oeafol+NEXkCsxigFjVkVxDdHKFSWUEEPpYQjCFohSr1QKWzo2PHQ1qpGq/qDhg647LIRPEgrmJgWSlEMkugdemKVRzRJukY6NMF6l2Nra6GDEIIQxBxcJPo8TYaSWxVYqhH6cwV4NaK3wNZ0gmsLgiXrncDhXGIm8ODO3w0wgh8H+F7oChI04L3skqTEjEYINpdlG4H0XfAMIgskyiWJEiFSMtCjY4jxN3DYBhGlNtN0sXcHoHXTlTjRuBCOku720VpNhFhDTbWkNvfQKZSWLEMcSNNQomRwCYhbLIiheqHaMsraJvbDMWg3RnszTeRly8TzM0QTowzIxSWewZ1X+GLnYgPF7z7rugB+iG8UjcoBQM62hqp+BYtL4TBsN42jB4bYo2ckuKwMkNB3GtaulVWr92itLXKglhnNRwynhpCZ0wMVfNy7x/syBqmlIwpSTZkmQ3Z5gv1dcJ+B8X1MbdC+p3+sE/cB3Yo8CODbWmCCjOdMURulZYaciPncKSXGd4HzDkd5pwOVBn2AV1H6joYOjKewNUzbGolGMCMoxB1S5QaO8QvhwjB8H7TBMOgq5mUPZVUe4XGeEC7m6IfGAQz04TjY8MJ/k54g+Hx3UIToGlwF2W+BH8wPN5v5DNDQb/VQmxs429t4XfaiF4H1oYxdRAKUTpFODFGWCzeU2b5Vh+YDwg/UCHkp37qp6jVavzrf/2v2d7e5sSJE3zxi19kdnbotb69vc3arQrcxaOP3lb1nT17lt///d9ndnaWlZUVAH75l38ZIQS//Mu/zObmJsVikc9+9rP82q/92gdWrvthttNEqUZctvdzWN3ESGzQ6fSpbT+G0YgIGmnquQSa66BEJrbQqOsWA08hs3UF/8QT5P1V1D54SDRtg3X5KN2EiS4HeEGHrLKEkTuK8EL6vT6GvkkUprk8fYZc6Sr5dgVXRJiuSml6FjFYpB0pXLeSSDeOHkVEoU1QuIqKjRkZKO2IXGqLdnICIXWEHcfTevh6j4SxSdTV8Jp1JuRreALia2nGxyeQYYVB0KOfWqTTmGCrUyQnHiGn+DhaRFcXTERJBOtEQQW875AdLyDFEYKmyWI1zkx8hVnzLN0xm6srOaIeyC2HRKrE+MEie/Sj7wAjmSGlP0zLP0tt65vEEwd4eC7LN+xNvJ7LG189z5GdKn65h5u+QT+7QGj5CMPAHjvE2Wun2KxmkUFETK1xgHkmqlXCbY9yJPFaDWyvxUwwwFpbZ/v5z7CTyLEVN6n1pulHGs8m36A12kYdGzCmzRMmCmjCYsv3yUQ6AyWHNCJybKBkHJwwT8GfJojy6GoAigOighQOUhmQIuRMGOd1d4eWdFkwz/Nw8RStisOga5IoxNGshwmOJQiO7i6vhEAoCklFJSVUylWdMPkSG/p1imGCojLBs+YjKEJBCMgoBgPVJi1NPuTZtFqSUnmbSM7gJxXUpMCKQywNg65g0JV4chXPP4HXyZGIj0AkkH0B0a72OhLIvkVm3xsYukvKOoKiqiiKgtjNn1BUhBDDa3cciqLAretCeWDbyygkCiOiKCQKQ+SeNkHsaURq3c8TRQ6ZxCymPnVb2yIlfuCz2XWYe+QxDMMkJOLS9l+QD2Y4kj7MqFmkOWjQXFuksb5AO+zgBSGiXcM1OniJJM1UEiWRINku8bG1GLrQYWoGbW4W4/RjBJUK3tlzRK0WstUDfwvl5HH+1uFp/mSxjxdKysUYL+xPD8t/R1kvlxu8uLJGJb9On20O5E3ixhQjMsnhCzVS3YhriRY38wEyqXIj3qRuaRxJHCSuxbBVG1u10IVOEAScd7a4PF7FlSpZpjiY2M/p7CNY6r0m6tfqb3KtfYOYNcr/mv4M37j6J1TKS0g/IB/ajNopsIYrbpFJI7IZ1FQaJZVCTaUQySRvXG3jRgJdU/m/PDxKhy2+sf1NGorK9MGfJGNl9triFnOq3PXJGmrxhuelXonkuoIudJ779Mf58reuE5R3CKI2I8ZwQu15ETtdn9bARZESV0li5zXiDz/G5LEf3TOn3e5vKkLZ7Ydv508hdwWz6C3aujt+b2neb/k53jp46y9i1wf1wX36bfGWvPi+z9o3vsHDp06h1OuEpTJRuYJ0nOH7ex4iqKIfPox+5AhKcqgRMuPvPtDh+4kfuGPqz//8z/PzP//z9/3b7/3e791z7Z1MKpqm8au/+qv86q/+6vuRvfcFUkoK6126MosTHmRg1IjsHulGkxvbFay+iZABbUtDDVvkowbLIkOgaigDl4JXYTsqYyrbBJqEUNLRBWd6a5wVU0QJQaAKPMWlWOhQqmY4ur2NFJKlA1l2YiOISKFjX8Du1lBDQWqrTyleJIwUFLuFrujskyF1qlx2VeZEhoShUvYksztlHit/i2Y1zVb/IHHVpVhYwUyWOFc5iRt6rPUsslZArxOi90voOw0ysSm6+XmM9jKe+yhh/DD7HjtI2F6mJjdp5TU+mv0sl77yJwyaGqFMYE+a6J0kPeGzqoyjDGyO7atRc2uUtvN0/ThZOU28cg7O7cCRz0C88Lb1L4QgkztDt3Qdr1un1TiLXcsx1t1kZSfkeqXHlCJwM/P08jcIbB3MUaJoP+fOT1BpmGiq4FgaZjIansjg9jREt4/qDPA8D29miv7GEunQpBgG1CZHGc+kyTqSdD3DtkjT0F/EsnrEzR6IgIY6Tc2a4zE9Q1vbRy/qMqOsk9O7CEXgD8pE4RaxTA5V0xBCQShxFCUJQjCFYMxN8WJ5ES8qsWafZS7xMGF/gpkDn2Hf8YN7g6EQYqiW3x3kthaaBNfKvNi7gJLKMpuZ4mcf+X9h3xGMbsYLuL5ZwVIUjqsxFs6WaKZURvcdIDluwohDXduh1dnhmbHHCXpbrN106dazGOJRFOX+w0skx7HtFvF8j7GxArHY3Pv2rb1b6LWnaLcuYCc9isW744D4vo89v8TYgcPous758nnCuEZBm+BTx34M45bz46MggwDn6jXaN69T3VmmFfZotQe0OgPKSpW2CHkjnuaTE0+SeOFDGFOTw2ePgnzmOQZXr9F/7TWifh8WV8gG8HeeeZY/vlphLYCqkaeY8dju7bDW3uKl5UXWm0OX03hc5ZHREY7k93NKnyP25VeJBJASFGWRM3WPK60S89YazWyLNxKl2w6SYYgagRrAsrfFvsRppuJTfGj6Q0wmJh9Ybx+eHGH9con6zirRlR6fdQq8qbpczzR5ZPwZxqefQBsZQc1mh06Z98Gzap2zqw0+fWKMuUIcKUdZ97dZba/yYvklHi0+SsbKkLEyd3HovBU3glWsRJL9mf3MzJ3iydwsf3mtxFlN8ImDGS4v7FDeqaMOHHS3j3AdNgYppk7axCaOMLb/8LvvMP8Dwfd9jEyOwolTe74ZUkrCZhNvcRHn8pWhiezmMuHyCurcHPbJE6jfx+3ob4cfuBDy1wFCCC6MpAjsIiOdGIuZaYrRTfLagPRmh4EV4aRNHM2AYAepbKILDewMbqZKKXIw+19hPRmwYafphyMoyg2OdM/Tkx1Uu01kOmhuyJR8k5ZWp9ifZzUp+ep0QNk+Rz+qkqKBsCQygnGnjNVxcXIwlWmTCmfIOC7baomxgc2IN4euQnt8m6+uebR6PYxuniADWspj/IhKYvkJdip9apPTdEYPsNlsMjM6id3tU12/Qjz3NEFYwSquErkHyI2dpDCV4sD+03x+fZm6dOjtGyVdepjolVdQ+g5Bt0/YLJFITNAcPc4GRQqnpzl+pIn7ypu0lwY0q9tcaMbIFnuMbP9Hkg+dxh99lOrGBmHgI6MI3w3p1AM6tQDfExw4NEkieJjmzlfYXvv/ktt+iEI/R0VkiUmTlcJlzPQGbsJA8fdDa4b5tQSVlgEKHNgfcVJLoFkFzDOPE8tnsJNJUFTWv/hFjj17jK+ufInEhQpHojG2gggrkeannzmC4jf47ZcrbNQfYypYwdUmwVrnivIooTlNW2vjyB6BMcmp9BOYtUVq22/gyzIIF9/1Gd9/CtPOo2tpND2FEBq+V8f263xUtfnq9iVWu9tsmx1SwRk2ly9SyTeIGTFszUYVKoEMCKOQwcDjxrVtSt4WLTzsvsXT+3J7UUZvIaUNJ5FBFLG+0qA5aFC1N1Cmm7SVBpR7UF0At4O3+Bc8Eu+TIeBgagbd26AX5lAOfgglM4GiChRVUF7pUN3ogH8QuECr9eYPRAiJxw7Rbl2g17tJoRA+kD+l7/d5o/QGAE+OP3lbANmF0DRip04SO3WSUd/H39zEW1vDW12j1NrkL+xFSrMZFk8e4ImJuyd3oarYJ09gHTlM//x5nLNn8VZWSHfaPPnQ03yn4vPvz32ZQmELN4i4WenhBRGKEBwdmeCpmQOcLB4n3Q5p/cmfEA1ctGKB1N/4LGG9hrW4xJM3lzjR63B1UKKsVHAIGAgfX4S78ZYirGqDY9f7PPcjH8dKjDywzqLBAOXCNcYurbMUlbgY9vhY+jE+eubjfOLQAXT93XFMPLEvx+Nz2T2BWAjBC1Mv8Ic3/pBKv8KXV788vI4gaSTJWBlSRgpDNTBVc/irmCy3loHbUXOPT6S4uNmk3Hb5s+sNwEQZmeDoeJLH53K8ulSh+9KfU+lWGYTfB5PIX2EIIdCyWbTHH8c+fRpveRnn0iX89Q285WW85WVSn/4RzIMffGC+HwohHxBWSz4pYhgBlIXDshGwOGKybtdZzxiM9HykLFOz1uhlHHxzA9PuUonXuGJ55O1LrNkFOsKmK1rExQCXGrqscHWsT8P0iQyfrrpMpusSmF12EgrbCSDqUImFZGoBgSq5PJPGrw04uNYi2fRpTvisZSTbRhPPz5Fv5pmsj9AbWSOXuMrl+EO86D3GE1GB7GScqZMK7Kh0z62iaDGyOzW04weJ6nW26mWKH/k4a4aKqgrU6Ahm/BLqxBZGLCQMIkZyeU4NTnGufI6X1l8mbEhaWpowMtm4GeITJ5dUyPkq6c0WYzdTzDxUYCQrUbovweUdGJumHhapVwzC+cs4/jfRikU8mWbQ03D7t7u2DEIa8yuMhSapWQWZdmjH19Fj06QVBU9s0rF3QBXY2hMUxp/gyvWQtvBIFlQeeX6aDz02Tv+NEkHTxRQprMLQf+EWKU/KSCE1lY3HZ/iJ5kHKN9fYf/0S/iGbr218namxgLFMkX7zBXQl4CPjX2fOD3kpGKHVM+h2avj9ZS42vo6emMTWZrGtw0TBgLAuaQRZHnr+I5ixe/fxJ/Id5v3/xjfWv0KguGTZxBrUqS5skMjcOzE0tnv0HQ9FFWiKzbHeo9iRi+tuY1kTe/cZioKtKNSbLV5dWsAPO6xmrqJHc6itLXLdKuOqzXVFpSkq1CLBiJImSQFhBtiUofQFGPtpSA+p7j0npLrRIXSmQFzCcdZx3QqmWXwfv7Z3hmWNo6o2YejgOOsPFIRe3X4VL/QoxooczT0g4NouhK5jzM1hzA3fle72oL/M17e+yRvlsxTjI+xL77v3OcMg/sQTGLOztP/7FwlrdQ6+/lXOj2fZdK9R2hLYYoS8OsNkepyfOPUQM7mhA6G3sUnrz/4M6ftoY6OkP/tZFMtCTcQxZmaQH/4Qyc1NsguLRJ02YtcBN9RVBpqkE/RZ/pMvcSJh0/3cfyV66insRx65y/wTOQ7O+fM4Fy8hPY/jIs9yqsXOZA7lmb+BZb8938p96+otZoekkeSz+z/L5dplmoMmDbeBF3q0vTZt7+23e04npwFQFMFHjozwuTc2UAScmEpzeja7x0R7fCKFIg1qPY/uWzl4/hpBKArmgQOYBw4QNBoMLl3CW13b67cfNH4ohHxAqMkLXM/VCI0+jnaNVw2NnDARhqSXyuP4YHmQ6cXwhYKtW0wNmqwEcQrSYHrQpqeZdOJzpKIIT6jEoibgoqsBii5RQ0mh7TJWCfG1HOWJAuP+JE1lipS/RtqNUBTBj5QlK6MHEFsRttsiUxI0xw38fpJUoDLaPIDrBmT6qxDssG8izUb3o7SsOlmq9OqrxF5T0BQVA0nQaWNs7OACrXKZ1/7iz6jXG2gjRcZm95FKrOBwg/7ma7SbeXxL53S2yHXf5fJ6mVZJZdQLUIIQRbWJAo9eSpLIqFTWunz1G/Oc3ljFXPsG6mqVQJfYjWtEo4JSJ4PTDxBaDL0TYBSTqMLEVlwM2ScmmzTqO7QGKdZCi7T/EObRNtpIG71fIWmq5PyAirDpxD/Jky98mNe+vs5KrY5iGRx9cowPPTakgjb3pQnOlfE2OhhzKRTj9uo5ZQz5ZNzIw37yMT504xoX/VW+fWkNNZ1mOjnNJ45/gn//tXm2Kx3eLLmMhesU05OUjQRqmKIdVDGCFvOG4PlHfoTj+07jdNpc/dbXcdotLn3tyzz0wkeJ7XqwRzLiYuUir++8jh/5PFQ8Q9fvEkYqY/39mD2NsZk4g2iAlBJVUfH7EtlrkdNUZo8V0NdzaM0mnfIyvdzCXUJIGIU0+utsLJWwA5dkVrIvTPCpbo+pKEEskYHCIcy4xWrpD9lQDQ4d+38j7FkIPbj2p9BYhYt/CA//DKQmSOaH2havr2DqB3G9eVqtNxkZ+dQH9CUOIYRCLDZHp3MN1925rxBScSpcr18H4LmJ594zf5GaiHMscYKKV+dy9TJfXfsqP3lo1+fhPtBHR8n8nb9N+79/kfXKIp3Nb5OwcyRzzzJunuDRmQzPHiyg7zoUequrtL/4RWQQok9Nkf7Rzwy3NN9ZTkXBmJ7GmJ6+b5p53+daqY+hG4QbG/Re+jbe8grJj38Moar0z59ncOnycPs1oBXyzJ35FEfEdda661ysXeKFqRfeU708CKPxUUbjQ3oGKSVO4NB0mzQGDXp+Dzd08UIPN3T3zqeSUySN29usJzI2P/fMHIamYBt3a7fGUiZJTaMhJevN5vuS5//RoWWzJF544Xvm5/qe8vADSfWvGWQUIfsr2LUaQSFF2muwFT/ArF9jrq1gy6doqzY5r4dZmaJvRDxc7HJAbfD5/iGeC6scqcFOZZrkoecwQ8EgiAhdSVFc50RvEW8lpN9Xqe0fYzuM4+ga3YTB7PoO3xrZT9oL0TSDCWlwIrqIqM6zMZ6nuyyxyz6Tjo3nFkjUt1ga+AjpQrvPiGwRGhEi3kbqPRrhIvnrOWJ+B2tmlq2xKfRXvkPj2lVy40WqyRhq5GOFXVJhxHh7nUazgZdwGYgSoWcw2GiQbFzj9KDGX8ybuNLgKG2SOsxsrtJTfJTiEbbdOFt+Bn+7z7YzzyHNISE1OnaKuufB0k2iEQ1dTxEnie1r6OUW8cQocbVD1G/gdFpovS6uYtHTD1PzDKydR7CVLfIzi+j9R1FaJv72UdY6Wb7y+QXW6n0iVTD7WJFPnJ7c+zjVvIWaMgjbHt5aG+vg7RWgrurEtBj9oE/Vq3Nh3OHa1iZavcgjB57j2cln2bhyCXv7Gu2WzkKYpBjf5sRgk28nHyZh53j8wAGyWpIdp8Q3O6/TL0nOjJ3h5Ec/ydVvfg2n0+by17/C0Wc/hGNHvLjxIlWnCsB4fJwXpl7g1e1XWdZXUK7oHDSP85A9RW58qD2RUnLt29tMmwMKU0n2P1Rkx26xeG6RxlaJ3NQiudwLCCEo98t8fe3r7LQh3kxhayl+pNhjcH2dA8WDqFYKDn0SikeZKf0ZW0KjI22W+j0eTZqgmXDiJ+HSH0FzHS78Z3jk76Inx7CTBk7HQw2PA/N0e/PkgmfQtHs5O2QU3eHA9/7C7PSIVi4jyk0odEGPgWaBMDC8Bi9vvYxEcjBzkPHE+HedzrMTz1Jzamz3tvnzlT/nbx36W/eYdW5BTSTgRz/Ct770BqImea4VMIHKvodcRr0S3hsrDJw+0nFwl5chjDDm5kh9+keGxG/fBaRpkvj0pwnnF+i99BL+5iaN3/8DQA7JuwCtWCT2+BmM/fsRQvBoN8ba4jrXatc4M3qGmP7+MEvfghCCmB4jpseYSEy88wN3IB27P0eFEIKZmEYDWG+2iaLovjwwfx3xgxJA4IdCyAcCoSgcmZ7m0rLHvu08x4XkgqKSdUfJR12e6t7kW+bDmJ6HJ216ocehmENy0CGGj2KpiK6gU5FMjbTxjTT+QPJ69Cjj+g3SaodW0mTFTXFDHCctd/AzCh9vfoesExK1DJpugBuz0DSLXjBJjlXiyeEWXW3gkbx0hd5MmnI7gVAGGEDGzOLXpxGMkTVquFaNSjlB7maDieQW0q8wprucPzjK2PltphZXeeiREdTRcTbDNg/NJen1Q8zAxHENfN2jY8ZxCodJxnfwb6YJBlVQBmSyNWLbAbrbIC5Vtupl0oll9NwUjU2VG92DHExF5Kag1esid3YwI4WuOk4+3mY0OEs6KqNJg+3m81RVjSiZICrMIlNJpjIZ2mtl2hsunpOEaB/tbQOtmcLsZzA0Dc8NeWO1Qa5gM/pQjh99YmrIE3GrHXe1If0LFbz1Lubs3Wy6lmYx35jn96/9PrGURGzCmWqK58aeplOrsXHtCjO2ZEkUCRWd5H6Xw/vmyFiP8Hqrx5OFNMfih3l562UuVS/xRukNNrubpMwU3n5B7dwW3k6bi//nX+KODmBmH1Z6iqcnnuZY7hhCCD4++3H+q/dfqefaLFYXySzGyGVD8HrUyhHdahfF0Jk6NhSgitNJNm/k6FcMmqUuidwSNzplLlQuIKUk446SIMuIbDPhX+YmEjl6Eg5/AowY/f4yg/5NppJTnHNTnC2f5UjuyHBS0gw4+beHmpDWJlz4A3jkfyGZt3A6Hm43jpWbZOBs0mpfIJt5Gqfdpluv0W3U6TXq9FoNNN0gNzlNfnKa1MgIiqKC14PQB90G9V5m1LdF6MPS17BWXiHsllG6PXBuCwVKFKLVL7KzOooxcpSnJ57+nr5/VVH51Nyn+Nz852gMGnxt/Wt8avZT9x34B8GAL65/GfbPMpkY4aPzBmprHV5Z537MHeahQyQ/8fH3TJr2VgghsE8cx5iapPPVr+JvDbfqamOjxM6cwZibuyu/E/EJRmIjlPtlLlcv88T4E99T+h8UZmI6FxH03ICNVpuZbOYHnaW/9vihEPIBQErJ+Ow4l7QK3aCL58fY12/wivYcBfs8Of8GI+EMoRcgMIj7TXbEGF7YZlZpgdCoqQVCx0etryPHUyR9SZ8UfhRHoGClQt7IfJTRsoMXJQj1HgMMNKXFeHOLtjZCv5hkXZ+hJQ6wb+tVqgOd9liXkdUtwmqVSbOEbj2M5rfokacqjqG1jiMTVRS7i8kW1nwRL4x4Ux3l6IjCpKVw4/gBKp0WE5ebuDcajM9M0R/JkTn5cVK5AzS2vkPrwpsYmkO9V6fMY+SPP8uLN16hYC+gpq8xUJNM1Ds4qsAUA7TuOqlKn6nsKi+5p3G6Bm9e2mREabA5N4Nh6oyVK8w2W7Smp7gZm+VUogSqh39wFM+eIlUokpucJjc5hRVP4PddLv+ff0apXKffslEzMTR9DFMPGZ+I84V2h7YlOD0b58efnN5Te98JrWijJnXCjo+33kGZjuNKl5e3XuZc+RzlfhlVSmb0NKeUfYwMsjg3b7K4dB2QTO7bxzPx/Vxc22TVLTPnb/PCWIJTyRhZbbh75fmp5xmJjfCN9W+w3dtmuzecEORBm/DCFrJThg4UVuc5NArqoU02cgF2Ko2dTPHJyY/zX3t/TG+ryZVLLzLTLhE3fTYWR8FXGR9pIV7u0Y801PHjJCdPsloS1OfbvCn/HY459Fs4mDnIPucQN8ItIquOqipsZJ/mwJHP4MkW9dJX6fduAjA38gIr9QZVp8qr669wOnWSwPOw4gmsEz+JcumPoL0N53+f5OiPU/b6tG7WGOl3aTbOUu6+hKx+BZk5dI9A4bsDSjcXKN1cQDNMcmmTfOtN0gl9KCQKZah50e3hkZ2DsVNgZ+79GLsVuPoF6FVRFYtBYRLMBMn8k4jAAd/Bc5pcVL6N2VN4tJYk2SlD/l4tDQBOE0pXwEzC+KkHjgExPcan5j7FFxa/wM3mTb7Ml9mf3s9UcmpvR1IYhXxp5Uu03BZJI8mPf/T/inpgi/65c8MtyraNsG2U3UNNp9FnZh64C+W7gZrJkP6Jn8BdWECJx9EnJ+8rLAkheHTkUb608iUuVS/x6Mij6Opf/YitlqYwYsUpd/ucWy//UAj5K4AfCiEfAIQQXKwJGgmXdLdPu6dTDA1asWkajQXS9W0eHX2Z+WA/dXSyXp1228KOPKZFi0gIVuNzmDIgvvYmIj1NEMUZlRpBH2RcZzs7ymi9ie5KRgyX/5Y7yM1oig/LefyBRjyt0ZybpWUcYv/mBpXJE6R3bnLB3k87o2O0fJI7Ps5IkbTRZd3L0fMOETM84qYgmCnRP3+K07VXWM/MsDD5JCup/XzmmX1YXZd69ghO26VfqsBakuUjJzh64GMYus7BWMTa+gZObZuwH7E0fw2nkGKnXCODRVyHVpij6Xpohk1kG8TwaGyWCLoNRrUM3VqScCAoxWNkwpBOPIkUdYTrkojbqCeP091cJiPrTCXapD/zExjW3dTXeszk4MNPoV4+R1OpgtWjYIVEqs7VKCBZtPB6HglLu68Acqstzbk0/UtVGitlrsh1XnZf5kD1AJrQKAYhH2tU+FAyiW/s4LS2ufm1kEG+gGHH2PfIGeL9kCubTVYbJo7bIAia5IzcXekcyR2hGCtys3kTRSjoio4mFNRul2rkMegZWJ5LUN2hVv9jarl9kBgb8mAFHrONm9woeZT9In/Z9pmMW1RqHoIB/uAGl5ddupFPI3qdnpFED05hmSGa3aQwbnNs5Djj2gQv31jG7zSoJQZs60ep9zdYvPwf8KPVPTuyoe6nXbcZrzTYXl3ior9AmF8mptu7daZg2ins+iq2bBIs/A6l5Sl8P6SVvo4crSF1D8Wfx+jGSBw4QzybI5HNEc/mcLtdaptr1Dc38PtdyksvUQ5c8rkYRw4UhtTY/lCAAIZal9WXiTLT9PNFerqP59coBEXstcsQBWDEUI7+JE77L0BGhDOPo2lJpJSc3fg2mwtTnDIVHlHicPGPYOJROPCRobATRVBfgq1zUL95Ow5Iegpid7fjnRiLj/H85PO8uPEiS80llppLCAR5O890cpqO12Gzu4mu6Hxm/2eG2qSDBz/wHQtCUbCOHHnH+/al95E207TcFtfq1zhVfLAQ9lcJ05kU5W6f66U6nw4iDO2HJpkfJH4ohHwAkFKSJKRZiIi8Hq4LbXc/j23M0wpNmmGM/OYWhWQB29BI+GVkL45ldtDUUTbIsWNPMGOUUAc9gsoCXvoRpgEvl+SL6Y9QEFUOLSzh1eJkn85B0qLTNtlKFInaHXJBm1JWoay7sAFOt4PaWcNUXepmjFVrgiRxvL5NYNsUxIBWJGlIA8OPs1g9xUMbLxJJj5F0nK3pfbhdla9dbuFNxzBGxomeOIP8xufpbX2bjH+e1nPHKIw9hWVNEI9pBH2NqAVev8fnv3EWp9PhaLtGz5JU3TK5dhMLA+XkkxjzF5B+A6+lMWlsQcukL1XWCyd5ZtSghQvpDLaEwsH9ZH/q77L51Q769T9CaVzHMK37toWeizEzcwK9t0Td2eL6xgIR+1Atm1PTWZp9H8cLqXRcxtL3fwcFg8viOueaFwlQiGTEmJ7mqbCBbHdImSmElULNF+itXKK6uYN+9AkOfvZ/RTMMxnVJMWnR7SVZqveYGNvEMO6dvHJWjtzYHde3L0AkOXzkAPKJf4TbquJc+FP61S0cZ5t+v4crDfzqOkkZMa4H7AzG2OjEaAcZAhERJissahpECqBCtwduHU3WMLQk8fIUI7JPZ2OeSuca7WWXbiJLjZCl8llULrOznhnGIAkKqO4sIgqAa6hANjJoBC22+is8PPIQg16P0PcY9CSDKEWjsgN+j8hPIWUcoefJxXXC9A52uklaeRM7l8PKGGgKiHYDG8hMWOwfP0j74pepNnqUWtDQp5AHnkdELvh98AeEgxq9xjn6zhpO/+vIbQmKDppJayCxg0lITcLkacSgg95r44dd/I1vI/QRvlU9z6XmTbTI5cnZz6J3KlC+Bu1NuPkNyMxC4yZ4d0QJVfWhiefS52D0BLsRy+4bpOw4kDXGWXZ2WB/UqPtdqs1Vqtvnhr4vCD4x+gSFyhKw9E4jyy6td/SWc27HOdkjwNqNfbKXr+G9IvApdK4iVpKgG7fvE3cED3wAFOCRUOPF1gbne3/McaePKtS96K+hlERIdMRQ8LvzuEU0KNTdmCm7v+8i3e8WIvDJdW/geB5W0MSpLTL/RpsTD5YbhzTpQhnmcy+P6lvqF/bq7XvOu7yjfbi7beF2e761TaMIZDhsU9/dbdMEqO9hip98bKjR+4DxQyHkA4AQgtiMTXu7RDnfobipYVRrFNwuS6MG83KOA40NZEwhqXlMp1vsBBEZMyBAsCIP0gkkuUKS4kaPqHSVixPHWS0oGNqTWGqd4laLfLNB0O/jnDxEfBDQd3RcJ0KJfOJemXE5T9Pv46d6+K0O6/YpCnWVptGmGh+h008TeAnsfp9xtUI1FbGo76PjOXil10CuU7NC4nPT/NRDk/zxUpXWRoeqEjE75ZF8qEWpA8Y5D7Uiqf3n/wP+Zovc7CdIJGK0Wyq6ptDuuWw1N9Edh8MxlTdDFd/rIg0FO1Fg3/ETFJ//MGt//HnaTh9z4GLqbUJrFH/sOK+MmHzqkSIblRK9b71EttXBvXqV1KM/TnT9vyDb2/g7V9HHj9/TFlrOoru8xZrV4vrGKje6OZ7TG2SCiNP7Yry+2qfUFJTazm0hpF+HG3+OdJosaYJX3ArNSOKHCoVOkTk/x2dr2zi+yxVFYTU3w9En/zFhY5Plb/8SRG1GvVUya38KxscR+YOcmEyzXk0yX21wxtkglTr59p0ocOHmi8Pz2WcRZgJrJIH1sf8H2c03YPlFCANAEk5P4NkjPFR8lL94fZ3qVpOudCHeh5kWmqoS103GtAzjPZvJnVXc3jXO9x7G66igniXmxhmULBJeBjvZZSx5HWOwTkZ0SfU0bGcENZTACkIBy9SwLZ19U4Iv+A26SoO0FXIqkcTzQ5xBgOP4OCMJZGgRc036bpKpMZWpgskWNTzfpesu0136XUiOoQoLiwRJCsRECtGrkq5cI2UKqmKMsDRP72KbRHzozzGQPbaZR4oILAleiN4fYPkKHaOCg0KkjKFICcvfAkCXy/g0aVd6vOz02Q56KEiecXwO7VwfDuJ6DGoLEAxg5+KwDRQdEqOQHAO3DY1l6JagV3tH/5SJ3QNUelGMjaDLRtClFPZ52Cwyt32V3bBt33eIKCTfXUCshcNJ9j3iiIx4rbNONwr4XO0mERJfRrgyJNgViKb1JCeMPLNaEuUH6AApopBiZ4FGQ2ck8gh6G1xe6HFiqv4Dy9P3A991mxaP/lAI+Z8ZtYFDS+2wk6kzdyNJyA5KMs2lo2dI9gWq30f3DfSUhZM9hGJUuBZl0IMc37aOI2jiT45SjsfZTmeYz7qMaYJsYHG41mF0zcH2PFw7oJmXxCseUmqEboQW+Vh+n1ONeW5kZ7iZDsltB5ixBHYnwgotwkhlyxwn3xPgbZEIL3C692305DFKsYc4UOnj6h5XDxj04q+zrJnEU1nWKgnaS8skokv4hoKdmaQ+NU18aZmo3qP+h3+A/4kyyWSeIFjD8xo4gwClpzEZ1fHy+7DHipgL1zBSSYoHjmDGYkw8doaJx85Q21xn/Xd+h9ANwBpH1W28ZIHXnCQTRpPe/v04pRLqG2+Q+Xt/j2p6DqN1k+75Pyb7FiFkp7fDhdZ5rvXO0XZVrgd5gsjBDRpoao/vLF9lod9ms+tQvxHnem+StD8gvXWJlIR5v8l20AMgpeic7J5kn5+k4izBhIaeO8iVdAbXTBAIWFlcxy+eRCvdZMwUQ/+BS/8FCoc4tu+TfN1I02hprNd2GBl5hy1ya98ZOmPaWZg8ffu6osD0E1A4BItfBd9BnXka20hgN5b51JTDl0o9AkLmJjaZNDVG1SQxZdd+H4/DCFBboBltsSFH0KwxTmQqnG3niJIDpme3kTHI2EWSrSTHRk6hKrdWhuL2ynB3FftwP+T8oMTLQZNUfJRsPIapqGQUdW/lW63r3LxpUY9S9GMBK4M5gliGfHCTpHSwfA/SRXpC0KfFrHYIpToPVgZROEhSN2g2u3S1IonCCAhBy72MDAvoSoKEPkFcHUXHJups0ex9DcVK4qYex1aze6tN3ZU0nQW+3GsQGWkMK85HUodpNNeheGQohAgFph+H8tVhG2RmITVxe4APPXA7wxVpbt+wje5cqd4Pu+nHZcQRKTnCHVqM94JbmoN7tBfyLo3H7ZX03RoSGYY0NiPk+KPD4GZ3rbzfOeCnBjycSPGd1iL1u9K9dQ7rQmFdOCQVhePJWY4mZ4hp9m6+wt1V/O2V/IMwiHwqXoeq36Hit6l4HXRFZdLIMmXlmDAy6G/DsCqDkNaGh5GLUbQrlMmwrc5RHTlMIXafyfqWZkmGtyPb3srjgzRQ7xfu0mDtnt/Tnrtp36VJGgZRbGxGyInTw/g17xb6u4vc/H7jh0LIB4R91mPM9P+YJ680ibuSgQLrMxZ69CYLmVFGYm1SToq2M4KRL5BR20SaxnxyH3U9iSBiOxWyk57EqtQI/QGnWys8v1mnWWpTlxVs4aPlFcKgSlzEcHwPOQgwZYgILdKdCD+eZ2MQpzRSJe5fZW4yjfhOn7oZp6WbREaeSL9Grtcg1YLHususV+O40qaTmaMyIlAHDWqdTXJji7TbJo6rsVTvUUxPMtt5ipho0iseoRtexmqW6f/+H9Kdsuna40g0CG1GTI39pkktLdD6ASYQxhS8QGN75Sa5A0eGg2R/QMaO000micby5AZNVq/1WVPHaQD7R0dp7Wxj9fr0z55FO/hhOHuTcPUVZBQihWCltcKFyoU9B89Q1yiXppkwM2iJLaZUl3jPYEKM0koobLUGtAcDaqUL1Borww/dSkF+Di30eMTI84iwifBwdiS440SHP4w+8Qjhld9FRj5rN69SXV9FHykyFak4nk5s7ChK+QJUF7BaGzyUeIaX24KrOyEPH2qj6w+IYDlowfprw/PZZ6C1NhRo9gbA3QEpPQW9Ktz44nCyBDISPjobQzUN8mNHwUwNDys1XPXoNig6snyN6auvsLFq0ugmua77NBI2ej6NORmnbJxCGX+chc43OfLcj6Ia5gMn2NOhy41rv08zcPjPQEwzGE+MMxGfYCI+gSY01qrLXN/YpusMkLqOsMaBcdYSM7B1HjEIGUmNkkuARUi/fZNkegwrMY75yN/DuLFEcOMatdQsycNnCKMB9Y0VosgkyH6MUihoDBrUB3UatoIlpojLOleokE8fYSQ2QtEuslGN8+WleYilmcw9yY/M/QgpLcWl7T/n5NFPo+j67Zgfbwcph+yxqXHY/+H7/PnuWCLA3fFEvg+QUhKGIWEY7sZcuR3D5FasnjAMKd3wCA98/L5bfN9NHh+REdn2KhI5ZDRVDAx1eHihx5XaFa7VrtEJXb5DwOvOKvsz+ynaRTJmhqyVJWkkUXZjtUgpaXttqv0qVadKzalRcSp0vM6w7lRATSLNYayTHeBs2EEZ9BiNjTIRn2AuPUfRLqLuhioQQiCDgJ2bgvR0GqNxlaI9Dc4+LmkZPrJvZC/tt7bTe63z+z2v7MY++l63BEspiXZj6NzZrnciCAK2rrn0Jp5Be0ub3tmed/aDvfPvKXffHX4ohHxASCy8ys+9sYHVTdElx+XxDEUljdXaoupXKKccZio74JqUlBhR3sSxA8pKk9lmB48q4/0aE+nD2A6cXDnL0cab0M/iYeLrNmGsRJiRlNduEMkcyiAkiHxQFOpqghv1UURQw00bBIl9ZKSLb8TJykUqyiREDbrFIlK1yM+OUWh3CesKM5WbrLaOUC8c4li8xnRQpe9uohVNnIk+r2xMcK4zyyDjUIy9Qi5pk+qG1JUiuYFDxtvBXO4xHuuxnHsEgc+s4aIUU1QaNbTqGr4dUItBrtaj77XwXnsVI5HEuHwFo1IhGB1FzGUIzvfI+13mLzcoFTPs9Hc4pGgcWV5G2dggnCwwMt+nIbt86xf/F/pASMTKo9P4qRhT1hR28yTpnk5CVfh4YYZWfRnRCsgsJjkxdZT1xhSGs8TDiRt0haBsFdnRJ7BbcabNA/QCi28DIh6SiwJqocXmlSYsfpPt+gZuo8bXmjvEpEVqagZjMEAplVg8m0edOEa+/Aq6t0beX2UwmOBCS2dS+e+Y2pB++tZAJqMI/D6FnW8Q79xkIGxKK8HeYvfWgCHE8PzWPCElSKGAnUVaWWQ6C7qN6AuEc4sqO0CIJlI2dgc1g4QYQ+Um3W6M+VaGyNQwNcli8wybIoldvYFfrvHyd15FUZS3HayzQZbyoEzDbxDKkCtcueeeVGMOxddRFvuM5DKYwqTuB/T8NLK3TL15FiWTpahuEw0GVHoZOokeYenXUdsu9mqbaFWlX/ozUkqDEX0bT5qsedU7amf3+1P6jOk13PprfGupesdfHCR1ClrIiDfC5fJloihiZ2eHl156aW/SuJNi/J6BWwjsTkBuZx1/p87W5jBE+50TxDtNaN+tMHJnvu58/tYE9U64X1nf7zwC7JP72Pa2WfFWaAUtlt7i76IIhZgSQxManbBDEAX3fU9MiZHW0qSUFCk1hS99akGNalDFiRxWWd27N6kmmTQmmdAnsBQLKSU7OzuUrpZYcVdIyYBqTWd7XRBtaqiK+K4EjwchlCE7/g69qIeKiipUNKGhqRq6opPSUsTVexmQH4Rbgsc75TGKIiqVCm+88cZ7EnrOnDlDMvlDc8z/lJBRhPnaeWTPIqkMUGccpHGIgZPAcGMcrmpMDcrEpI4MkxyqdLD053hDnUdTNjH9BZI9hUJrm0dWNgluDnBlCS1y6SuCRiGPk8qDt4zUAppNDSPuoQQqg0ijrqRou3H6lYAJb4H11ARdLUmbHL1SwHQhQ6baJ9IGREQYwsQtT6FmNJzZDcxxj6TYJmPrBJpD2BqgbHro7jEe9sdZMorU/Ba1/gbSX2JHDTHyIIWPm3c44uQ5vlMiqA9I1ncYZGxkqos1Mk9hYJJaq7NuezjZOIlWlogmehSQSSRQKhWkbiCPHiWdzxM4DpWrWxxze6yoWVzF4oaaJqOXsL0a/aU1th0VJfTx3WVEbBRTqBzb1EmMPIPnm7zYDTDCkIdtBeIakCDcDHHXdzDyLpn2BlHgYptpzJETGMmDTN1n8JWqihdTCWoNgo1tul6dWKOKDHt4uk06lSc2Mo7bG2A2Goi1NXqTT9Mb+SiZ5hXyzWvkoxZVR2GjNGCmMDLUYLjtofbDbWN6TWLdi0gEtcQBIgDVAiPG3er+3XNVBys71HTcGQX0XUxIndRhjKKDXOvQ602hx7NkMgkMdCIZ0Q5DzCgiCIJ3HNzSSponYk8QypBm2KQe1KkFNZphE4kko2YopHPE2jnSkU5CG5ZjUp0E8wSJ8Ot0nZuUOhIj7hKqkk58EkdPIaVPtEtIpbghhBFJvQVC0AtzJNUUCTVBUkmSVJMklAS2ouBGf4YrByiM0ggdOlEHKQ1mjBQPWfm9lfh9v+E7hIn7Te4DJU8yBBG0UHo7uObbB1W83/vfzwnwrbilEbiV/+91lf9eIRBM6BOMa+M0wyaVoEIv6tENu/SjPmEU0ok6t/Mr1LvaMKWmSCpJDOUtjLBCMGlOIqWkH/WpBTUqfoVKUKETdrjuXOfG4AYFrcCENoErXWIyhpQSU/ewVHCCiM1uxHTy/dkl0wt7rHlrbPgb+JH/tvcW9AKzxixFrfi2/e9+uKVZeatgGIYhiqKgaRrqW/hj9hY49+nHP2RM/Z8YEvjvY8c5uO5yYKpEKrbFk1acK/VZBqqN5tQo9mq48RNovgmRS3bQ46h6nC3jLCLaYHpZYaK7Q37fKDuGgqX4RIk0LxVmMa1xxgcDrHCKnrJK4CfRhA9Sp8UITtxE6zXI+T0+EjvHov8kNesRtv0k/uZ3EAOPlJuiqYIzaGOnVRzFIh7GeVN7hseUzzMiG+x441Tc/ey/aRJ0x+gefhxdg32JiPkgwaB9gIcHAcv6JhqCSPfxvR3mdUl9eobi9T4x3yHechBdl02lSm+/SiLboBV3YUrgxTTspkHM1DC3t4nFY6QOHSL72c8ihKBxoMfLndfw3TqHjwlerKRprLX45kiRoybEkjm8Lli1G+R0g6nTf4/kpVUUK4b98OP88eUq+YkBM1bAY/k46v4kxA5T+tNzBG6NRPkVDmen2fTziCc/wUMHD961ArzzPHBdrm79JY3mAoX0CIlihkCfpKS1mN5/io88+llUXSc8cYJWu40QgsSxYyiJBPAUorPNM69+gS9vtWnUd/gp538HM4G0MpBKg2agVTYQsQzR6EnGj/04JMd3BZB7Vb9vVfO/9fzOAejW/2+t5m+rip/npT+4hCyHTB/M8fBHp7CaXQbNLmOGitqocObMGfRdM8WtNB6Et+bDj3wiGWEoBtX1DssXa8TTBoeeKCKlvK1lCB5FO/8fEF6HMhY9S/DhQ3+PbO5ZpJQEUcAF87/j9nscefxxOv5fIITC1OTPoWn3D0m+vd3EdUt8pPBxEolj+JGPH/pUt/8jUeQyMXESwyjg+z7tdpunn356T519Z93dOYjf+X8jXUOtXWd80iba/+Q9qu/71dX7rf6/s01VVUVV1ftOVLfu9TyPdrvNM888sxdx9c573o88vpsydP0uTbeJH/nk7TwpI4WqqPftx+/GROT4DguNBW7Ub7DT20FKSTWqstRYIpfI0VSaGDGDsWyDtSqExYM889iJe9rpfmlEMiKSu22/+y+SEaV+iau1q6x11obCEZOkzBRTiSmCKMAP/b3DDVyqThWJZIcdOnqHY9ljHMkcuSuS9Z241aZ3/t4Pvu/TbDbv26Zvrfc7+/JbBZYPCj8UQj4AKIrCYwdn+HZfw3Be4oR1jZkxyCltdjo9mu0dFL9LaLfpJ6ZQ+gP8/k3EQHJws0+msYPvWwxCk0HSoP3QKIbXoxPprKYGWGKHR7qT2GIfPb1OJvS5QZswsIiEQWruKKOrL2NHXWLZUUZsn0VVJQrj1BSJoknSGrTDENwWFSVBIWqwvLNGe+JpzrnPs9+7waA3yU50ArXRwA7aDKIOTQSpTofAjNGMBAYTHJMpxrpJJhNFNpQ1VoJF3iTH2iM5JrfO8lAnRPgWs/MOYiNgNeYikxGVxlXOOwHxHYlsLDPV6RDzfPwjAm/+c+iKjhho1NSAsrtJd32B4oHDtMsST1pczJzm42cO8KG8Bf/t/0nk9hikVYxMBjlw2V6t0PJVMqkEP3Iwjd30iB0aRXhdwphHrdGlWuqR3x9jJ/4YLXOMWGw44TebTRRFIZUasqT6nsvCd75Fz20gBCTMLNOnHyFpPUSj9hpqKkti915sm2B2Dn9rC21rm9hjjw63eLolTqfh69sh9cCg7EtmlAYoISgBxKZg/MSQefTJ//sH5rmuaDGE6KKbGoZhUIjb6D0XT1VJ6TqxWOxtB7e3g87t5/LjKTautvAdiWXaqHfxNdhw8ifg/B+QVCdxRpL0BwsU1OcRQkFHJzc6TnVthVbjInpKxbansR4QlwUgHp/D9yu43gYZ7SQaGjY2HSuPO9ghitpo2tieMKTr+nsr59xp6CxD6yZYnxk6Df8Vxa1J/NZkpmnaPf4DHyRs26bI+xfE0NZtTo2c4tTIKRqDBjcaN1ioLbCsLGPoBgEBDa9BOlmiErR4cWeB2PJNHh45yYHMAXTl7nZvDpostYbcLrdCJTwIqqIynZrmRP4EM6mZB2o4Wm5rz1/GDV0uNi9yuXWZ4/njPDX+1Ped/O1OQe4HJYDAD4WQDwRSSkxbUOzOM6JfpWqn6c3s45QXUmuVSWhN9FibjtigZz6KK5NIzSa7uojWVGjYIVs5yc3EHPmiTlSrEA5Czto6CEHST+F4Ck6UQNVSZKMBPa2KF1oIMuw7MEe++iK1ps9SP8bMgTEWPA0ncNiamsNMrROTKUr1ECXo0pFxIqCuhPQGF1gyJWWjzpy7g+w/RtOIYQcN3P4Grshg2z6ZPDgyRnNkjP39DZrLLU4dmmB89DAbWxMYGy1iETx5/Anam9vI/gCjmsNst3nU8ZjoRrTxSLhr6N3hxydSJp6pszNmInc/fBkBag6BiuHp7NNGOfPMFJculWkHBjc304ybWR7K78ffPI+/9CLxuc/Su3KNq69cgCOP8eS+HMW53NB5YucSLP4lcS1Pz9bpJg4ilQJS0al0XMIwZGlpic3NTYQQHDt2jHwux7VvfZ1es4GZjjM+fopDs6dIz84SDLagBi2vdVcfMA8fwt/awr1yjli8NEw3CogBB/Ma1wfjXJh6hpnZNDRXobNzm0th5qkPTAAZdP09B5PQH6720tpwgGqHIam3f/w9wYzpGLaG5wR0GwPSxbfEH8nMwJn/G3FVRS1/jjDo4TirxGJDRtdENk9lbZl26wr5VIFE4u2j3MZiczSbr+M4a0gZIXYnB13P4A528P3m91ag3H7QraFJrbU2ZG79IX7gyFpZnhp/itOF0yQWE5w4fILPL30eRSh8dPp5KrXLlAdrLDe3qA0qfHvz2xzLH2Nfah+b3U1utm6+o+ABw7ANR3NHOZ4/Ttp8gJP5HUibaZ6ZeIbHxx5nqbnE5eplyv0yl6qXWOus8bGZjzEWH3s/quCvNH4ohHxAWI5e4+LoizzT7iHUBOu5CWaOniHe+G/0K+uYRsBM8grz2hE6oohmusTMBq4cZWd/jIsjCvF2C+kbpMwWC65HTY1TEArT7iSbUQ1PiTGiWExSJxiYBMoA3xxgZ0YZsxzqUrIZ6BiEPG97vNzWqCVGqU8o5NohZjMkjFpsWAMEZUTGQTWX2aRIPPCQ6VVCx6GaSTHn1oh1GpApkM4WeO7Jfbx0qUpJakzELeqxLXwlZGG7TdkaRzcGnI53sEKHrm0hrTjagcfpz18nqprEVR/PFRiWSVwaWIFFEE8QPHSEj819EjNmEkQBQRSwstnGiUZIyRzj/VEOPH6GoPoyK9UeNbfPt29CPfZRHucyRnsVdz+s1/vo3iqFR5/g0ZnskPtj8S+hNnSQU9JxUplTVFsLBN0S3som85OH+Mv+Vbq9LqEMAai8XsLqtlB9H920mHn8STYqC/T8Ht72Fn7ap+/38UKPSr8yVNUOmoRykcHmq0RLHVqJA4i4AfEijJ9ivFjj/KU2Z9uCk4WDWGPHUEIfvb2NEgwIR4/C4G4ug1uqYOAu1fDbQbDrTLk7+d76/53YXuogzQA1Bl2nx2aphEwOBdZ+JElHPRqDBlqo3fPuvffukm4pQkHsOogqQtm7LhB7fqOxnI6z4dGo9rBzGqEcOt6FMhyqvTWNSEaE+ji9wWU2a98hJWNIJG4MnLCM19siFWVRzEn80L8/X5QEoeWIhIrvd2j2VjHNUSIZEWDhhi4tZwNhH8bzPXpRj5bbwpQmilBQhIIq1Lvyfue7JcM8K9k52L5AsPkGnp3eK7sq1Lves6fIl0NV/vA1cq/e7rz/LnParWeIQHK7nmS0V3cR0T3toXC3g+0teL7HQA7oeB3USN1LJ+LBPkQKu+Y7lLvK9KB6v9NkcWc/vV/fgNvmjltlimT0wL59v/q6s87uhB/6REQk9SSmZqKgcCR3mKfHM1zbqVNQqyjaJl2vy9mds5zdObv3HkUoTCWmOJg9yGxqdqiV3e0LCrvp3dEP+n6fUIaEUYhkGMFaExqaou3l9da7dUXnaO4oR3NHWWuv8fX1r9MYNPjc/Od4uPAwJ4sn7yrvnjlq99+dfUlKudd/214bCwtVqHvpv7Uv7dWtHGpw3qtfyvuBHwohHxCK1ZB8T+dyXOMZVYVgQCMX4uY+TP3aMpE/YDJZI6aVEBEY6QGJjE6joXEgIblkdukaHjWnjx+FXIjpCF/nUDBLDJuSEiE1mzwWWVwKjRTbCJxkneu1RU4ZAywloBMptBsVlG6dgTJHaJj8RahyRBcoahdH6+BHKk0FUorByeIUa+I4QWWDuuyhJq/TjQ4Sc+voBpjj+0jmEkwk42QzHTwP1voaphpxrrzFKy2BMZbk08+dxF56ja2tHmYqhxx4ZPpNOqkjVA9M0Ai7lENJciTiST9Ga0nBKxwgdWAfiSjBROqOEPPFDbb7Gu36Cr2bF2hP6VTVKoHaRKPNYivDhhOwFjzMR8LzXFr6Jo2Gg+YNyG79J859qYrVrQ4HCWCjsB831iNXWaJht9ho3KBSVQg3l3ljQsOYSmNO2gQtn/DKFqI/QM0YGI9Pc73ydSLRJaoHNK86lMbaXK1dRUY+tLcxnMaQQwIYNerYHY/m1g7Nx46DZUJ7HtPfwQk1Ks0+v3euzEjmLc5szcsfSB+VIXAxB4ECsZD1qsrl1/sw1efqYIowkmx7b9KYr71v6ltZM6GUhL6PcFsPvE+NemQGV6F+jXq1jBQ6MoqwBm8Qo8Hajk2v+5/eMb2kO48R1uk3ajj6MLy9EdZIujcIajdplXcIw5AFd4HajfdezlSvzpHKRYL6Nc77O8NdSndAiQJG6+s4ZpxmoviOxGbAXRPc+40wDFkYLFC+Xv6BquQ/CNwq68b8Buer54cXL0O1ZbFQjbHWDzm136Hjdag4Fbpel4SRIGtmyVgZNrobbHY3hz7g95G43s1C4BbutwCAYRv7oc9ae43aoMabpTeJaTH2pfe960jFe/33+r3995bQcj/8nSN/h4L93hyq3w/8UAj5ACCE4FD2Ya6+9hrtuGAxNImWltmYyzASjeBgQZhgYxDQTBoI1yCIiiRMk5GwzpTrUPNCros2W0pALUpQE0kOBDonlcP0hceGJQmDAQRxDNUm4VioaowgoXCj8Zf8QbyPmu+yrhh06gETOyZmUaVsTnHDiUhGBgVdAemR6Y0wEqZ41O3zVHac2kMfodZepMM52ql5qu3DqKkcmuMw2C2jHUjGxhK0l9u4Vh6hxfmmGyIDKDRbmN2A2P7DpOIZvFYfOajhDAYcTo7jjxYY1C5hx+qok4dIepLy0ipOTScaT3Np8xIL4QINt0Fz0KRXEdC2Cd06Mthg5WIbmU4xGAxQZJPR0Q4LKyYaWXq9Y7Q2PBKay0OdFcau3iA8nKQvoB3PszZyiIGZINkcbgk01ThiepKg1EN1O2hdj3zfJWvN4JT+/+z9eZBk91nnjX5+Z8+Te1Zm1l7VS/W+yFJbbUvyCrawxWLghRfGcJmJwcNl8A0DJmYGhoiJgLkXJuCGMfOCCbjYAfPOMCw2m23ZqI1tybKsraWW1Gv1WntV7uvJs5/7R1ZVV29Sd6mlloy+ER3dnXnOybP/vr/n+T7fZ5mmpOApBnJ+hIQygKRLLBlNdFkj0xNYziLxXh3baSM5HglJR5J1pFgWZfcY5ukGijKIkrvcD0RSJbbmZpiuZOh0MkwVncuzwVeYkW6cqd3oxQZXznzW/n/1tsOaRhBqCDNAjPmE53REK46shCQUQdeXQYpjKMYVL7eNL9+1mf36zOyVXsrJVcLVVYiCVS+z1eO4IhqAiRxkkcMuWWHha+OEoY+WdsAVuL00XF+PegVcOYsW1NDCBjYTICCSTCQhoeGiSSqRUFGFiiZrIHjZmfjVaJtZfNVA813yvTbNZGE9sqO4Fjvmj2Ha/X64nViK+cIU7XjfN/xGA8T1xKAJq06xsYCtxugZSXpGCl+LI0nyFdu5WkB5NdbOryIpV8yEbzhIbriP1iIvt4q1AfyVzul69GlD9O5qrB3fWsTkZrB2zGEU4oc+2XiAQNDpyfiBRNbIkjWy1113LWpwM/fDWgQC+s0J16Kpa9u50blTJIVtmW1k7AwzrRnswGa6Ps2AMUBCT/QjObK+fk03Rh2FEEQiQhUqqqxec91fCyL7anHHSchnPvMZfvd3f5elpSX27dvHpz/9ad797ndfd9mlpSV+5Vd+haNHj3L27Fk+8YlP8OlPf/qKZd73vvfx6KOPXrPuQw89xJe//OXX4hBuCo7tMRDFccKA+Y4gOjdDe6mJ0k4TKRGBZOL4Ck2h4YSTiGgHZtyhJl4iLZZ4u65zpneSJRkQLrYX552dSeLJGLaogRzhh11ibpxISmE4Npo2iKQl8Np1OnocYbZYkdt0HItAj2GKEE3ZjiZNktMFptRF68m4bobAiCFXztFo1diaNigre0k7p3GUDhfiZ+iEgyR7FlKtBLkEhhORjGt0Y9C1LV7qyYwNxcgHLvcqPpVaiXJLEEQBZiFJ+8IZXBxODlepjKRQggVCv8TzK2BkhkjJPazeJZbmQyI/TWyjm5+hI0syRnoIyW0TaxuM33WIufYcAsGO7TtojkU8+02b7oJLEBqIhGCHC6o3hHrXj8LgXiaMNG+T+jX7sgWWtUKlWiGRGybcE9Bsu2yVqowlJLgYAkXEtmGM0UkaPRthC7aPbueM/jUOBDHkukUyDVklz7yI8T3FQ+yeeB8UdoKexFtYoFH9O2QjSW7X/7l+OL7f5qT0ZzS6WXL6QX5w6zbSsde3I2kURRyvLNArukzsG6AwkeT57ixhELJvYpRUr8uFTo94RfBv9n7wlgSb1wv9bvzupeYCrhOwc3yQbCF+YyFf821Uq4+i6QXGRj9Kt3ue061TdKptDg98hK133Ysf+Tc0+hRC4HttFhb+HIHE5OS/RZZ1wtDn0sxnIIqYmPgovu/xyMzn+fC+f71+nBsrIq6/cdZJE4mdMP8shzL7YO8Pre78PNFLX4DMbkJFhzBABB7CFRDPIra9D1LD6yRujYCuhfPXBm4hBFLgIj/zOYQx0h94fIHoOKBEEC9CZhy2vPumLLs9z+PhuYd5aP9DmxIbr+/vanrouqdmLXWw4e+N61+RYoL1tNetloyubSuIguvui+d5fHXuqzy0/yH+8txf0nW7/PiuH6doFvkfwSWqHYcPjQ0xVUxcQaKvJtU3ugeEEOvpljXydPX+BVGwnqa5EWlaJ4VCpuf3eHT+UWZaM1cso8s6w4lhRhOj7M7tRtngFOt5Hg9fepiH9vWvaRj17yM/8gmj8PopUiFQxJ2hA3eUhPzVX/0Vv/RLv8RnPvMZHnjgAf74j/+YD3/4w5w8eZKJiYlrlncch0KhwK//+q/ze7/3e9fd5t/+7d/iuu76/6vVKnfddRc//uM//podx80gWTSYGvEoJz1WfA83cEgAQrbRVQlJTeA6GmrDpyci2pZK2ZtkUY1RSSwytGU/c8/8DYq8SBSpZHyDCZEi8rs0pGaf+SpVsDK4kkE88DCCNkVjH8mVJBOFrRje45yLlpHDEC1U2DE8jhZLMsgUd28ZJhZpTJ+eRg5cGvoArhswW5pHF2Uq6iAPeAM0pXkqcoWXdJ27PIvO8lkWBwTLl3o8lxKEOEj1fr2+8HzuGVTpOip1r07ZbSEUQVxIJLs9PEWhNuRghxIJSUMTgnhoUVXSpNI95F4NvdvGiIbZW3wbOSNH1sgijxictyuohoTb0Qh8j/3mDrSiRqfTYUwZ456RIvd6Fn/3zRaXGgFbxwfpnAooZocppO5FGxi74vo0rAallRKBH6BLKm/ft51nF22U1C6KrWconTyKCBx27xwi4y0x3fBZbPmcvfRtEu2LyIkHiEKNICqSHkkzH/Zojb0Lhi9brMvZ/uwqaHeIXBeh9T0PZDlBMiYxnHSxQpvTSy3esW3gdbs3AdpVm17bRVIk8uMJZEUiXYxRX+pSX+qSyvcHNGsTOeONGpHrIVOIU13oYNd9pOKNt59I7KJW+xauU8ZxK3Q6p9BiJlJg0qnXEEKgipcfSBU9i6bl8Nw6PXuWRHwHkqSgKEl8r4VtL1GufANVfY6e/b2oal8EuzZ7vikU98D8s1CZ7je2K5+BM1/pN/pLDCIf+LF+yGf2O/1OvPVLcPTPoLgbsf17kY0UMqsE4no84uK3wbPBHOiLdzsrfadc34XmfP9PLAfDr31X27WIlXzdHb259de0FZvdxtXbuuF1Ci9HJ0zFxPIsbL8fy53ImVQ7LnM1m11Drywq3ez+KUJBQbn+db0OElqCh7Y+xGJ3kYX2AovdRVa6K1i+td6Jea49x4e2fOiGpE0SEpIsXVGZ9kbCHa0h+9SnPsXP/uzP8rGPfYw9e/bw6U9/mvHxcf7oj/7oustv2bKF3//93+dnfuZnSKevf6PkcjmGhobW/xw5cgTTNO84CZHii2QGWrwnp6KMGViTIZUJj4KUYHtgoKbSuCIiW+kCIY7rYbd7KJqEHwVU51po7UO0whxuaHKgpxLFPTpBEwcHOdIwYm0st4PlScQjmPTnOSguIYUhc84wkp0i25EZa5gc1t/BT+z9afbEVaJewIrjMbL7MHmhYrg2niZomAnclsvZ5W9w1ulh+xFFRwO6HNWmWQgs3Polaq06XrNNEIVICZl8XCMu6bx7l0lq1CSumYzLgwztHmJs5xg76wEGJlosw91DB/mRHT/KrqH3MaAPsMtM8aGtH+b9D/y/GNCKqLZExu1yV2Yvu3J9u+1kqp8b9ZyI7Eg/r1+6eIFMJgNAvV4HIDE0xU9N+Xz8bTLju+6mNzjG8vIyjRdfvOLarKys8MKLL+BKPpqmcnD7PqYKcWjMUDnzOFPKRQ5uj3PX7jzZuED4NjvTHqPxAEKfRTeBGBqEoQP4kz9CavydoBrXVMhIpokUMyCK8BuN9c+FEKhqlqkBhyCwObnUek2Nq66HlYstAPJjCRS1/4bMDffdHGtLFkm5/6rovQbCteRAv1Fgq2q/7HKyHFuvjGk1n8OyLqLFYkj+EN1GnTAIXnb9NZixSQB61uXZpabmiKKIUvkr+H5fw+PYi7d8LEC/S6+RXu2s+3k49cV+59j8Drj7/9H/Tk/Ajg/C4X8Hg/v62pDSaXjxr/rNCm+E9gosPNv/987vg93fD2//t/DuX4F7fxZG3tb/bvmlze37vxDosg5Az+8BMDnQv9dnatbr/uy9EoQQjCZGOTx8mB+e+mF+9sDP8iNTP8LhocNIQuJi8yKna6fv9G5uGncsEuK6LkePHuVXf/VXr/j8wQcf5Iknnrhtv/PZz36Wn/zJnyQev7E9ruM4OM7lB7/V6r+QPc/D817e8e5mURg7TO/44xRTOb5ncD9fm/kaF1aW2FKpsiUxiTmYI7AtVD9CCh18V6Nb7xEZEr1SllaniUGSQnMno5TZL86QVec4E2xHirIMqjGCtIJ3YQlPSmGIgEzQYTi4REPayomORGgZRGZEShYMT+zBrtoM0KZi2Vi+j5VNk08PYzo9fCmiE0swXG2TX6xhyGOU1AFGHZszcoStSJzJ29y/LBPZKqa6hV4uiyZp/Js9aR7/+jf4/j0fRA4EVncZiLh/bBhEQOOf/wcnVeilYpi2IK/nsdIHuFT+BnpQp2ZV2Tu1l8GBQ5RWnqM+V+bC+a+wc9eP9tm+FIEEgR+QGBhl5eI5SjMXmRgaJQxDqtVq/7oZA0iqQTrqsn88zfHSNoLZGS49/jgcOkQmm2VmZobZ2VkAjFyKYqQjnfk2WV6CeoEO0BQJ4nvfTZTbhrdBkDYZhsw+dZSSM489eRBlzsWtWphZkyAIqFm1a++fVJqg28UplSF7Oe8siSSjqWWeL1nUOjazlTYjmdenoZRjeVQX20RAbjS2vs/xbD+n3G3ZaF2TIAzoCum2PRNriKUUgjCkVbVwbBdJvnEY3jB20mpP02j2xbpGbAhZNvAch0a5RHLglYV1qjpCEB6l071IOu2uVhsksXpzRFGArvWjZL3e8qaPVQzsRMw9uV59FY2/k2jLeyASsHGbSgJ2fBiG70E6/nlorxCd+EeiPR+5VrQaRYjTDyMCnyi/iyg5fuW29CyMHEaafw5qFwlbpX4zvZfB2vHd7mv6RsTGY1WFShAEdJ0unudRjCsQhTS6NuWWRdbUXmFrdxZ5PU9ezxMGIU8tP8Vjc48xaAyS1JJviGt6K799x0hIpVIhCAIGBwev+HxwcJDl5eXb8htPP/00x48f57Of/ezLLvfbv/3b/MZv/MY1nz/yyCPrZlW3A+PeMHNzZaotF8nSkCtdXpB7NOQ8mpMCPAQOwqvjC5NKuY6ICXzfphwtsqwPkeuYxGwVXbdoGDK21EYOFEaVLg2th+/U6JBD0XzykkTVapHxlmm2hnEVE1MKSIkulfkyjcUGs+nzUDco2zr/LEocsAIM0UO1bcqZJFOlBZLH6hS3ydSiQSajEtusJGdNj8VYl2UppPDkN+AFldZ730YnleSR0CZjaBw5cgSAgZKG5si0yqcIaueJT0/TNCfoxgNOvHSR0xdlXNehE3pYSoOnjz5M58UuhmoienG6foNnvvkNLs4sEwb9mXBnTiWwBfNtD2txjsCxmWl1abp9geny8jKyLDNcr5Cy5yktf5mqsZVYt0tUrXHqz/+cIJ9fT93F43ESvbPoNZeaWiWIX8KydFbEIH+9NECxWQWq11zTSqUCQuLR577NRCNLJCLOL1Q4653lkriEMW1csXz8/DmMhQUs36d3/tz657J8Flk+j1/RuNDu8H8vnuVA7vWZkdllGacho5ghpW9d2ePFWlTwuhJeLeLCsIkhpPXrersQRdC+oBGFsNA7gay/3HGHqOosQvQnDb4v0ZwNcFtNFrs9jPzgy6y7hgBVu4Ag4MUXTYgSyPKLqNpLEJl4XhFZhuPHv83zz2/uFal7TbZUzhEJwXLqHlqdLpz6ysuuY7gpJmovIM6epXz8ErXEziu+T1uXGGo+RygULjan8C89fN3tjNWaxJ0VqkufpZLce1P7e7uv6RsZR44c4Yx3hnl/Hv+iz5w6B0ClJKg6gr8sTzP5+rdQ2RTCKKTslmmEDRamF7hbu3s9HXUnr6llWTe97B0Xpl5PvHO7POw/+9nPsn//fg4fPvyyy/3ar/0an/zkJ9f/32q1GB8f58EHH1x3yHy18DyPs//rCGODgyjJQbQXxql4p2mkQpYndX5y+4c49sV/wFAaDGUjFlqAFFIcK1By5rDzM2SiSbgwgO8oZEZznPfOEQYphvw4sYxFRzUIIoHluBiGxICZ4qwfR3MEmiKoxQZIazDkyezfuY0AAy2tUT0Vw9MSGHsG2ekepvT81zGtHuWRIoEiYwYRP5UYZtoVZOUzbFdCau4OlNhFzm/3mLiYIqErbEewEoZM1hqIi2c58JEfJn5gP0EtxJmuI5Ianl8m2LGDwrZ3crF+kVQ+xl3vug9ZTvNPj03j+U+SH5B56J6HiLyQY583eWHmO0hui9Fcm6kDB4kZY1w8VqG62GV0Z4bo7i3MvvQCyYE8bnqAdrvNrl27GBwcRFxMIOa+w9TIXqKpD9JOJFh47DGSuo4zOYkQgp3bJhhqPEsw26VHEZHZgvm9P8vBOYnplTZ7t+U4vCV33et65swZHn/8cXYd3MN4LU3kBOw9eJjqYt/X43v2fg+GcpmI2KOjdL/9bbRt20h+6EPrn3e6Z6hUHiE/WeSxuSk0WeIDD2xBU17bjGngh7z09QX8QsjU2wtkileS7sp8h0svVlHiCisTEhfOX+D9H/gAMe32zhTPPLlMu+aw9a48A6Mv39SrXs/SbD2HQDA6+q9ZPnuJ+ZPHyY9PMnX4vpv6vZWVkJ49Sy67E9PcxuzcSVqtHGZsC5OTv8C3vvVrbN8+wuTk+5DlTU5EGveDGmcqfvNlj2JxH+LcEXbgEh7Ye9nwzOshPfv/g+IOom3vZ8fYy7zTSluRTv8jO/Q44eEPXdlD6Cp4nseRI0f44AdvTWz8ZsTGY81X8zxXeo59A/t492i/EKI4U+eJ81XG8nEeOjh8h/f25vEe9z38zdm/wQs8xofH2ZvZe8ev6Vo24WZwx0hIPp9HluVroh6lUuma6MhmYFkWf/mXf8lv/uZvvuKyuq6j6/o1n9+ybfPLYPHMSbyVGap2nHpuK+a8xaEoxVeHbJaSVfy8SRQ3sWs1TB18s0WoeGjbdBoLJSIBo2acDh5qFCIj4ygqspQkJo0Tps4ToeFFMr7jYORNMmpIY0VnWIWkEjKfSNINUyT8kAGtR8U3UT0V0xd0hE8QUyiPTzLwkoFpWdQViUY6Q6xtMTJ9nOX0TsxQwsEm1RvC1yq04gHzB+5he2aYTMGnGrl0rDaZXg/36LMEL76ANr6FqDtAWPGJ6i2UuElu/w7mv1PBtx3CsEo8Pkg2vpfl5pOEziKhCNBNg/FdO7hUnaXrBqycrpLMPczWqZ8hkTFoLPfwnYix3TtYPHUCq1EjMzRKt9ul3W4zNjYGiVy/SsDrgKqS2L2bwTPTqN0urXicnSNpMvNfBaeNZGrYA1OI9AhKZpyRTp1zZYt6L7jhfZBdTalYvR5abhhvxULrCVJGiq7XpRt2SaqXp1VRoYAtydBqXbFNM1ZAlmQK8SbZuEGz5zHbcNgzvDkSHIUR7bpNs9SjVemhxRTG9+Qw4lceR32xRRSCmdTJj6SumQAURlPMn2wQ9kJiXt+QqickUrf55ZbIxLAaHl4vfMVnLpu9m17vDKa5nVgsS7Zos3TmJL1m/aaf10RyK667gOPOYNvnkCUFVU1ixIbRNIMoiiPJEmFYxzA2KVQsTL3yMldj4jBYZVh+CXn6y3Do30AsAxf+GQIXkoMw+c6Xr3wZ2gsXvgZeF7mz0HdyfQXcznfdGx2qqpIwEsiyjI+/ftzbiymevNhgqeUiyf2uum8GDKgDvGf8PXxz7ps8W36WsUQ/nXgnr+mt/O4dE6ZqmsahQ4euCRkdOXKE+++//1Vv/6//+q9xHIef/umfftXbuh1YmJ9jyU+yEiRQhMnA0CjvGn8vyYEMntPgb07/L6pek7osaDs1dELkKGD69DF6pTr6vMXw4jx315/jbZ0zLHVK6JpKVpKR9DY9TYBQ8FEIfQ9VSAhgwgFUhXds1XElh2aQJxlpxFdFd2ErAl8QFw4YMtPpAXKxNKZno9oezVwOQh+7dprFeMSimUfWZcxkg1iYw/NDmmEVnyTx4a0Ye3YTPvggnX37UIeGIAhxL12g98I36D33KEHHxdi7FzMbR1biuJaC4/SJaC69EyF0It+h1DwFQGZ7gWQyjyryhL7O3AszLC19ES3Wv3XtjodmxMgO983Mwm7fg6HRaPQFZkamH+/v1SEMUUdGkAydgbjJ28QKmQv/2DcTM3OIwx9FDIwRRRBaHsVkP4JRat1YKLgWKet2u4hU/8HzG866bXPzKgMuOdePqASNBtEGIaWqZvr7H1jsGeprQU4u3vxsAiDwQirzHc4dLfH8kVlOP7HE0rkG3YZDfanL8UcXWL7YvKIZ2ZogdXDLtQQEQNFkUgMGAkg0+nnepn9zAtBbQSzZj6xYLfcVlgRVTTM5+f+kUPgAAIlcv5LI7nbw7JcXt65hTZxq9xZwnBKKkiKZ3IsAPK9JGPWvq+OWb/VQXh2E6AtOk4Pg9eDE30FjFpaO9b/f+X2vXHorK32xK8DSiy+/7L9QGHL/2baDy/dLIakT02RcP2Sp2btTu7Yp7MntYUtqC2EU8vX5r1/hSfJGxx2tjvnkJz/Jn/7pn/K5z32OU6dO8cu//MvMzs7y8z//80A/TfIzP/MzV6xz7Ngxjh07RqfToVwuc+zYMU6ePHnNtj/72c/ywz/8wwwMvL6ljjeCYqj09Czt5DjL1RYngDOjuzkc7CXfKtC42KASNOnKNrHOPFmvS9yzCRpVsAVq1yTeaKH3GrSiLvPtNpKrkpA8ItmlSRcE+JIBYUTQ8/rhaiEjRscpxleQRECXPJKj0imdBBkMJ47v+6hKG1mRKGsxQi1FynWRex7lbBJJ83GUOvGVY1wwBkGTScXayFISl4BKVMWvOyi1/mDdjATOyAipH/1Rsj/5ExgH9qNkTaIwJGx7yPmtqGGEIsUJPIlup09CkskUYTRIGAZUW33hYSyfxEjEyKRH0KIt2C2fhVOnccK+dqHXcfv9TQZXeyy4NkII7F4Pe+5FOHsEZh6HU1+Cb/43xOP/X5T2c1inv0n5a18kCoP+C/vQv0GkhpHMfnAw7PkUkv3oWLPnYXvXf6h1XUeSJKIooqf2B+mg6ZBW+iSk5V5JJKREAqGq/WvUvExQJElHVvph/6l8/7fm6hbN3s0JvMIw4uS3F7nwfInaYgffDVA0mYHRBFvvKpAciBEGIbPHq5x6Yolex6VVubIs90bIrlbJGLX+vjReExLSJ3C99iuTkKuhaBqxZJ80tGvX6nauB1UduNxtVwiKxQ9h6P17yPcbRGF/e65TuuX9edWQVdj3o6DG+j2EXvjLPpEe2t8vyb0ZDK2W51bO9snMW7gCaynStRJd6EsDJnP9Z3C2dvOahjcChBC8b/x9xJQY1V6Vi/7FO71LN407qgn5iZ/4CarVKr/5m7/J0tIS+/fv5+GHH2Zysj9LWVpaWq9cWMPdd9+9/u+jR4/yF3/xF0xOTnLp0qX1z6enp3n88cd55JFHXpfjuBnsMKrEpHNE3R7lmoWtmfjpBAPuPYxYx1gQbVrJNmbgsOJ1mFRkTEOirbTwUNFJYrR7xGMZWlIPVRLQDanVHFJJk17YwkDGRUOENmHbQuRM8krAcT2L3z2KJiaxogEq7jTa7HlmjefItidxLAfJDJjwQqZtWA7jpGwXvWdRzuVwUgbCFozMnGAlvoMIn5xo0AlMEBYVuYEXuoiLbaIJnQaXG50phQLJ972P2NvfQfMLT4Jq4M55MLeCVIoIQpfG+SrD8RaJRALECEGwQKN+nlNLC/0BXqQIPZdkcgpLcqheuoDX/Qb1S1sIAw/fTmF3GiyfP4tx8SxaKoZnNbg0LzE5oKL4grYd0Jop0+wG2PUeWs0i6njoH/px8nseXK9EkGIqQdMltDyMokkqptLqeZTbDuO5a7UBQgi0VX1Ex7fIqBJuz8d7ySAydRrZxjXLy9ksfqlEUK+j5C5rTVQlS+BbGEqb8VyCuZp1054htcUuvbaLoskUJpNkiiaJjI5YDSnnxxOUZ9vMnqzRqdmceGwBLdZ//DeW5V4P2aE4l16qonYCZDOi6d+cM+WtwFyNhLg9H98LXnZ/rofEQJ5eu0WnViE3MvqKywshiMd30Gw+TzbzTkxzkk7nFI5TwvPqRFEKaOC4d4CEQD8Fs/cj/ZLdMABFh23vv/n1k0OQKECnDKWTMHroldf5F4T1SIh/ZeRsYsDk9HKb2arF/dvvxJ5tHqZq8t7x9/Llc19mNpilbJUZSY+88op3GJsiIX/+539OPp/n+7//+wH4j//xP/Inf/In7N27l//9v//3Oom4GfzCL/wCv/ALv3Dd7/7sz/7sms9upoZ7586db7ha76RXZliqE2vYDLe7KFsLRNGLtJUY8Ynt/GP7ApYXgjBp1Jp4iTZTE/dT6xyl6s9TXCjQkFMs5mPEjDh7Ix9dybDUa+ObHXTXI3A0IklHxkJyBb5QiUktpJbCS/ocTpBAFQPUwhy5dhWttch8WcN1ZDRLoF1YIpBjdFJZ4hWBabWxRJaVdJotkoTeaKI3uxh6FSnqIYk4eijhRTblsE6+q+GtdAkHY/hXHb+SiJH+wfvwKz2CtkvQdjG0GHRl7FpI49hpYuNb0RjGCQTV8zqqUkFVkrg9jU5dJeqo6In9dFoOnbKP17EJ/YjIriMLH7tuEtYuIlkKbVcw3VGo26PQnOz7NKS2Qz4JuRCpc5TQdlmaLpM/dDkNsR4JsfpHUEjqtHoepRuQELic/2y12+QzRRbnO0SODHKcxti1/VDk3CoJqdVg++U3naplse0FPK/O3uER5moWJ5daHN6ae1mxdj+t0v+doW0pRnZcW5YphKA4mSJdNLn0YoVmyep3zAUGt7687kTVZZI5A92yyc3Bsl7h0kiAbqroMQUjoWKmXp1QVdHk9Y66vbZHMndrJCSZy1O+dIHOTUZCAHK5B0gm96NpfSKoqv3z1ichSaCB77UIAhtZNl5mS68Rclth+/fC+a/D1Af63iI3CyH60ZBz/9xPybxFQq7AeiQkuIqErD7jyy0b2wswbpEM32lsS29ja2orZ6OzzLZn3xQkZFPpmN/6rd8iFuvnrb/zne/wB3/wB/zO7/wO+XyeX/7lX76tO/jdgmjLu2jIY3giD+kRUgf3kTNlJk2bQ3KN0VAnEctgZDNoskaPCsdr56mRx+tUWFYuUNOqVBIhK1qX0ZyJUjjMGS2HlKwihz60Mwg1RgwfyQ1wRBxT1tlXC+j4A6SETTqM0xYTaE6W7aaEkBScyKOmVpE1C0lX6Y4PETNjxH0X2XapGAZSNgUDI+SbNt1IR3LbpPwSZqBB6FHRmuiAaHmELZfudRT5Ss7A2JklfmiQ5HvHyB0aREtnCWQTjzLhXJfhVpZue5BO2cDzaoztyTG4JYkac/HtJoluF1OWMGSZmKwQU1LEhcaAqZM0sxjmdsa2TmCO7yAo7kHKbwc9iWkaDE2MsOtd7+feH/1XbPmhH0FIAueFY7Sql/P+krlq0231B+jiakqm3L6xLmQtEtJqtRBpnVrDQfVk8CQape6152FVzOqvmqqtYU0X4nkNpooJNEWiYXksNl9e59CpO3QbDpIsKEy8PKHQYwo7Dw+y9W0FtJhCcTJFLPHKBKIwkcSQBLIb0S3blC61mDtZ5dzRFY4/Ok91ofOK23glrOlCNpOSWdOFtKuVm56ACCGvExDYcP79BqChrqbU3NdbF7IR4/fCe//j5txPB/f1K2Pay9C5QxGdNyjWSIgf+njh5ZRn0lDJJzSiqN95+82ItSZ0He/VP5OvBzYVCZmbm2Nqqq/8/vu//3t+7Md+jJ/7uZ/jgQce4H3ve9/t3L/vGgivh9SyiOKTGHd/P/J7PtC3WS6doHvsK+y2VJqmgpSNyM2nsT2PitVhqGnS8U0ytkBPNWmpo7iSz8lYlpOLHp3cIKTPoEo+vjOAHLOIhRdJuAGERRR5mbzd4a7221ClZTRnFF/JokQ+Q8oEhdwIlrvIvLLCxdw0WnKKrpUmbiRI+B1k26FiJPE9i0jTybQ8nFAnIVrEIgvFj0HoUQtXiFL78byQs3WLaSmFvVhFVxRUIVAkgSoEE4bGoXQcIQRmzkCLpwnUOIzaiEVB0c5yvLwTV3MxYy8x3C2T9i9Rz3h4IsV2I0drsI6ldHDqGezWAPkhk8FRleZ3WvS8IdIHd5NrVQnDkP333kvsooZcOQ3bhmGsn1NPHn4n5j9/jW6tytITj5P6wR8Bro2EXCYhNyYCitJvke04DtWujR9EKJEAGdySRM/vEVMuG4+ti1NrV5EQ5fJMXFMktuXj66Hh0ZcxLlu+0I+CDIwmUPVXnrkJISiMJymM37wZQn4swYH3j/LFby4xMBxnOJvG7QV0Gg5O16NRshgYvYWZ+nVgJjWaJeumxKlXI57OIMkKge/Ra7cwU7de0aKq/evie3XARNMK2HYHx1khFhu/5e3dNmzWskCLQ34KytOw/GI/mvIWANAkrd/sLYpwfAdVu1zNMTEQp9Jxmala7Bh8kxiGbEBC6z+Hba99h/fk5rCpSEgikaBa7Yc9H3nkET7wgf7NbRgGvd5bIqjrIaytIFtdIqERu+ee/oeKBsNvo6sNoESC++VBpIxJU/MZ6cJkRbC9nuP93b2YybsxpAl0LUk94fM118b3fHZly6SFjB4UUaQBhJzGDBW0wMX14vihixaWyEV58qqGKfUjJAqj+Od0tipbSCspvMjmTOUFZlvniAwdOZkl7ruolktbj9EILPxkgmF3HqXlI1QdMwwIqwIp7FH2ZznRajNHSNPvIXoWtZkXKM2/xMLiaWaWznFuZYavL8xS7zQgijASKrKSwOvJBIkGsf0Z6ETQjhG5HQzlcZzqi8QkH9lQEQkTMbSdgV0fJn1wO4kDg5jb9qJtezuFd30f2alJkFWWLzTXbf0bjQbyapdS7MupETkRJ3f/AwC0v/MUjtWPWMhrJMQJiPxwXZxa63p4wQ0aTknSuiPv4nwDIUHK1DBCHRoatc6VZGO9h0yjfsWsXdM2pgOidcfUl1PqO5ZHfbk/Yxvc+tr0vFjDQFLHNQVuUSe3I8P2e4psOdCPQHRqL2M1fpOIpdbEqbfu9CgkiUQ2t7ovN5+S2QhV7Z+/ILQBF00rAHegQuZ2Yuiu/t/Lx/vakrcA9Il4TO4/X1enZNbEqW9EC/ebQULtk5CO++aIhGyKhHzwgx/kYx/7GB/72MeYnp5e14acOHGCLVu23M79+66Bd/YkAlCGJ68QIyIE3cxuALY4DQ5OHsCP65S7JYKwhVBktMMfRh0o0FESVLWtRIlhunKTUc3iYLaMkGTk2lZ67R5CShCTVIgc5j2PXiih+hfoqDYFZZBcqo6r9JjzfRwrwC/ZFMMBEjGDnmPRs5eoRh2ieBY1hHi3C8JnUVKRYw7xsElsuUvoCOJBj0ZQoKoKarJHp75M0qow6LS5u9Hkhy+V+dHGCX64fZQfaDzFYPU4rBzn/DP/G779aWLnvoDSWMFvWbgLz+Ee/79o9RZQIwkvsYzlGLTSY0iHP0Z89/cgj47TVQykWrZvaqeUiYjWtQ2jCh7awQABAABJREFUO/oDYm2xSzLeT0s0Go2+yA+uICEAufe8Fz2RQqrXWHiy3ypAqDJC7T8WYc8noSuYmkwYRVQ7N56hJ5NJAieittJG0hVGh0xSqg6hYHHuykFRTqdBlog8n7B9ebaiKCkQElHoEwQdhjP9kPFS0yYMr/8yLF1qQxSRKsRetS7jlaAIQWy10+lahUw8o4MQOJaHa1+tBLo1bEzHbOblvzElsxlIkoai9Ge+QnTXScgdqZC5Xcht60dEvB5Uz73y8v+CoCtX9o9Zw2g2hiwJWj2PhvXms7NPav17uON13hQkalMk5A//8A+57777KJfLfOELX1gvgz169Cj/6l/9q9u6g98tiAb3UQ/HUA+975rvuiIBRoq4EnBfGGHmC7hJnVBuo+yYQsQK5FODaAIcxwWS5A3BSGIGxewhZJmwkSMIPWQ9hawqhJKD6pVwFJWuUkEJGmTJkE4NI+sdztKg1lvC7jnkhEnGjjFVSTN6vopdLmN5MrHAIOV6yG5AXTNx3Qu4DoiSj+h5OAQoeoRwNSI5QogSh2bOsSM4SaRIDCZ2UnQOsS1/kD3D29ifSoISY5oEeDaqNYfaW0KxLLxaiwtLMoqhIzIhrYTAjqVo9yJIFEkkEkimih25SG4CYcsoukPgd3EsnzCMyE/kUfUAt+fgt/uz6kajQaSv6iSuIiFyMkl21U238eijBH7/hSNv0IUIIdajIaWXScmkUil6dXAsh0RcRdRthh0Ds6NRO97EXeri1+z+NiUJebXZXlCrrW9DCBlV6e+r59XJx3U0RcL1Q6rdawlQ4IeUZvslwEOvcRRkDeZq+/E1rxBFlTFXy2s79VcXDTESKgiB7wZ4zq3P2tf6xtxsJCSKIqKryN2aLmQjCfG8BmH46iM9dwSS1C/thbea2l2FtQoZ56qGgaosrUchTy3fmlfPGwGmYiKEwA/9awjWGxGb0oRkMhn+4A/+4JrPr9d/5S30ob/7B7nUgL3b77ri8yiK6Ha7kJkkLp1EWT7OvdsO8c16FUtLsHtgmNDx0fUYBSPPzmSFWtKjvXKeWUUh6ei4XobQXaFGlYHkdnwjgdxdIdFboSMNg5BxpBdJqVNkXJOzMZV6K0XNXSK0WwzpA+yqDZFyNOYyCcoZjXpkUAizRB2HwkICKTGEVp2mpqnYsoRrQ5CNU+w1iJoyWsollKvI7VGIerSMZaTkDkIG6VYE5oECU1Ma/zxXYjGK6OYEcaeG0SyhlDVa7i460Q4SE3cTCx6lFMXohV08u0roB6vlu2DHQwQCuZ0hKtQIaROFCRzLI5ZIksyG1JZD6vNdpFS/2VonUElCn4RE0RU59uIHPkjl24/jl0qsPPssI++8r68LaTobdCEGM1XruuLUKIpQXIFeAS4JJNcllYoIux4FX2HBUrBnXZrPraBpfb2GNhJHzmQJqjX8eh1tQ/RQVbN4XgPPaxCLTTCUMpitWSw2eutkaA2V+Q6BF6LHVdLF16fZ3RoJqTs+oeITeSGmLtMFOjV7vfPuZiDLEkZcxe649NoumnFrr6e1SIjVbBD4PrJy5fqRH/Yrs5oOQbP/d+QGxA4WUFft6vsVMpcQoossmyhKEt9v4zgVYrFXLv19Q2LoIMw+1W+m51qg3b5+WG9mrOm0rk7HABwYTTNXs3jmYp2pQoJi6g5UR20SiqSgsWob4HUw1Tf29d5UJOSrX/0qjz/++Pr///AP/5C3ve1tfPSjH11vo/4WrgP5WtGgbdsEQYBkZjGLWyAM2CKaTGWmGNFSJJU4gSMhKxppPce4FrE1nyTwbYiX8KUQvBHaQZ2W16QpLCy9f9PFnSp1OYkjgUSbVFZCk2EiLCAMQZ0EoW8hnA5ZK4kdSnS9gBVF4bQREckKUugTOhZykEIVO3EKElY+g+3HMHSFSamO0k2iRDZtpYQsUvjyTrqKiiH/M0rCJ/IjrGMljLLNkK4SCcF5OQ2D+4ht3Y9avJtGezu+8BkYi1HIZ3GFSi90CAlwm9U+CQEcrU8MlE4OghBJ7c9U7E4/wpAbTSArEXa7hxr2w5INK+gTj9AH98pqFSWbJX1Pv3yx/M9HiKLoWnFqai0S0ichURQRtFzs6TrWd5YprBh0pjsITyBJYI7qKAUTYyCGn3Hp6S6tCOS4ihDgLnYJexmiCIJrKmQu60KAG+pCNpblDm69vtvpZhBFEaET4DcdvJUuzkyrf5wvlrGeLTFakXFnWiw/v0z7Wwt0nlxCmmsT1J1XHQmBjaZltx4G12ImqhEjikK6jf75i4IId65N56kl2t+co/vsCvbZBl7J6ut+IuidrBI6/Wu9dv6F6OtsNH01JXOn/EJuB+J5MHMQhdC5Pc1Bvxugy9dPxwDsHEwwVUwQRhH/dGIZ/wZ6sDcqDNEnTW8GXcimSMh/+A//Yb1BzUsvvcSv/Mqv8NBDD3HhwoUrGsG9hVdGt9sfFGOxGNK29wKQ7M0woMYZjhdYOPU1ahefpjO/QLdaZTeTfHTsxzggDxITIMkxxqN7UCMVNdQwZJPAyAECqWfTFRauBnFfkFQbpEyFnCQzRI5QHkaPJMqyQ0UXfDt+lopUQvIlprUec0qPslJlSczTFgaeNkkzN0YxuUToGSR6HbJqF8fPEfS6+HoFIUkoziiebLIcCUzxNdSC2n/ZH68w2fAhgrPd/uwjltSQJR1JjiHJIQOTLQZTg4CgtRopdxqldeGnE3pEKRktKhJ0XIRaI4J1XUgim8VMubh2D7+lEkUR9WYT9FWV+1UpGYDhD38YISsE8/NUThy/pky3kFglIbUe3bN1uk8s0nlqCWemRWT7RCKiGQI5jWhbhDelYWxLo2dNomKPRrJLx1SJ3zdM7GABIQlCTyfsZfCrtSv2ZS0d4K6TkP7LZLFx5WytWephdzxkVaIwtjkFf2j7eGUL51KT3okq3aeXaT86T/uxebpPL2O9WMGeruPMtPBWLMKWQ8oFoogmEUKApMmYpkJQt+mULMJX+bI2b8G+/WoIIS7rQsplnEtNOt9eoHe6RtByiSKQdBl10MTYkSF+aBA5pRF5Ib0TVaIo2kBC+i9vXSsC3DnTstuFeJ9M0XkTi2xvM9bKdJ3gWvIshOB79xQxNZlKx+U7FzYndr5TWCMhVzs2vxGxKRJy8eJF9u7tt4j+whe+wA/8wA/wW7/1W3zmM5/hK195+XbVb+FKrJGQeDwO6VEYmEISERNZHyMeRzMUQt/GqTfpVkrMnzrO8Ye/THqmg3deYe6UxcL8MUCgE2NM3kI6OUKkxBBhgEodV41IhC7hbIvde9OYasA4WeLhMCJw6SQCpodsVpQqml0i7gaYxMH1UPwQ1WuxpFq04oMUnRxO0iLdWSbeahJTAzKhg+fIaJpFV+uRbQR0pVH+WZkg7NWIicfRV23BxxZ6uPNtLlS72EGw3lBNVTMMTHTwwhkG0/0Ght1Iwo987FYZVVUxjP6D5aYFKgNEnRBZtwhDG7vbJwxmOoOZ9AhcBxGoeN2+LiRc14U0rrkGWqFI6sABAEqPfPUK6/bQCYhVesjLFr2ZJrOnKgSWj5BEfzDbn2exYNOLKWiZGEa+7xci5wx0WSclCQJ8Ou0e3YaLWjQx7yogx2NEvo47FxBusEFfKxNdi4QMpgyE6FvHd53Lws+1KEhhPIms3tpjHLRdrJfKdB5fwDpWxj7bwF3s4DcdIi/skwtDQcnoqEMm+mQKY1cWY38eN+ugjiZwplIkv3eCxHtGiY8lUBQJd6X7qqtkXo1XCEAilcWv2VSeOIt9tkHoBEiGgrErS/LdoyTfM4Z5sIC+JY2SM4jtzyNkgV+1cefa6yQE0SOKQnS9T0Jc500+eCf6x0H3TU6mbiPW0zH+9bVepqbwgb39d9HRmTrz9TePb8h6JORN4BWyKRKiaRqW1b8gX/va13jwwQcByOVyt9TC918SXLeKojxLEFx5I19BQgC29ttKj+hVDr33AQ5+4CMUtrydWG4rkplAVhQcq4uphkiaRAeZSAZVNTBjWVA9TH0A9CQSkHZsIjUiLlycehxT09mmtogFGkGo4fohRanLQ/ERkjI0E10GFZO4kgBNYPghSbdHxajhx0wMaRtOokg8qqHULVTX4aB+AtEzUQ2NnrpM0YNkU6JcOMgzIo+oncdQXyS2d4C8KpN2I5zlLqeeWyKmChRNJlvMkx7u0bNmyCQzxKQYvVDBjhzcbn8AWE/JGAGSpKC4WVTZxffb9DoenucRT2eRZFD1Lpqq4jZkgiCgHa3mRa8TCQEY+vBDgMA5e4724hxh18WZadF+dA5nusGo1H9UljRBbH+e5Hv7g5lSjOG2+2m2geEksiZotVooAzEkIZN244i0ixPYVOb7lTBKPkb88BgICHsS1tMLRKtW6GuREN9vE4Y+uiIxEFOJ3IC5mT5ZaLxUoXq2QeSFFLfcfJfdoOVgvVCi8+QS3rJFFIGcVFGHTIztacyDeRL3DZN8/wTJd48Sv3cI80ABY2cWfSKFUoyhqT5ClelGEESrpY57BoinNEI3pH58c5Upa1ir8Om1vWtEo68Er2whzvv4dYdOq45sKsT2DpB4YAR9IoV0HY2JHFcxVh1mnbMNhG0gCRVBiO83L1fIeDXCcHPE6A2B+CoJecu0bB0vl45Zw/ZCgn0jKaII/unECs5r0DfptcB3fTrmXe96F5/85Cf5r//1v/L000+vl+hOT0/326e/hSsQRRHV6teQpArV6jfWy6bq9TqlUv+lsNaNleQQFHb2BZSXvkWmmCKeGUQ1RjFHxhjesYvcZJyxAyYD7xgg3LudxNQUO8bfRyYxRiT1kOQEkWoiopDIsuiFDgERLcvj2NenyUQyQq5RDi0qYUDMK6BdEKRCE8VQyKc0FNNEVgsooUD3bCSnzkJOJ5YpEGiHsXIqdssn1mmSkjqMRXWEFseOVcDqMln3QI7znfw7qKHC7JNoygzJB8bYNZgEAWebPZznSuwajbP38A5kWSMIemiaRVyOY4Vyn4TYNaIgXCchXdtCKZpo0SByYON5LS7Nnefxxx+n2evPajSjRRiG4Or4TkTTXy1fvYqERGFE0HHR9Dz60BbCjsvcn/0NfqVfyRK6IUpaZ/ueAtpkilJOQxuOI5TVMt4wwmv1/z2+s4AQgl6vh6+ESIZCTIoRMwNs36G22F0vtVUHk6hFD0SEu9TEer6EfbaOe7pHsOLizrdofPs07W/MkZ7t4M63ufjcMr0TVeafK+HXbIyGg/9SBedSk7B3bXlsFEaElodXtrCeL9F5ahmv1EMIUAdNEu8cJvHOEcwDBfRtGdTBOHJCQ8g31pdoRKiSICJar5CRNJns3n4Ep3GpiV+7uU6214NuKkiyIAxCnOsc043grXTpvVAmpieRdIkwA9o9ObTRxHr/nBtBHUug5GNEYYR9sooiZ/rb9OooSqLfWDCKcN1XR7DuKBKr6Rir+pZfyCpeLh2zEe/dVVjvIfXY9JvjHtBFn2C9GQzLNkVC/uAP/gBFUfj85z/PH/3RHzE62leNf+UrX+FDH/rQbd3B7wYIIRgY+B4iJKzeBdqdE1iWxYkTJ4iiiGKxSDa7od/Hlvf0hZTlMyTkKoos47sAKmEY4QYzABSzdyN0hXl1CVUoxBNJwCOUNVA0/EjC81w6gKKoxCOLxoJC3TNAW6Qn9agq0PYv0Yl8BrUiIhL4TgNFUQmNAjomCEG6scyJREDL98n5W5gf2oEbgVN20SKHodBBCtp01AbC7ZJ0Q8Zc8OMFjuTuIwI48zDCLrF3Rx5tLMlsUsaPIvylLr0nV1AaA0RBiO8vkNWzuELDjmw8Gvgtd52EdDodtOE4GkWE22W5Pke1tIw91+b8EyeJSj7hSgu50kBuBrTP9Kiet3AX2tgnZug8vUT3mWU631mk/Y05Ot9ZwnqxQmrLOwjdEHvmDKHwkDMGsX0DxA8PsW1vHiFL6z0l1tAs9QgDgarL5EdTmGY/4tJut1EGDAxFJ46EJzv4bkCzdDkSpg6mkM06eDZ+w8G51MJb6iK6JqETrJKviCFdBUlQIqIlBM0gQjYVinmdoO1in23QfnyB7jPL9E5V6T63QvvxBdpfn6X97UWsY2W8Sp98aMNx4veNYB4sICdv3VdEAGmlH/lpbpgVZramkZMa3a6PdaKyHtm55e1LAiNxa7oQd6FD76UKUQSxsSypXSPICZVuo/bKK7MazdmbQ9IkgpaLWup303WcJWCjLuRNnJIxMv3uvGEAvbeKB+CV0zFr0BWZB/cOIgQcX2hyofzGjy6sRULa7hufhGyqRHdiYoIvfelL13z+e7/3e696h75boWkFgmAHEFIufYNyeQXPk0ilUuzevfvK6oZEAQb3w/JLKBcfwUx+EEmSCKMYXmgjyRUQgl0TH+TF6j+xJJUxcxLD2hCL50/ihSahrBOiEIUuniLQMUgrAcuOgqcryEkDqQqOsDnXfAktNcHUXXtYPvEdLHsFRZ2gq2tsjW+jHr5Aym7QcNuclW12W10IDtCRz6HbNqbVZatmc9EOQAREogxBjrtChbKA2eRWTgQV9jdPwvG/ZeTej5EwVLpFieqWOCMzFn7TQS7ncGunabZPkDcGONfR6dImxMFrNokX+wLMbreLyGgocp6ZuZBuu44WGkS6hu3ZRKFM5IToqQ5KGMPpCpYjmbxIQNMhCNtIQqDrMoYuIxSBFFfJj9xF5fgwYb1CEKtj5AYQqxmBlKGSi2vUui5zNYvt+ThBEFGe6T/k+bE4kiRIpVJ0u11arRbpgUF0WSfR1XDyPej0y2qzQ/3Um5zLIi5dQslZqONJhCQQqoTpjBJ5PdSsQjI3wo4g4NtPztLsBSzaPmohxvD2DEM70ngrFt6KRVDvExkaV87qhCSQTAU5o6NPptZFt68GGUWmFoQ0fB/oz7jiaQ2tEMOe9bGbLup0ndjeK7v/RlG/dDnsekRBBGHU/zsIiYL+vyM3QCpbuOUeVTdAyRlIpoI2nkQdil8T1XDn2vRO98mGNprA2J0jaeWxu206tSrZ4Zsrq5V0BWPPANYLZeSVDKpvYjuL/e3qRSzr0pvbtEyIvji1tdhPycTzd3qP7jjW0jHXK9G9GuM5k3smshydqfO1Uyv8VMogrt/RJvQvizUSYvs2XuihSq/+uX+tsOmzGAQBf//3f8+pU6cQQrBnzx4+8pGPIF+nDPUt9BEGkxi6y9z8MexeDV3/Xvbv33/dc+ZPHsatPIvSniUezqLIMm6gE0izSAToep6hzF7y6edYKs8w684xKUaIIoEV+QihE4YyWgS2iDC7kIpb1IMQ1RcMbX03i6ePs+i7lPwYychiUplH1aDnLBGFQzR1DUPPoXlJktjk3A6nczK7ygFjUYKj6UPcaz9Dod4iSmoMWDW6MYtIO4nSPUTU9Lh/Msuj9TbfyL6drfYicbuBWHyOKXMPL7QtLsoRU/cOElRtxPmAevvbWLV50rU0gR/S0QKQI5xmicxkEVnuazyqyxVOzVyg11FQREDRyFGcLNIIqzhtj3jPxJiQKBTz1M52aPoS82IYEUpEfgRECD9i2+4che3pdRKYuucAzccexVq4SLwwRWh5BH7IxRcqmBctGjWL5xdc6gP9iEcQ9mf8+VXhbSqVYmlpqS9OHZtEVwz0tkIn3oIONFYsfDdA0eT1RnahVSe2+7KLbqw+jF2fIdQ7SKZKJlIwAXu2S3tQZnJrmrE9WYQQaGNJtLEkoePjrVhEbogUU5BMBSmmIHT5tpXvriGtyOB4NDdEhCRZIp4zCHo+lu2jL3RQCjHktE5Qs/GrNn6tR2i/cipA80JCJ6DXcolSGkHLpXeiinOugTaWRB1LIGkyzqUm9tkGAPpEEn1ndr1Cpjx78Zbt29WiiTaSwJuxSC2P4zZqhKPed0ckBPri1Nbiqjh1753emzuOtXSMG7gEYYAsvfzYdf/2AWaqXSodl78/tsCPHRpDV96Y452CgiZrBAR03A5Z49rO2m8UbIqEnDt3joceeoiFhQV27dpFFEVMT08zPj7Ol7/8ZbZvaE/+FjZCotXajt17FiGabNnioetXGlBFUUS7fZxq7TGilAPVs7RaFaLwHoTUJVQvApBM7kEIwdTQTpYvzjITLrDNGifppBBBiCRUZHT8IECEBmYYECkVhNqjWRKktydIx3RmWy1skijpAq7loxgtOo0ufvIuoniIq0hkgyH88BxD9UvMj+6knoS0m2G88D3Mt5YQ1Us4vRRq10ONWag8RtrN023cxaF4jFNdm5Lr8Y38A/zAwpdh9jvsOLiXF4BzlsMHB/pizeTAVhLTW7FKcwzoPlE3oN5xcaUe7fJ5VCeP1oC2bfH8xScJ/QCdBNlUiJzUyI2N0q11cDwVxwcn7LHrvROs9JZxbJeY62IqgnBExUfHajrMnKljZHVSA/3QbOrAXTQfexRnaQYOBPiWx+zREs2SRVKWEGFEw3JhlYRIkkBL99vaw2VtT6vVAkUQyySgDpFtEUtq9NoulYUOQ1vTN25kt+4V0gDA90KSyy5OEOGqgm13F64hFpKuoL9CB93bheulYwCSWYNOzcZd1cv0XqxAFLHROVpIop8GUgRCFghZAqn/bxQJoUqk2x5lUSVMaSTuG8av9HBn24ROgH2+gXOpiZzR8av9Gay+NY2+gUgmVh2c27V+2e2tkDBjVxan0kX2TORTKVreBcypNa+QKmHoI0lv3Bnwy2JdnPomJ1O3CbqsI+jrm5zAwZRe3tRLkSV+4OAIf/3sHKWWwz8eW+RH7h5FkTelanhNIYQgoSZoes03PAnZ1Nn7xCc+wfbt25mbm+O5557j+eefZ3Z2lq1bt/KJT3zidu/jdw263S7Ly03gIPlCHsc9jm0vrX8fBD1WSl+iUvk6UeijZKeQjCyG0UJ4LUIXQvpK7kyu39p7e24KKaaynK4TxiU8KSJSFORQRZFi2K5ADnR0PBpyByXrQBRRO76AoRskaCIAJ3UPbX8vI7qE5Fp0wyYin6StCOIijWlHxGtLeIrK2ZyGpMfJiDT5rXdjxXVOrExwqbGFTqDQlDrs4mtIdhmr4fB9+TQCwSklz4XYKHg2E+Xn0SWJbhCw6PTLa4UQJIo7UEfj5HZJ6KpBN5KxcfCCBn7dQe9JBG2PKIpIFtLctfcA8Qx4vSa+DcPDw6iGQcPqYTUbxBIKY3szpMYFuZEeOyer7D6osu/dI2SH40RhxLlnS+slvpmdOyEWw7NbONUK1fNNmiULSZa4+92jRFNJultMdrxvlHu/fyv3fGiCWPHyYGyaJoqiEAQBlmURL2YA0JqC5EifqMydrNEsW+uN7MJul9C5nEbZaFgWBiHnnl3BFIJIlXDHYsh3+KWXXiUZjatISCLXJ9SOoSAnVKIwWq/A0SdTxO8pknzfGPHDQ8TvGcS8q0hsf57Y3gGMXTmM7Rn0iRTpbWlkU8ELI0RMQd+SJvGuUWL7831fjyBaJyDGjgzGVOYKohFPZxGShO86ON0rzeleCUKRiN1doGcGEIGzUKH3dIuwGhJ5Pp735vKLuAJr4tS3ynQBkISEJq9WY92kvXk2rvEjd4+iKRLz9R4PH1++YV+nO421RnZvdHHqpt5mjz76KL/zO79DbkMjtoGBAf7bf/tvPProo7dt576bUK/X18uXt29/D8Xi3RCFlMv/RBi6WNYl5hf+J1b3AkJI5Abexfj4v2XywP+HHcYuTD8OXgG7OYXs7idT2ApAzsiRTeQI5Yhz5iLzuTo1rYlkmKDoeGGI4QrUpEwUBjitUxjnnqZ97BjR7CJxewXLhuqZF6l/5wTiaJcgcHGiKsIJWaGELOnEwixJ2ybj6fTUGE7YI9f1GYvtY3zsIMO9FvPNrbxkT7KAiiLaZJe/RKvSY0hXOZTqC1y/lj6Ej0BeeJptav/hPWddHoDN2BYEgtCoMjg4hB+L00v4UHAxtqcp7hpBTmsM7Bjm8Pe/m/y23ai6h2+36bV7jI2NoWg6PS+g5zj0Om2Syb6WpB2tWpvbTYToRxTiGR3fDTj7zAqBF6JqGtqWLYSRQ32mSq9mQwRTh4oMjiYZKpqgSiy07OtWXUiStP57rVYLI59AkzXMjoY2FKwTn7PPrNBph0irpdkbnVPXurn6vs35Y4u0qzbpuE44brLSde54U6rMWiTEC67Yl3hmteSx46IdKGDeVSD5nlES7xzB2JlFGYj1Ix+vANWQUTSZKIzorZrQCUn0RbWHh4gfGkQbiRPbN4C+5dqeOZIsE8/0iVynduvVDFJMoT7g4e8p4yeaEAmkZgJ3rk3r9DTufBu/bhO6b7IqkzXDMrsF3uYrmL6bcLMVMhtRTBn80F0jKJLgfKnD106t3PFn8npIaKsk5A0uTt0UCdF1nXb72gPrdDpo2mvbyfPNiCiKuHixn0YpFotMTEyQH3g/ipLA85osLv41y8v/QOBbqFqOkZGfJJM+hBACkSyiTD5A2owQPR+ZfeSHDmGm+i9fIQTbizuIiHi09QTn82XOZeeoaS5VPUFbfQC5coCgNkpqaZ7U8imcXgU3lJBaPYrtJaTAJ+y28FdWGKglIejihRWaVpeK2wQvRNcyJFyD4eUVCGRqURcjCImLOIPGIQ7mdrNdKtJxZZbCQWrCQVSPs/T4F5l58RhT9WVkq0tVSnDS3AqBz1T9BABnLXv9Idb1IWQ5Rhi6jKZM3Eini4WvtBCqzPDBSe55/3Z23mViWS/Si59HGAuI+Is0Wv+AJLoUi0VUQ6fRs7GajcskJFgVZ62W6cqyxI63D6IaCr22y7nnSkRhRGLvPjpRmma9RwRMTqXJDPZDteOrbb7najc2LlpLyTSbTeS0jqbpKL5Ep9Fg+z1FMoMmYRAx/cwKtrGWkrlcySFJGgQpSudSlGerCElw8L5hZFPBcgOavTvb2TOpyAgEbhRihZerYDRDQV81n7MsD7VoIm1CvCeEuKF9uxCibzK2L482krjhNtacU29VF7KGKMqB6eFtvYR5qIARHyKKIqzSPL1TNbrPrvTdZR+dp/vsMr3TtT45aTibrgx6zaHGwFhN2XXfSsnAzVfIXI3xnMmHDwwjBJxYbPH4uTde6e5aJOSN7hWyKRLyAz/wA/zcz/0cTz31VL8TZRTx5JNP8vM///P80A/90O3exzc9hBAcOHCAeDzOzp07EUIgywaFQt/kzXX7L8pU6iCjIz+JvtqvYh1b3kUqrUAUoIchu+9/D2LVPItuhZ1BjU7jEnV3hrKYoWyWaUsKVWMfERp6N8l8bRuL4f001S1cyg/jqjHkALY0W2ylgimHdEWGkchgpxFh0KWhefhGhrK3SCCpqKGF1pmnlkkwF4+4YPp0YiooKQbSWzms5tkTbsOL8szLCXzPQVt+nJmXnual7xzBO/Z1zp96nr8rxThzoYJ58jGibpO661Px/PVzFTMnARhOSLiRRie0COjSq6+wvPx3NJtfpVr9OrXat2l1nkeK95CMCp5/gUr5WcbHx9GMGB3boV4urZf29gIZL4yu8ArRYgo77x1EkiWaJYvZUzWkwR3UpTE8xyZhRuRyl5tXTaySkNmadcPZzxoJabfbCFkgZ/vrd8tNJEkwdahIuhAj9ENmGyksT8FfjYQEXsj86RozzxVprRgEoc3k/gEGhuIMrvawudrC/fWGIgTJtZSMd60uBF59R91159RN2LcDJLKrupD6ZklIHEnSCUOPMN4meWAn2nCcaMBCzceQYquuum6AX3f6VTqnanSfWab1jTnajy9gvVDCXejcsunaa4r4WymZjVg3LAtuvdvsVDHBB/b0HVWfvVTnifMVSi2bjuO/IVI0SW118vUGT8dsSmH13//7f+df/+t/zX333Yeq9mcsnufxkY98hE9/+tO3c/++a6CqKqlUCkm6zPtisXEGBt5Nu3OaXPY+THPr9VeWVdJ7D8H5Y1iVBtRnwKr0W3O3lkh4EVNykrZwmTJkWrUebjiFLLlkwgp5mqBm8XWDhp2kYQxgyioJpy/s3NNeoJQY4bxZZCQxyf3bBccbPRb1kCA3RKe9wKxcJUcZ2Y3RjstU4zJNw8VKGGiBRLraYUBJ8w57Fy8aISXVYJu3RDeqM1/9Fsu5cVQnoi3LzBoDvOTnGLk4T+h8i+X8dr65bPLg1FZShSJmbAud9mkyugOSRif0cIIqi83/iZHKIUkqhjGKJBvIkoFsp6hcOkMo6nRaM4yOf4jcwACdeo35uTl23HMvhmFgKwYdB7JXGZbFMzpb35bn/NESKxeaICCKmchOHdVtrPeQARhOx9AUCcsNKHccssa16vg1EmJZFp7nYQwkaC6Wcav96IkkS0zdO8jZp1eolmLMLKdRFxp0LjZZnG7guwGCGEayypaDHsXJ1PpvLzZslpo99o68PiLUGyGtyLT8gKYfsLEINpHTqcy36bwKwzK4TEKszdq3r0ZCuvU6URheJu03DQldH8Z15rDtRUxzK1JMJTItYlsGEEIm8sN+9VSnX3YcdjyCjktoB33L/56PV+rhzrUwdvTTUXcc8UK/m+5b4lRgQzrG3xxp3j+axvYCvnW2wlMXajx1oR/RFAJiqoypK4xnY7x7RwH5FUzzbje+qyMhmUyGf/iHf2B6eprPf/7z/M3f/A3T09P83d/9HZlM5pa29ZnPfIatW7diGAaHDh3iW9/61g2XXVpa4qMf/Si7du1CkiR+6Zd+6brLNRoNPv7xjzM8PIxhGOzZs4eHH374lvbr9UI6fQ9jox+9MQFZRXbHblBNHFfBfuZ/w/Qj0FoCIXHeLzJSuJ/7dv4g79/5IIPePQgpho5LcegcytYy4+lvsF35KklxDinq0UsoMJgE1aBQ7aK7En6YY9bZTTv6KNl0Glu41FQJzTAJRAxJuESezUB3BV9ViSSHBV1wYiqH5VzCbc4QeTJTzjjJcCtddiFLHmnRpV40UQ8fYnSLRjsdcm7XvaRTBuOtOUK3x/FqjROPfo3nv/ol6nMWQRCgCZekESEpLbpcwPOa6Oogo6MfZWjoIxQL38fAwHsZ3Pr9KOEIYejTa1TwvBZbt/UrtFZKZTzP66dkFJ22G13Xun1gJMHorlUFeQSpsRRmtIRbLq130wWQJcHoamfbG6VkNE3DMIzVSqc25mCfMAQNh2i1wZssS+y4d5DUYJIgkjg77TF7vIrvBhgJlW13pxk7WEdLNNa3u9ZRd7Fx67O2242M0p+/XB0JSaxFQhrOq4oAXLZv3xwJiSVTyIpKGPhYretb9b8SDH0EANteRFHSSJJOFIW47upAo0jIKR1tJIGxI4t5d5Hku8dIvneM+KFBjO0ZhNoXUnefK2EdKxF072wq7a0eMlciJm8uHbMRb9+S4727ChRTOgldQYi+4bXlBlTaDs/PNu6IbmSdhHgdwugNmiLkFiIhr9Qd95vf/Ob6vz/1qU/d1Db/6q/+il/6pV/iM5/5DA888AB//Md/zIc//GFOnjzJxMTENcs7jkOhUODXf/3Xb2iM5rouH/zgBykWi3z+859nbGyMubm5dV3AmxUxU0fNZvHKNo22xtBECobuoq6PUDkx3deGvO3tXDxjEQ5PwOwxBrszqLE46pYiyVKLqD7DzvgLLMoyzfh+ApGluzIMls2WaonFybtYiWTmlmJkU2MIJaSh+gRCQ9Ij7I6G6lmk67Msx3eiOha269HIZGibPs70c3TSMbyMghnESVDElRwGVYn3uzLP629Hc48RhoIXJJ+PHH4nH6lfYkaR6CgF2uUedFrMHT9JoC+ip0O2qItErosbSRjRKEXzB1HV+BXnRjfymFkNpxHHqrex7TlGJqbQZBnXdZibnSWZTFJWDNrtCJwWhCFcNTse2ZHpV0T0fIZGt1M/9wx+q4Vf6wCXzZ0mBkwuVrrM1iwOjlz/vkqlUti2TbvdJl3M4akhsufg123UfD+lIysSu989wXPPPY/lgKIKxvYMUBhP0rMDlpcvl+kCDKf7A3y162J7AYZ65zwK0upame6V1uqxpIqsSgReiNV2iaf1663+iogl+hFWt+fjewHKLR7rml9Is7RMp1ZdF6reCnR9GADbXgBA0/PYvQVct3xtynQDJE1GyskoOQNtPIF9oYk318Yr9/CrNtp4En1bet36/3XFWplutwxvQDHl6w1T7T+LLe/V9Ty7ZyLLPROr1W5hhO0HdByfUsvhn0+VOLnYImko3L/99TOJi6txhBCEUYjlWetC1TcabpqEPP/88ze13K3U5H/qU5/iZ3/2Z/nYxz4GwKc//Wn+6Z/+iT/6oz/it3/7t69ZfsuWLfz+7/8+AJ/73Oeuu83Pfe5z1Go1nnjiifVU0eTk5E3v0xsVQgjMbIymPUx98BBD9+4jDEPOHT0KwMjICPU5l9piBz1uUsg5aOUQRRmm+H0/jXl2mvajf0wiEuzbMcSzjTgrAuwdhxl8fpYdrTnOmB0WQ4OFdhVdKqImyrRkCSvSUIVLVU2SCmzsyhJ+eieBiAhCByElaBZHSJ+bwatc5Fu7C3y4nsEVAtk+RCo8w7Dk0Fl5Cn/kAYLFp3FD+Kyk8P8WHvvCZaZz25B2vJ/tnRorF8/TbOXotc8jIgtb1ugFA6hSnrDtw8DV50aisC1P7ckMvU6DTnOG5Ng+irkc8+Uyl86f5+A994Cs0fYEhAGVxS/SDZYZGfk/N7RvF+vRkG5DoZJUCRwPd2EF2LL+e2u6kIV6D/8GretTqRSlUolWq8Xo+ChWwkWtS1jlFun8ZT8CJZVg62CPTtti9C4TfbgfNdnoFRJFIUJIxHWFjKnSsDyWmzZb8vHr/vbrgbUKmavLdIUQJLIGzZJFp+ZsmoQomowWU3B7Pr22RzJ364RrjYS0a1UGt03d8vq6XkQImSDo4fsNdK2A3VvAcUskb9LsS6gysV39HjbO2QZepYcz0yLseZh3FW95n141zBxIMvhuv6O08sYcmF4vDMT6L5OKdfuEpZIkMDUFU1MoJg2iCL52aoWnLtRIGSr7R6+t6HotIAmJhJqg7bbpeJ03Pwn5xje+cVt/2HVdjh49yq/+6q9e8fmDDz7IE088sent/uM//iP33XcfH//4x/mHf/gHCoUCH/3oR/lP/+k/3dDN1XEcnA0+DWultJ7X78x6O7C2nVezvVhKpbHsUG8Kel2bxYVlaqUWkpBR3BTz5/th4i0HB6iXE4SnJYKGg2PXqJY94lKMhOpz1769lIMCF63z1La5SDMxis0mu9rzdIu7mAsbjHQjJN3GUmTqQqXYClkYLZBbWCJybAy/AZFKz7MIwwzVwTEGZIVEu07HKvBUbIEhf5Jht8DZ7j5yjReY8I4zl9jKVHIvj5VP0eiF/F7H5qA1y7yVZaYp0HMp8rsOM+RupXTus0QtOGe1SWUiLK+MW+8hjV5rKpQaGkeRLxBEi5QunWag+AHyhSKL5QrtZoNOp0MYRViBimW36FSew0ukqVSfIj/wvddsTzXjBMUs4UxIb2EF13IQan/mmtIEhiKwXJ+5aue61zUWixGGIY1Gg9AP8dOCsBbRXKpiTl3JouRMCtNexqtXkfL9apkoMggjQRS69Hq19bLdYkKl1rGZq3YYTb++lWgb7+E4EAYhNce95tiNpExtOaRR6ZIb27wOQjNlel2Xdt3CSN46CTFSaYIgpFku3dJzt7as70coSh7bWaTTmUWScgRhQM9axkvd4nOsC9T9WUTZwH6pgrPSRek5dyQaIukZ6JYIG0t46S3Aq3svvVlwvXdwRskQBAH1Xp12r72uEbmd2D1oUu+meOZSnUdOLKHLEVsGXrsJxMbjjEkxGkGDulVnQBt4hTVv/z7cDO6Y9V+lUiEIAgYHB6/4fHBwkOXl5U1v98KFC3z961/np37qp3j44Yc5e/YsH//4x/F9n//yX/7Lddf57d/+bX7jN37jms8feeSR9YZktwtHjhzZ9Lr1cguratDpdDh78hJWt1+hoekaSyf7kSojF1B6MSCqlRm3XUQl4Jknv0x7OuAuq4cSs5h95psEQz9AIjA4453BLiYwGjWMC88jqxlKagpFsohsBy+eYNkMmCwLkto2gk4NTw+Qy7NY4TBdUWa6aaG3OmTlBKLbIHu+yYu7HXboM4w4WZKNGOe1YUTzFP7S53lWfxBHNWnESnzBTiHKTxJ5aS62FP7oJYX0mnlZ8A6kxhM00jVGpToJf5bpM89z4SWPsXhE7Iq710WKuuA5LF6a5lL181jLDVrVMrVul0qrTRAEJDoNTrdPY3U12vEsEefx3AZw7WBpey7buw7OzCVe/IeH8czLA0a5Kli0BH+/cpZd6WuvaxRF6/dxuVxm2j3PjmqRc43TvNA4R7hhTI1fuICxsIAVBPTOnl3/XFHnkUSbUyf/nijqh/9nO3C2LlGbi6idvjPh9CNHjuAgOKunIIIvvvA0GymCbwm6CyrSxYjTi5sf3OyKjFOXmSkFVxjC3SxCz6V+9ixCwFzPQ9xiS4kjR44gy3PI8gXOnLEIgy2o6lkiLvLccwb9dn63jsJSv2S7Xj2Obb7+ufrhxiyp3hyV5S9STewGXt176c2Gq4913pmnF/b4/Mznycm5G6z16hBF0K313xmfPjvNO4oRr/Uc4siRI0y70ywHy0SXIqaV6df2BzfAsm5sYXA17rj/8NXpm1u1Wb4aYRhSLBb5kz/5E2RZ5tChQywuLvK7v/u7NyQhv/Zrv3aF5qXVajE+Ps6DDz64XunwauF5HkeOHOGDH/zgeproVnHhwgVeenSemJpEkiRa7SaarjIxOY6iymSHTIa2pxBC0JpfYOn5UxB1KBgKiT0d4s0EqY5DKu8x9b33I+kZ/NDnq91PUav3GGxbDNnz6FOHiKQio0aak2GDalJGERAPfXwmUMIq8VadmFkk50ItV6Dk6SwN7mbk/BNM1SzOCoNzaoXDUoVUOEq2exBLlCjGukwVBZY+ysUwgRNXOWfMs19uk4g5iG072Rep1C0P2wuwrCSNxf8bW2oi42HGDZT8JGHO5MP3jFxxryxciHPqySaKbHP3PdshKHD6iW+x3HMpbNmCaZpYswGaO0NxeAB3ZC9BYJFKFcll333N+V7ZvZPGnzyMIXQe2LIT8+0717/butTmyKkV8nEVqieue12fe+45Op0Oe/bsIe2msZ5eoSgX2XbvAdShyzOh3sgI1hNPoG+fIvF9D65/Xi4LutY5stkDpFP3AFDpOLhPz6HKEh9691ak11Fxv/EeVhSF+fkKXhjxwEiOnHr5VRJ4IceOzBEBB98/ihbb3GumOt/h4otVkjmDXe8cfOUVroPnVIHb67H3vneQyt9c+mPjcfr+XlZKX0RV0oyM/BizczWiyGd05AFUNbOpfXLONvDm2ijDcYw9r82g93IQcwOIi99kqrAdd+qDr/q99GbBjd7ByozCheYF9g3t4+7i3a/Z738ojPjii0vM1iy6msJDh0ZJx27/Od94nAPVAZ4vPc++gX28e/Tad9xrhbVsws3gjpGQfD6PLMvXRD1KpdI10ZFbwfDwMKqqXpF62bNnD8vLy7iue10zNV3Xr+nhAv2y2tv9YL6abcbjcXJTgmRcotvrYEQS+/fvoVC4ViSXnRhnWVHBTxCtZJByDvLoBMHZFcLWWeoX/ojUlo+QTt3FOw8c5tvTJQI3YG+zzD/PXaQ5lCWQKri6STOuE+geSqxOOQnxWoin2NiJBqYr0S51ICZTK4yw7RIMehY5P0eo97hkzLDHGkaxfIxwD0r4HO9L1FgY38OAneR8S7CkNMmuPIcItjAYVjkwuA01CukELsbW/XwhtQu/tEQoHLLSMqlgiJW2y0LLY+sGXcTwlns5d/QJAppUL55k293/B5qqYDoukhA4jkMguViewmCkkBv8PpaX/5GedRpp4D5k+cpoSH50nGrKIKj7+LNLqPftW/9uazGJdKZCtetjBte/rplMBsuysCyLgdQA1dQ8bttDNH3U8cvLRoUCjiQTtZpXbCMWG8K2LxIGjfXPB9MKhqbi+iF1O2QoffvDx6+EtWPN6Rpl16OLxOCG/VZVSGRjWE0Hq+kTT20uJZPMmchSHafrI8vKpghXulCktjCH3WoxcJMdddegqiq6PoEsK4RhB0kKiBkFHKdEGDVQ1RuLU18OYjBBsGBBw0NRlNveYPAVkR7u60J6NaLV6/ZavOveqLj6WIeTw8x0Zqh79df0HKjAD909xt88O0+57fBPp8r81DteO72iqqpkY1lkWaYX9l7X63srv3XHmlBomsahQ4euCY0dOXKE+++/f9PbfeCBBzh37hzhBifH6elphoeH3/RurrquI4SgY7WJoohMJkM+f321tSTLKJkUAgWtNcZw8aMU9/xb5NggiuchdRtUq4/S680RH5ykkPIR+SG2kOFgu03cDTDCJAE+8ahFUj/DDnueVKqNKcvIIkSOWgjJYySYY1tQR09HOMkkcuAwstShpyrMx1og2sRx8ckx4W9lZ/UCMgJTlhimwLaZXegrh5Au+nSmlzl1pkSr0u+4as312KpOoSUGcBUX4S8x5jWJiPj2ucoVZW+6XiBTHAMiqpXjaDETSVZIGhqe69Lr9bDcFh1fJS7licW2oOkFwtCj1XrxmnNoJBJIQ1kgondx7orfShoqAwmNiIjaDSwGNpqWpfU03aSLE9h4ld4V5atrPWSCRoNow327VoHhbujeKklinXidWNxc6entwmVxqn/Nd9mhfhqzMrd5jwIzqaEaCoEX0li++fDuRrxa51RZ1tG0/jNm2wto2uo1cTZf4ipnDIQiCJ2AsH0HtBhrZbq9GgTf/VqQV0LB7F/TsvXae6foisxH3jaCJASllkPLfm3P/5ph2RvZK+SOdsL65Cc/yZ/+6Z/yuc99jlOnTvHLv/zLzM7O8vM///NAP03yMz/zM1esc+zYMY4dO0an06FcLnPs2DFOnjy5/v2///f/nmq1yi/+4i8yPT3Nl7/8ZX7rt36Lj3/846/rsb0W2BitEUIwNTX1srMobaA/uMm9kPF9B9EL96CntqOreZKuBlFEqfxVtIEBVDVCToXIw9t4pyOxuxNnW3wvBSXHu3pnMPUqE/4F3ls7w1b1JOPtJQ6eO873nfxHts2fgk6FameJC8NpvKTCaLlL1e4wF1ZxRBUR2phmGi00kVdcPmx4FCJBerqDGSUJUlOEWoMFs8Ux5SwTdw0wuK0vxlTmsujqMH4M6mqP6WaXmeolSufO8NxLZ+m1W4RhXzMwufcBImRst05nZQEznUFXFGKqgiQ5tO0AJ1CQAxMhBJn0IQBarWOE4bWeFLHtW0CScJs9/JWVK75bs3CvONe/BhtJSEpL0TM9uqJH5AUE9cu+BFIqhVAVCEKC5gY319XBz/XqhOHlgf7Aqrr+9HIbx79z/UvSG3rIXI3CeBKEoF3tYXc296IVkiA/3lf0l+c25/qYfJUkBMBYK9V1FtH1/gDuupuvphBy33oewK/cAc8XLdG3cI+ivunhv3AUYn0S0nJbr8ov5GaRNFQKyTX349f2+q/3j3kDu6beURLyEz/xE3z605/mN3/zN3nb297GY489xsMPP7xeUru0tMTs7OwV69x9993cfffdHD16lL/4i7/g7rvv5qGHHlr/fnx8nEceeYRnnnmGgwcP8olPfIJf/MVfvKYK582IjSRkaGjoFb1PEuPDyKpKNpbD0E2QFcjvQAAJCzRtgMC3qLW+gZ5Mkoo7uKPDqKFgqlUi1fL5nkCQk6Cpm3SdHDE7wTYvSbrnkraaTCRKvKf7PNuPfRtzZQlbjyFMDVNXEb5JK/KYlRaQPIeMbBMZGVQrh3/+Je5dCBgIBT1NcPHgGObhLSwNlpmOL/LlxhGGdyfJDJoYUgylPEZHE3QNn5QLLcWnt3SWp44c4bmvfJGn/vavef6fvkToGGhqhigKmTn1GMmB/kAeVwSeV8YJJIRk0u30IAyJx3egqmmCwKbdPnnNOUyPDRLGYgQeOKv9f9awVqpbucF7a2NHXdmT+1qduIUX+ngbBh8hBPKqyd/GRnaynECWDYjCK7q3jmVj5OIarh9yZvnOvVwue4VcS0K0mEKm2E/DbJZAwCqZAZrlHk7v2ojLKyGeHQAEjtXBtTf3wjeMfhrHthfXiaHjvjqzrzX3VL96B0iIEBtMy95yTjUUg5TWnzCUe6/P+RjJ9Enoa01Ckmr/+XED95aa9L2euLM9wYFf+IVf4NKlSziOw9GjR3nPe96z/t2f/dmfXWGCBqz3qtn459KlS1csc9999/Hkk09i2zbnz5/nP//n/3zD8tw3EzRNIxaLoaoqW7e+vMMqgD40QDw/QEwz6J2o9tMJw3cBIDXnKQ58AElSsXsLyAUbWYrIpLuEW97G9oaLfGGOnfPPkvBT1PX30+R+KvaD1Jz3ErYNumGMaixBPtXmrkSZgYVFJi+WKHQ9jChgm61haWkuKQuIyMcvlZGiCMlXaT9zBqXj8458kvLOOLYisLKH2GcOYIcRzyxd4ssXvszowTTpVBzPSdO1VGTNIq0nGBscpjS2FVsxqVg+URTSazU5/+zTSCSJgGrlJOnCEABeswyijqRI2GGSthOC00IIiXS6L/psNp8jiq4cUNPjw0Sxfp+X3plzV3w3lo0hCUHPFzSsa2f7Qoh1omh1+mZB7ZSD49v4pd4V6R05u9rIbgMJEUKsh/+dDSkZIcS618CL88071sEzu+aaeoNoTGGif+yVuc6me2kYcZXkQH/WXtkEmVFUldhqRKqzoUngLe2D0XdOdd0KitKP8AS+he93N7U9ACXfJyFB07kz3XhXTctE961ICEDe7JPLSu/1OR9rrssLr3EfKFVW1/vjvFG76d5xEvIWbh5CCN7+9rdz+PDh6wppr4aUiKMOxsG18co93EstKO4l8CW85UX87zxN4lyO4KkZxMVLxC620B97iaSvEjNGud8+h9GqUw5TTMenqGtNmu4KVvk8km9S1jI8PThJMJYjOaxyoNhCsruY5Qpjy3PsObPEwIpNO+ghBx00P8KKAmTbJd0WVBtV3vHAKIeHUgjADiKiwfsYlNOUfINLKyd5dPEbbH37MCueguQJIt9lSyxgJDmAumcP7t77KW17F3d96CNM7Lur3yPEz+J5Nj1/Bb9rIUkyncYM6XiIYSToBDotO1y3b08k9iIrJr7fptO5soxNi5vIxQwIgTW7jF+9HJHQFXl9RnOpev0BaS0l02q1SOtprISLjUNo+1foAeRsBgD/qoFyXYNwVfh/30gKRRKU2w4rrTszw1mPhHjBdYlQumii6gqe49MsbU7TAVCY6IeUK3OdTRGuy7qQzQ0wipJAUVMQRbhudb0qZqNW51YhGQpyUiWKIHiVfXY2hfiqluytSAgAxViflJWs18fOfq0FQ7XjYF8nnXk78UbXhbxFQt5kUBTlpgW2kmki6TLKgExQL9P80tep/M8v0b3QxV1p4Dz1VaJTFdRZgXbRQG14eKV59LknCfQe485RtE6do/F9vJAVnMgfx609g9+rAAIrPUknMcKl3Tm8bAxlIsXIVolA1dB7DoPlOgfOLzFyvkM493XUs08QnDyH70pIgQbBIpHsk54+TrJZxfI80OKoiTEKIslcs8ulxgUecz2WR1sEUQzZD7BbJSY9QSGpU9Wg4wScqXuM7d3Pwe/9EOnsNiSh4AddTjz5t5iZDI5bQgtsUqkhvEimbF3uISNJCulUvzSv0Xz2moHOKGQJYzFcy8U+cWL9c69ksW/RYa+lMlu+/iC7FglptVqktTSRBJ1EnzR4G9ZRctdGQmCDLsS5cgA1VJkdg/1tvzjfuKn74XYjJcsIBG4UYoXX+l1IGzQdpZnNz8Kyw3FkVcKxPFo3yn293H4OrOb8K5sfcGNXpGSujU5tBuspmTuhC0msRUJW3rJv57Iu5PWKhKy5H0cRLDVfWxK6TkK8t0jIW3idIcX7moWgOod9/Os4F05gn1siUAvIpo6R6RI7eIDk+AcxJg8TTY7SG6yjTerorS/h2svEm12WpCEicwxJypHq1AjDDq3xLF1dYDUkYqPbeXYoRagI1EGZwQPDlAojNJNJbMOkowk6ehsRhcSqKzidBlJkM9iqc+SRr5NvLFBsl+guL5L0XTrJcZDjlMMi082AY/Uy0oCOltEJhE+lXWVr1UOSBFJGxyHimYs1HD8gnsly1wceIjuwC4BWZ57lmafwnC5OK2LbtgMgKZSsCLdzOeqQTB5AkjRcp0qnfWU0xCxmiZJJPDvAPn2a0HLoHa9gvVAmK0vkPRntZA3XulbYurGj7lp+tmw2APDLlwcfeZ2ENK4gQdqGCpmrydHBsX5KZnql/ZrPpq4HRRIkVx0/r25kt4ZXq+mAfrO/gdG1aMitk5lkvn8OO9UKYbC586Qbl5vZ6dq1VUubwVpKxq/2XlWzv00hXuhrQ7wecvjG1Aq8nlhLxzSd5usiToXXryHlWiO7t9Ixb+F1h7yhaZc2kkbfNoVx8AG0w/8WfSyHoVdQ5x9DGdhO5q6H6E5VaR9qsSQ9gaGcQFZamDWXrNMiZrsYCwq9lEVsooa8/zz+gE8QWpx53kMbKfKl+ASeAC1eY9+kTj2bp5Yt8MLWGM/fn8cbmUKKQmIrL5HyVhiqnqVw5iscKB/hwfKX+ejs/2L/k/8XP3zxbxnpzrK/s4xcXsIoHeWDuoKZDSDugdxh5VSVSStiIKnTNASWG/D8bAPolyfvePuD6HqCSPYIpTm6jTqdlZDxsXEUTaPnQaV02aNGlnXwRlg6e5oXv/05ep3G+neJ4TyRGSOUdZy6Q/MrJ3GXuggBqS0pQjlEdQKWvzVP0LmSiOi6vt5RNx31ScOMvEhERNB2CVe1JHI6DZIgcl3C7uXUjqZmEUIiDF18/0oDoOG0QT6p4wURp5ZeXQOuzWK9QuYGuhAj8eo0HWtYIzP15S7+LWooYskUqm4QhgGd+iZ1IasddR1nGVXtE8ZXU6YLIKd1hCoRuiHBJrsFb/7HVYj13w+6f2dLvd8IiCmx9YjB6yVOvawLeY3FqW9FQt7CnYI6WCT9gz9A+oc/wsC/+xj5n/0/0Ma34eu7cQZ/GredJlo+iTb35yQP5jGUNCLQ0VJ1gqJOFMsQqgb75l8ivThHEMSoq1lmJwVeFGKYClEUMV91iNcdGmqBr2s7cIUgFutwb6pB1lUBj7Ndh1KxiZ/LoKoaXnmGyPNJOmncxBCD+QKGqjDm1kiWptnTusCW7jL31E/zjtmHOTj7LbYvTjMonSGuHcdrLzL0QhMRRkhZA4eIozN1eqsDVCq9FTOVxUh6SOEgsirRWu5x4anHGVitRLm40H/ZOLbN8W8/xvRTy9QaEq1ug+PP/zeqtcfx/TZKwsBIJJFSI3itFO7CCpKpYL59CGN3jsW8i6NKNOo23WdX8K/K8a+lZBRXQZd1HMnFivcHnbUqGSHLyOn+fgUbdCFCyKirPR+unnkLITi4KlB9aeHOCFQzq+LUunfjKMdGgepm99FMa5hpnTCIqCzc2stUCLEeDWlVNkccVDWLrJhEUUAQ9NNontckfBVRBCHdXKlu6ASvTaQk3j8n+qvsIPvdgjW/kNcrJbMWCVlp2jdshHk78FYk5C3cUWhbtqCNjyNkGclUie1bLVlU78PJ/xjIKnr0AsoLnyJjDmIu50nV4+R2vp/MT/xnlOG9TNRbFLotStlJzih3UT+dw3vORGt7+FoaKxJcbCtkdYt5PckL8S3Ioc6AKbgnVSLnStitNl/LhVzafjdL5lYuedBqa9TDYf4g/RP83a5/x1Nv/wVm9/8UJPZzydjJi+YeVvQCKzg8Y3t0Q41QCklmFtDdi4ilFQrnumRiCh1TxvVD/vKZWS5WumhagXRxGCEipChLYXQnAoWF0yeR7A5RGLFYa/P1R/6JL/yPP+O5Y8dYbjrY3n5WKhnm51qUlr7F3NyfUe89jmaqRIkkvucQOSsYOw2UTF8cnI6HXBw2WI5CIi/Eer6Et3w5mrHRL2Q00dcWVNZSMqUNKZlVcerVuhD9ZTQIu4aSqLKg2nFf8xnV9TCg9UlI9WXSQdlhc4OmY3P7KMRlfclmyMyaZXu7vDkSIoQgmeh3zu12p1FWu8+67ub9R2BDSuY65yWKIuwzNdqPzdP+5hzdp5fpnarizrfxmw6R/yoHrlVdiPFWJAR4/cWpWVMlpsn4YUSp/dqlxNYiIW+RkLfwhoBaNNEnU4BATB5Gfe+PIRkaLL3AqPMiE7EyxWREYuwg6bt/kC0/90l2aSNkIg07U2R+bIr5YAcTZ5bYfvzU/5+9/wyWJD/vc8EnfZb3p4737X33TI8HMHAkCBAAL0khBIqS9oqrlRihEINxvyj0RZQ2QrERK9EtqStdLRckr8BLQrTwGAwwfqanvT3dfbwr701W+twPZ6YHg3E9HiTPE1Exp2uqsrKqsvL/5vv+3t/LVNNA7PtU6z5eyMV24dn+BN/xTlMnTFYL8/GgRUxykWq36Osq/aE9BFKSoL9Nyuxx5OYqW40u522V72f2Mfbgz5EIz2A7h9js3MfTvXv4y+5BftvZxxlxiJIQIhlZht4io4Uu4oaBltFRVImW4fBXF7f5m8sFQukZZCWB6zuMZz9BbmoG2zRRfIHA6tNt99i6fRPXsdE0jZmDh9l39CGikUN0WpOs3bLwfJees4CtLTMQanTUIshNrJsLeJ5HoVAgJlj4ssiNtIKTVAn8AONqDWulReAHr+qQeTkI2VR3jM+8lnmnRfNlceobdshYrw1CdEVi3/DO9q9tf/CLSUZ5OQh540zIj2o6qhvvPCWcHYsiSsJLdvBvr3wRz+0sMJ1a9VWutG+HWOwICAKDwSaiuJPBsN5lSeZlcarXsfGtV3+G1nILa2Nn4Qi8ALdtYW/1GCw06L9YovvkFu67afF8KROiuruZEPjgxamCINzJhhTb798FxMtBiOEYeP6HZ274RnzoA+x2+eDR9iSRsyGkmIogj0FIhgt/iDJoMRQNQFKhuQHl68RmDzH2v/4TjlxappVOslbfxO+0edE+wsnBGntKW5STOTBdwk2HTtejpKu8qCms8AgPimcISS6npHUuWxJCew0pyCDF5lF7TyN2x5mUOiw8dYXlqRG6msr/HlaJuiNEWm2SDY2omKUtCWzYBfqSS9nNkxB94vISQiVGUjtEEJLYdzCD3nK4sN5ipdqnWleY0CJoio5RSKCFoqRHVfRYnGTpBm5gk4spjB04wezxUygvdR3FwmGefew7VIthciP7GJ9xMI6v0DY3CDyTZMfDu3yZG7JE1zDotBpEQxV6eo7CsM6euIa90cVcbuPWTcL7kwgvza6ZUXb8XbacAkLkBEHfw60NUEejr9i3N1uv+r7eqE33ZY6OJ7i23eZ2ucdH93qE1Lv0xOlVQY2A+s4nRWdeatNtOi5eECC9gYNvbjJGZa1Ds9THsT2Uu93HH0FWJZL5CI1Cj+pml0jyrdvUXyaSSCLJCp7r0G+3iKbe/uA4RYkTCc/S7y/jvpQ9eLfiVFGTkBIqXtvGrZmoLwVr1moba3UnOAjtTyOldfyevaMj6jp4HQvf9rHXO8jJdzg/6OVyjNuB4IOf5vuTxo+KUy3PuuOv8X4yltRZrvTYbpmcep/GyITkEKIg4gc+fbd/x5jtJ4XdTMjfQwRhpxYtKOKOQn7fZ+DUP31JMS+CIEH5Cvzg/wmP/wfG5PN8/pjBgViH+XSU4uwEL05OcSP1EI3xg2QHYHoKa3aMphgjNmgy07yFSZfngwdoBSNIgsYRrc3V5gLrrskgNc4gnsNwKsTbDSbbEuntAUbJ4OaNMlcXNzlrGzyXCNFPy3hJh6QfRbJCDMQuZ5QcsttCZ5HxzjbSUpfr2x1Ozqb55QemmMqEMfw8dRk6lKnWTfxeDFlVmTh4hGQyTlgRmTmwh32nH7gTgADM7tnDgYM7w+puX1uj19vPyMgvEM+nMWMCW7VFtlduYy0vI7+kidDdDnZpkZsbJfS9KUKHMgiyiNuyMM9VSNghCECyJUJyCC/w6MYtXN+nsFjnyq0q1VCcAPCaP54J2Tk5um4Xz3vtlW8+rpOP63h+wI3iXWZDKjfh7H+Hy199Vy2acVlCFUS8IHjDDhmASEIjktQI/ID61jvPhrysL6lv9/DeRh1dEEXiL+lCui+16l4vtPnKs6tUOnefTYjHjwNg2TX8wH3XbbrwWvdUa6ODudQCQN+bQp2IIUUUlHwEfT5F+MQQ4VM7Qz7d6gDffGddR4RSIMoIwSueOX+feZU49QOYIwOv7pB5vzRdgiD8RJdkdoOQXXYCkb0/vROIjN8LE6d3TlBmGzaehyt/hl49yxe8F9kbLpHJOahhk42kiR2pUZ6cpieo+Hi0c2HGxE2OuGf5xcH3OBzaAuEUfjCOJgSciFwlGJyl4QxYTB+n5W8S9joc7m7xhW6dX+h2eThockIssE/eRBQ8tqwYtiIgRaL0xQiOGNCOenw7NIPvr6D1rxI1WwQLbZ7ebpGOqPzssVGO7JujFQpTTkLJLVHe1nAs6FQrTO45QDSdxuw3X/cjOf7QIwynU7i2xcLlSxSLJsMzX6BmxihpEUyzQry2zT333EMmkyGfihG4Nmu3b3B7cQkpHyJ6/whySiNwAxINmUhJoFBrIYiTNOpZnlqpsXq7Tu1yhcKlMs/e6vJHmVGeEHVWmm28l05KkqTtmGXx5tkQuEsHVaMBt76583evCo2Vt33IvIwgCKRfymrU3qQkA68EENWN7js+4cazOlpYwXN8msW3Z4D2o+LUvuXyxK0qTcPh+ZW713Xo+hiqmkEUNGy7imPXX+Oy+3ZR7rTqmthbXcxbO8ekNpt4qXT6WqSoipzSCQKw70Koay42Ma5UCbwf+dwF4U6HDMa707b8XeHOMLsPqENmKKYjiwID26P5Oq7L7xUvi1N/Eg3Ldssxu+wgCLDnkzBxL9h9cE0oXYXlH4Jng9VmLJPjkCtQSSicG0rSNtc5byqYWp2IMkDAJyqtIcwrKLc8ZK9Ezv4h7ciDWOa99PQ+Wa/EqLmM6/SRvGGSI3WSW98h5OxjxJ6mn07hRVSyCQMt3WfN2uJpe4oNX4NUj54vktZkwm6H1c4MCbnNtH+NaFujwWleOFdkW/DoeQF24BPLzGKKNzCHV/CWjtG6GSCFChw+MsfW+gq1cmFntsuP2frLisLRe+/DffZpGtUyqysrO5OJ9VEGOZ9IuUuoew2zehlVVXnk/nu51XqRfrPGjaVVrhXLaNOz2OM6UmAjV0U6fRnhbJOoGmPE9HFFk0CIoAgiGV9AbLtUggjXwjJLm2VCHZNJXUUXRWQrimhV2a6vo0WT5FSF6ZB6Z4Dh3nyMJ29XaRkOpY7JSCL0+t+z58D1vwDXBlEG34XNFyEz944PnawiU7Ic6rYLkTd+XGY0ysb1BoOuTbsyIJl/+2WglwWq27eaVDc6ZMejd/3cO7qQaoXnl2vYLwk7V6p9mn2bVOStTQAFQSAeP4Zl1bDtGpo2jG037kw8fieIcRVRlfBtj8HCThZMm4qjvTTA8Y1Qx6O4TRNnu4c2k0AQX78U5jZMrLWd0o4yZKAMv/IlBeGdzith8M5al/+ukQvlWGmtfGCZEEkUGE7obDUHFFoD0ndxDL4TdjMhu/ztQU9AfBTSs3DwC/CR/w1y+yCUBqPBR3Sb0ZFjCLkk9XCahqkgOx73h1aY9wrEjB5dMY8ai5Jp9phe32bS/gajaomb6jBXwzMY8YCQWiWsXCYmW4RnesjKddz2s9iVZYJmn3pHoVtPk+8n+GR/m0NGgLk0SrMTJhMSGVVcYlKPW8I+WkGYqHuReOkynVKX5xbrDHyPqCQxk72PoaiEPtmgkunjGhKXrvepk0STwB10aVaLr/tR5GfnGckPkQ7pd9w2R8cmmJk6gJQf3vG+OPs/EcVVFEVh7979KLlplnsONxtNrly5wlKnx+2sws0DCQxVQLBd0rKOog+wcmWm7skzvTfDvqEY9yYi/FRH5FC/j26aWL7PomFytWewaIcpWDYLrS2ebHb5n+UGFzqvZAJUWWQ2u7O4LJbf5Gpn8XsvaUHCcPwf7gSfzTXovXOB5d2IUwEkRSQ/vXNlv369jv8j5ZS3kxnJTcQQRIFu3aT7NizPo6kMoihR61lcXN35PlNhBYBLb8N1NhrdhySHEJBwnRb2uxxmJwgCcuYVXYc6HkXbk3zTCdkA8lB4J3ixvDds8Q2CAGu5deffr8mahF7SxuxmQoBXOmQ+qEwIfDB+IT/JXiG7Qcgub05ifKdMM3IMRIlYZ4MHq88xoQlIQypRtc7DlRaHlSMc8lMIlkynK/LtoXu5FU+wNRCpLxlclJ9g1hNoaHAmnqKopiGIUfLzGJ5EdyxM6VCc1RhctjtsVzqsl0wME2KBzqlOn4+aCtPVo3itCSbmxpmJLTHbkql4DyL5PrngFrPla0xd22ay3+P/PprGGyzQd1oooT7x+UX6uk7Q1fj6k6v4agjH8ymuvjI998VWj+/V2hiejyCKTB09STKsEw9sDuzdw/FT9yBLMl7uEJo+Ait1JPEWprnFTDaCqUa4po8i6DrDEhxslfm5oSRf3j/G+KTHyKjNPR+dJDjaxB6tYY06O4uNJKDEVNKqzsNVj//boM2XRzJ8Ih3nkVSMQ6kJRjSVGaXHfHhnwXqi0WV98Epr3/zQTlZgsfIGLazFy1C8shN4HPzCzneb23GWZfPFd3yIvNKm+9bahNE9SRRdxuo7lFZ2rs4t1+NPz27yh8+tUboLC2s1JN/JgBRf0k7cDaIkEc1kudqRsfp95oeiPLp/Z9G5UejcteusKKrEogeR5AimVXpPdCHKaBRBAHUsir4//ZYBCOz4jCijO4GnvfX6V7hu3cRtWXeyJG7DxP8R59qXMyEYu5kQeK049YPgg3BO/Un2CtkNQnZ5a/QE7P8ZuP9fwuT93CMN2C8GCBGZ1jAszKzynexNnt7TxVOqOF6bp0cm+M8HP8K5WJaGFSK9CFWuofhdquqA5xIBL0j7aPhTmEKSlGUSa4mYMY+e0qTcL1CprLK8tkqvVSUkVdgvFBjyAozVWbimEM061NPLzPQTROxPE9GaZL0qudY2Wy8s8t8e/yOeXznHpp1B9qvoyQrSdB9PEGB7wJadoNyxeO7idf6/Ty3z++fW+aOlMj8otvijrSplyyE1MkpiaJiQLNPZXCMxlEeUZKxIGDUyjeqnUMt9avXvMxwXWDIsegOfuDbMGDKRfg+tUWMkpDGUjOGFoecajEfHAdiWyrjVTYwXn0CMu4ghncDVcAsdxnSVk4kI9yejPJCdZiakMa8afCEX41A0hE/A1yst2i8t/tPZCIok0Bk4VH/EdyAIfIJOCW5/b+eO6UcgNb3z9/jpnf9WboD1zk5QL2dCGo6L/xYZDUkRmTy4c/VdWGxhGg7fuVai2DZp9G3+7NwmFzeab5kZGZlLgiDQKhv023e/WHS0FCVLwhn0eWRPlsl0mExUxXZ9rhfuvlU1Hj+KJEVwnTaGsXbXz3sj5LRO7NFJQgczdxWAvIw6thO8uHXzjvvuy/xoFkSdiN0xRrMLP3I1/FImZLccs8OHIU4dTugIArQMh571DkXGb0FU/ckNQnY1IbvcPVoM5h5FnnqQzy1f4EXnKvXwQTrCIcKSCIJI1t9Ebzpk+i5G4iBXj6TQr19nuFZj8rxOM2ejhdp05R4Vt81ZY4qaO0tO2EILWmQ7CVQ5gx0N0DsDzKbFctNhf6jJ9N6rbAtZVtwHaXYiTPjzlKJL3LI1jtvHQfwUauIykW6UVmPAD/QFZBk0IYypB8yHlojkBNqr+9FcEdwpFHEF1W5Taja4bIdxhAApEFir9blZ6/OlySxHj53k8mPfpra5Tn52nmR+mEZhCzObRncm0Va3cQYtrpQfQ9Dm0KqLJLcHNGWR8EiSFXGFRCJBPB6n1WrRarUYGx5jsXydzmOPYS3reD2b7re/S+Thj2KvglNw8E0XUd/5icpyDFHU8H0Lx2nyqUyWuuNSshz+qtLiyyMZFElkOhthsdxjsdJjKK5j2w1Kha/B5jkyXopw5hTC1IOvfKeJsZ1bexu2L8DsR9/2YZGQJRRBwAkCWq5HWnnz00p6NEJlXadbN3n8iXVWFB9ZFBhPh1irGTxxq8p2a8AnD+TRZBECXqN30KMK6ZGddt3iUpv5U0NvuZ++H3Cls1N+mZD6JMM79fcTEym+v1Dm8maLExPJu3rPipIgFt2P0V+i271OEARvK3h4PQTp7T9fDCvImRBObYC93UPf88qoBrdi4HVsBFlEnY7jNUzcholT6L+iIQm/VI5xDLCNd9Wu/XeFXDhH1+5SHVQZj42/76+nKxLZqEa1a1FsDe4Mpnwz2obD9WKbtZpBQIAsCoiCgCwJBL7PjYbA/X2bfHLneH95blXP6b0nx+p7yW4mZJe3j6xxZO/95CceRcvez8TExzg29xke3v+znHzwFzkghDi5vMI9t1dIt30KuRlWR+cQQxHmuxLzbYGsHeCJPdrhFa4pIjVioHjMRJcZU2LMMcvezBRxKYJmW2x3ozTPRdmz1mGvfZ66KaD1o3zEOMReewjJ7ZLrZhGFSTy1w7pyAUxQQjPs0U9TMvPUrQGCsISYW8JybDo1h4icIqEKaEqTsWyIfakIH1N1Yh5stgz+31c2+E+3m3jZcYIAls+fJTm8M0ekG9YRVR2hmcD+7i02Ny/gWj/gSLeG5/moXkBrrUhjvcaN6zdIvmQXX61WSdddRh+7ire0jJBQEGUFe7uM1y4iSA6+6TC4WrmTERAEAVV7aaKuXUURBb4wlCIsSVRsh+/Wdrpi7pRkyl1su02p+Be4pYu4TpOyvE0pHWA7P3bV+3I2pHBxR7j6NhEE4U7gUbff+kpOEASmDmdpGDbLi03ouXziQJ4vHh/jo/tyiILAYrnH//j+Ms98Y4WF54uva1s+Mr8j3GwU+5i9t97va4U2BgqaCPNKF8vYcbXdPxJDVyTaA4eVWv8ttvIK6fSDIIhYZvFdm5a9G5SXSlNOoXen+yXwA6zlnbZbdTKGqErIufDOrBrTxXtZSyOpuNJLIubdbAjwimnZB5UJgbvThTiez41Ch6+d2+QPnl3lzEqDcsek0rEotEy2mgPWagartT5bfYE/PbfF9cLOeeHlTIjru5iv0+b/YbKbCdnlHSEIAl8ez3OxE+OXRjNkFRlBEAgmxziztczFC+eR8llWLJ/NzDBbw7Os9wZMtLvs61xi0lnFz9usqwEOW2x2D/Ev3DoSbTJ8g+udT6K2YoxFE5QjIZxuh7oBw0WLPTWDxtgt6nuzTEvDZBUV1xMY0EXtz7CauILvm4x2FMbGT/ELj5zir1dH2dj6CrK/RWJohVpziE4/hGtlaEcqlAtbOHqEz8R05iYyfDI0zl9s1DnbMbjU6XHNgYONMvdbFsn8MCDQMw2mfuqn8JaXKTUsnG++yL7RadLuaeRQGjfVIVLXqBVLeAObqBomous4Fy7QfbZNxBLoRXQGn3+YzJJP57HH6D11BjkbITBy2NstlJEY6vjOVYwgpSj2FljuPUs42eD0+H18fijJnxUbLPQH5DWFo9kIsijQNjosbzyO1l9CMXpExFHaQ8MMnDJb218lET9GKnUfoqhBdu9Oyc1sQ/kajJ64+wMhCCDwyagyZduh5rjsuYunGWLAsrsTOEzaAvuHYwiCwMnJFMNxjW88tkq/YHBZEJju2mTHowz9WLtqJKGRzIdplQ2Kyy2svMaTt6oMxTWOjSeZzkQQX8qgmI7H88t1BFHi5FgY1TPpVCvkpmZQJJEjYwnOrjW4tNliKpW/q7ceCk2jqllsq0KrdYbh4c/f/ef2HiJnQoi6jG+6uNWd7hen2MfrO4iqeKfNV5AElOEI9mYXu9C7YxlvSy9deRv1HZ3Q33M+DHHqSFLn0iYUXscBt2s6vLja4Gape6ejSxBgMh1m/3CckCrh+cGdm2U7NDYWcTyf710vs9kweHT/EGE5jOEa9OweIfkNuuc+BHaDkF3eMR9Nx/lo+tULgyCKHPv0ZylYPp/9whdYdQO+fXuVi6sV1owB9VSXzX6S+XYSv15hJluirUXppJb5P1tH+H84ZwkJJqnsE3w3c4DsQCVu9YhEhml2ZWgIJNwWiY1tdNmkfGyViHiI3vYomhuhEFmmKUSIYbK/OYZy7kV+kIJfvecB/qvUol/6I0y3izd8nn79HjwtRStI4DoWUq3K9Z5CqVbjvj1z/MqRJPm1Df68VKfiuBRGMpyvL3Pv5VUeTMwRchV6nsPzp4+g3XqOeM3noQtdOmMWzfkZ7n1kmLMvPEZ4RadZ3mLlrzaZFX0G3SodRUE/cZDb8xK5iMPUx08zuHIDp7yNs9VBHtHxBgblq2u0r3TpGm06/SqOHUMUXQy9yBOHHuMTx36aRzMxHq93eLLRZUiVmUxLtOuPU6u3mBpskw/mkGc+Q2z0APX6kxjGKu32RXr9W+SynyQcntnxh1n6PmyehZHjO2e5N8NzoboAW+egWyIbngdtlro6Ask3b5s1HY+/uVTAzqikrYDxkEZlrcPwbALX9uje6nBI0VkOuzR9j5VqD/1imUfHokjyq5O3I/NJmmWDi1eqrGdEUETWagZrNYNESOHYRIJDownOrTUxbI9UWOFkdojyUoNOrUpuasfB9uhEgvPrTTYbBrXe3WlMBEEgET9Ktfp92u3z5POfQxA++OSyIAqoYxHM5Tb2Vhc5F8ZaeSkLMp1A+JHPTB2LYm92d0zObA8EsOQfCUJ2+VCcU18Wp1a7Frbro8oinh9wabPJCyuNO8FHIqRwcDTOwdE4cV153W05jsNaLiA/m+HsepuFYpdi24SYDhi0rNYdP5SfBHaDkF3ec2RFQdJ1REliv64wfWw/T46P8sTNNW5VVNZTcdZHhgj3yzjtJrPei2RpYcdW+F57H5/zbjLh9Gnpa9zWJ2joEqK5ih4BK9dGalnMtRQSWwZKOEl/+AVk5fMM3C6q7xOxRaYHjzJi9nENE+8v/yd/8dT3+IX9J/jDQUBHKuLHN+lUDQbCFxBcFcmrIssylfgY1VKRhTMLpEYgnFZ5NCGxGBllpaNRdyf5njNgdfs6J4DVqw2ekraJHRvj59sRMv0uodJVStsK9eUH+VxmgjMXvo67XERwAiqKRiKRo3vPMSL37SVon2Grt8UDo/cR/+ynaPzh/8BrtPD1FRayMn7tFU8HEQVVlAkrCnYg4V3v84z2JA/v+ygVy+Vqz+Dr5QqHpB/SpwGVVTLaFGttiWYRToyEGB7+PIaxRr3+JI7Tolz5FhPj/xh55CisPbWzEDVW3tA3RPJMhPVnoHx1x0/mJTJGEQyoN2/S3YbnrRkKQYZUPMpQTGcorjEU04ioMt+6WqQ9cIhHVT7+0Twrl6s8+9w28nYLa7MPtocsi0wdzWAOLFpX6tzcaDN6vcbBY6/WfoQSKuumRanRR0Dj2OlhJEHgeqFDe+Dw1O0azy/Xebma88jeHElbprx081UTdeO6wvxQlNvlLhc3Wvju3ZWl4vHj1GpPYFkV+v0lotG9d/kreW9RxqJYK23cpoV5u7GjJ9Ik1B/zUZFiKlJcxevYOMU+4mgIW44Cxm6HzEu8LE7t2l2qxgejC4nrCjFdpmu6lNomogg/vFmh1tuZkTSa1HlwLst4KnRXeg5RgHunU0znYnzrapGW4VBoCuixAcV+kT2pu8lXfjDsBiG7vO/okshPDSU5ljjEja7BY4trXCpXGAhZDD3JC840qrjNjPkcRnKdZ9sZHnSbHLT65P0OlcEUNSnMiryO7IOY1Lgp2kw0u2jrfYrhEIL+B6ScR9AdnWPVHLX+NktKlJwrIrujaMY1/vvCLWqqR25UQBN9EskeW65N2hPINk3QNygrG/Qdn6ij09+QOJac4HPz9zIeHed23+S/L9zk0so11uMTyBubaIM1vAmRYW+CAzM/QzR1Aat5htTNszTX1+lPDnEgOcSVXI3CwEDU0nj5DHuFFEE7wPdtVtfO8K21VfZOHyV15AS9px9nY3OJa3t7pOZOMJ4YZzg+wnA8T7P6JwT0YfsEqxtrDC5VOa+d5ZPTp2nYJoP69yjYRcJGGamWoqhalPIP4w0G3Lp1i8OHDxMOTxMKTVAs/gWmWaBef4p8/rMwchxz7SwXzp1n+r7RO1dnANgGwu3HmKt+B2F9DkQJtCiMnoTcPjK1dbzNGpfaA9rLdbzgJgBNNcpKKAF6ErQ4qqpguz6SAAeGYzzX6FCqdREGHtR3gppAEfEnwqx3DIIgYFMJiNcGfOMHaztlmcyOeNKwXb5xuci2HCAjsEdReXg6g6JJPDCX4Vapy8XNFrWXOoUm0mFmsxFce+e0N+i0cUwTRd/pGjkxmWRhu8HTz19kunqd1unT5CYm3/zY1kfQ9Dy2VaXVPkcksudDEf2Jmow8FMYpG9gv2eJrswkE6bWZGXU0yqDTwCn0UEf03SDkdciFdsSpxX7xAwlCYEcXcrPU5fsLZdqDnSA4pEo8PJ/l0Gj8HR1Xo8kQ/+j+KR67Uaa5nWG1dpsbsQ0+8hNUdfvQham///u/z8zMDLquc+rUKZ5++uk3fGyxWOTLX/4y+/btQxRFfu3Xfu01j/nKV76CIAivuZnmT5YY5+8jw5rCx7MJ/uMDx/hP9x3llOSQ9w1UTcQXJriS/CnOpz7HdzNjPKNnEYKAPBvMRl6AcImEmCRpJpguikiuTFvw8O2AodsGliCzpD+N75jkezpzngqDTbqWhdV3cDdGOFzps9dUEdbmSNtxJqMW882n2Fetkul6aEt9tPPrhCo1pI6E7uRZvSXzwlWLpfMVtJU+/9vQHL80sp9kMIxNhLYbwbaO8NPdE8QSEYY++0VyP3OCqFKm4S3wN84aP5g12PjSUW7/zDwL0yodHK5vXqV0YwFrYxWr4FJtDbh6/TKL2W1qEQHJlhm5XuITR3+Kjx36JPsnDpFMZFH0NIgwdDzJ5Og0sitSO7vGje0XeUR4hiGqqK6BUpdod13OiUcRQ3FEUaRWq1EoFAAQBIlM9lEQRPr9JQxjDW/kJN8oJ3nhdo2vff8827WX2vmCABb+BqF8FSHwCWKjcPDzcP+vwvRDeKEMa8IsV9wJNtRpeqlZxlI6Pzvc4mPxAgf9JbLNSwQbL1Bbucza5gbtgcOZ1QaFlkkwEiIZVpnMRJifTXHiYxMc35PhwEicuaEoc3NJLEWg1jb5f/2PK3znWpGlSo//68VNtlsD1KTC8b0ZchGV8upOGUKRRA6PJfhH903yi/eMc99smp8+PIwgCCiaTjieBLhjQgeQklzcwjLmwKLghVm58CKu8+YZEVXNoutjBIHHwFhnMFh7z383d8vLw+8AxJCMMvr6ZTFlOIIgCng9B79jY79cjhk04SdwyuqHwVR8Z5rc7ebt922my4/zctDfHjgIws4ohn/64DSHxxLvKrDVFYnPHR3hxOgsAGut0gfmgXI3fKiZkD/90z/l137t1/j93/99HnroIf7rf/2vfOYzn+HGjRtMTr72CsSyLHK5HP/23/5bfvM3f/MNtxuPx7l169ar7tP1dzhpcpf3hYMjef79Zz/Dd772v/PDqsh6OEWZJJbos5KM8Idxi43GIg93L6AILfbQIiVmyQrHiAQzFJolVnWLumOS6YZIXVPZnM/RDKqMhDNobohhMcsZdYmxzhxpI8bYcoYHrmwhZfZSOq1iJnpkptvEty5S6cyCECPRCIi3OyCuUxju00qXOdvtsTp6nHFBZbHg0RLCHGj1scwwjmeT80QK+gBXd8ls9OnJWww+0iPAx/R9rNBeZuLD3DPxaV6gRmnxPElTY3VzjSAaQYjYSIkc3qDHt7rPsWc8x3hRJLKa4Pt/fYOP/HScqcxOWUbVsth2DcevMffwPdg/sKhWFmk8/UOcIxYHQzF6RZGSr3DOHaJu5fn0wYP0+32WlpZYWloikUgQjUbR1CyJ+DHa7YvU609wu/spVqsKQauA3XiRP1lc5YtjMnmtg9y/hZCIsJF8mLkTvwzKTj16pdrj/zq7SWfgYEkeaBLz+/fzsYkH8M0u/cIGlItQb4DlINpdcnSJ2DKx5CSHxxIcGo3jtmxc2yc7EX3NCdd0PJ5KRnjqe2tYTZtvnttmdiwGCCRCCl84PorQdVk6V6a81mFkLomk7FxfCYLAeCrMeOrVrafx3BBGp0WnViEzPkG/1eTG0z9kWraoq2GKQgLTGLB+5SJzp06/4XEsiiqR8ByDwRa2XafZepFQaPpDyYZIaR0pouD1HbS55BvauAuKiJIPYxf7uEUDVwztTM4OPBi0IJJ5X/cz8ANcx0fR3v4k5Q+KueQcT28/TdtqUzbKDEeG3/fXnMlF0JclkmGFR/cNMZx479YsQRDYN5RFX43RGQwo9opMJ6bfs+2/Gz7UIOQ//+f/zD/7Z/+MX/mVXwHgt37rt/jud7/Lf/kv/4X/+B//42sePz09zW//9m8D8Ad/8AdvuF1BEBgevvuDxrIsLOuVyLDT2TEtchwH5y2uhO6Wl7fzXm3vJ5m7fa+CqvMzH7mfvS/+gMeaAdudHstKjK0wDBSJb42c5MncPh5tnuPj7SWOWCbELlAJjVN3JrEMhbbmEjQ3ibcDjl/1WB4+gOEPOCjJCJLAqD/EurjKeD1EWJ1BGzqAIg4YuRmwsmcTOdHBGbEZz24R6YxTCM0hhhr47TLZepWwUgdxEcn7Nq3MGHL4HpK1UVL2PJrhYvWWGfIMrEibS7EBW0KRKfcmNgPiAowpHepGlesbE1wUrhMPSriZGPVqQNIR0PsCdh6CsRg9U6F2W2BVVzmS2M9EdRPx2Sf5eiLN5++fZyShI4kpPN/DMAroeofEnhJWs4dpqrRuCAyP+4z6Ik0kLsmH8XyNb9e2uS8dIplM0mg0uHr1KidOnECSJKLRU3Q6C6xXCyxc/0vsrs7PKCtcCYbZdOP8zbrF51vPEAss/MQ0Wvc23YkXiRw5wkLT5rceX8awXWRRRInIOJbHC0tVNu/YoIeBOUjPQdxkyCozZi1xQLvI+JH9iJGXhM2ZHc8O131ti68EPHoij960eP5KhWK5x5VBixPjcX7q1AEGlk3Pd6naNmbDIXyjwvzBN19Iw8kUnufTKpdoFAvceu4pXMdhNpekkp+mZTnc7FqIi7dIjozdmTvzeuj6HKqyQK9/k35/i253lVBo4k1f//1COZRC6juQUd709ycMafjbHdxiFyEQ8NQ4DGr4nTK8z6Pe16/VqW70yIxGmDiYQlY/mGDk7ZyDBQSmolPcbt7mWuUamfH3NzADCEnwvz4wcaej652uFW/0PoeiMmExTcNcY625wVh47N3t8F3sw90gBB9UrunHsG2bcDjM1772NX7u537uzv3/+l//ay5dusSTTz75ps//2Mc+xvHjx/mt3/qtV93/la98hV/5lV9hbGwMz/M4fvw4/+E//AdOnHjjtsN/9+/+Hb/xG7/xmvu/+tWvEg7vmve8nwiBy0jrAgQuN/0hLjsJWjas6W3aYfCkCKKbZsJu8rnu00wPCiTtHr4vIToerbZCva8jDRzkQMMQslzNnCIiRzkeCETMKrbTRxRziFICR0thOlVS9e/SkxrcmlcZHYoyJPsEUhLPiWIbKZqZHoJQQbC7eCIESAiBhBAoBIqE5afomRFSvTb5/iymrvDHB1u0hVV81yLeNpCCEEQU9hAjHmg0pQwtOUrGbpNrNqCbIyBKPyzxQnKR0CCHMUgQc8IIdZXTq1fQ3T69WIzy0VOcnAyRFLdJtb5FSGjjxkJ4oojgJAmKRwkcl5CwgScXuaE9wuPOLEtKCBItxkPbnHRV0q0ovu8TDodJJHZ8NtpOkW7vDBg24eUxjo33kdQB3+wfoGMIJK0mH3M3sJ0souvgInBZHuKJyBxdLUxUlziUCiiJMtuCQtx1GXnJbySmQFKFuBqQUEEXAyYazxK2KwyUNBuZj8BbdJQEQYDjOPRaJtX1CHVbZlEzyOg9wrqGpSZAENAHIvGOhKIGHDps8zpyiDv4jk1z4epOE5AgEvg+SiRKdGqOoiVzpSHidFscstfJhAQSew4iiG+0QQ9F/SGiWCLwI/j+OK577zv4NXyABJAraciuSCttk3ReID7YpBo7TON9FNf6DvTWVF5edEQpQM95KDH/TZ/3YdD0mlywLyALMg9rDyMJP7mZm7shCODrpSJFcYH9kTgfjd7zvr2WYRh8+ctfpt1uE4+/eVD7oWVCarUanueRz7+6Jz+fz1Mqld7xdvfv389XvvIVjhw5QqfT4bd/+7d56KGHuHz5Mnv2vL4i+N/8m3/Dr//6r9/5d6fTYWJigk9/+tNv+QHeLY7j8Nhjj/GpT30KRXn91qq/K7z997rjr3Ac+KLn8fzyBk/fWqHU2MaRovT0KLae4AeRYe5pPcd4f5ms0SRNm+lUg0ndY6sfx7YHyEGHhwdbNCJjlML7GVaniJtdJJq0ZJsl16QnhbHHP80+81lGyytcDuqMhHUOxgUUzUNR+kQ9BVdL4yp5nH6EgaHiixZKpIksd0FqM5JqICYF3O41tg2DfLkFCQnBiZB0xjBUi16Q5KyaIhWIDAUCeDJ9OUI3FyUccpmqGMTbKh9t38M34xBSh4gkEyTZpM0Mo+WzRL0mQ7fL1GNj5JKrWOEOPdEnocmMhtJkvBRWsESnOIrj5mioGabnWnw23OZPl7p0hSjB0H4uiQHHJ2SOdDV0SeLAgQPIkQRf/esX0K1FRmM1Dv38KEr484Rv/iG/JK3yZxylFZ3gmfzP8ehYkpsXn6IpRbnd8sBT2OsP+FfDIjM/80lWFY2/qbYZUmX+0Uj6jb9u8xHE838AnsWRmSzBxP2v+7DBYEC9XqdUKmEYBuk0pFRY3IKeq1NTNabiLtFklPToNBFVovBiFd/xGZ4a494jb+6iekmTMPs7Ytjk8Ah77nsISZZxHIf/9KffR50+RmMzxpF4l5nJMaaOvvGFTK2m0+lewbJKhEJphodPoGsjb/r6Hzb2WofBYpOb24scfeRjKNsvMJ/fS7DvZ96319xaaFJSOoTjKoEfMHjJZC6VDzN5OP2+lmje7nkpCAKEWwIdu8O+iX3sTX04nU9vlzd7n/blJf5mrYyejvKphz6FIr4/a9HL1YS74UPvjvnx2um7tZS9//77uf/+V05qDz30ECdPnuR3f/d3+Z3f+Z3XfY6maWjaa3vBFUV5zwOG92ObP6m8k/eqKAqfPrSXe/fM8PzqJuuNFvVuH6ffpy6qvDD8KWT/ASJOj5Btk8Qg4lWJ95eIVZqEKz1kxyHVX8W3CwjxNFJ8iIoYYjtoIAgwoxjkpTpJWuiSg6fZrMsdrnhl7umOoYhxLGMca7AHURxDUjRUfHzXQujaCEIPIVbGj29iKw1s2UKOlDgpBigDhY47wpXYfmRBRQ66CJZD32/R8bY47Ji0hCO0lCQm8NxQlmxbZbY14J/UAm6Gz3PJGkcOFTgxexV9XEG9PUDs18mc3aR0OIIz7tAUQ5TNMIHtktM2CWl9QokK2eYhYl6cZCGCnlsk7afJOn1OKDbn3RwXhDQbfoejlo558zYrWw6N5U2G5BGyxw2Walt0i88z5Q0x2r3Fp4NL/Jn2D2i0e9xonmO15xJMT9NWJPb7fT7rbZNtW5hPPsnQz/4soiTS9gNkWX7j37GSgX0/BTe/CZvPw9A+iA7h+z7dbpd6vU6tVqPf77/quBgaGiJ7eIjSn68Rr/UJJ6OM5gbMJASG0xb79u3jh324frnClat17jk6giq/cTokOz5JcekWuckZ5u69D1F8ZQE8mAzoJCP4zjjnyyuElpfIT88Sy2Rfd1uJxCEGg0VcV0EUBPq9i8Sib95Z82EjTSawVzuolgROHEmUwG7f0fu813iOT6NgIIkiUwezxLM6hcUWxeU2narJzWfLTB5Kkx1/a9vyd8PbOS8dzB3kbOksy91lDg0del/3673m9d7nvvww6maEjunQdJqMRd+fkszbOe9/aEFINptFkqTXZD0qlcprsiPvBlEUuffee1lcXHzPtrnL+09KVfiZfTtq7r7nUTAdttodNmtNVrsGnXCYrqSy1hzQc1xsx0Ca2CZjFNm/skyuViRqd4kOevTtPjHZ4qRoElVNhCCg74VokGDgicRtCz/epyNZXPDaPNQcoNhtdG+NLXeGanovcjSNExJwhQqCdxmzX0bYdglMAUG0iXoRfFFmPTRCNxQh1lslHlLYm9CIUKRibmH5FmXBJdJ/kXFnmvPRo2yow5TiLpWoz0dLRT5tapxOfpdO2qAgJon3U+yf8BAXuxR6CuaFHjUjhjDWRXPWcAOBRiCDEyVwdRbkdebtcaYrAZlOhnulNBeEgO5Kn0/nbnLTkNju5rlatXmuqqJ1bYZEh31zUardA3jOAr7wHIvNcaZiPnNRk38857GydBats0U06KFuXuOjiSTJ+T0cmZ6j9YPzONvbRJYWkcNpnCCg7Xok32yGzPARqN2G2iL2tb9mPf0RKtUatm3feYggCCQSCXK5HPl8HkVR2KgbmDGZRF9BdxV6aoSABqVSiSAIOH1ilsXrdayWzYu3qzx88I3PJVNHT5CbmiGSeu3UWlmEzxwe5n9e8Cm3M9zqVYmce4Fjn/wMovTaq/VQaAJJDqOqWVyvg2GsYVkVNO2tZ9p8WIiajDoVg9tgbUtoso9g1Hfy9u+DsLa61cVzfPSoSmJox+9ifH+a1EiE1cs1jLbFysUq/ZbN5MH0GwprP0j2pfdxtnSW7e42HbtD/H3Wy7zfjKXCRKUcHWuDrW7hfQtC3g4fWhCiqiqnTp3isccee5Um5LHHHuMLX/jCe/Y6QRBw6dIljhw58p5tc5cPlogksScisSeiw+gQXhDQcFwqtkvZtLm+0eZGVaKh7aGvzfLsyWNEGxvMrNwm2S4RcXpEAoeIaxGybcTAQxMdRFGiK0QokaXVVygkthElm47kclhpEg6aRNQ6XmeD1cFeWpEevl1FG1jIgU9I8BCkGIISpS1KVO0sOBISPkNSiWS/hVADSZZIxlTamo8ZcbBjBkWjgFOeIC5GIKPQlwOeHcmgO2cYVwPUAQQDm3YXNoIEzTkTb6tMpm4xd8UkVIwTyrtYaBhOBDuQcVVYirdZFzeJ9scYrh7hHrfHXiGgVCsSahSYluJ4hsPt+ix9Kwq6zb1DT9L0U9grOaIjHSLRdSzpJtfbGR4ZHWdf++sM5xOsanEK/RB5yUQzDSbbq4ilMvFUEaNgM3hWJvmpL1IDCo0GvmeTGhl7ZYH3fShdhm4JtBh+fJzS4iXW1vpY8WchNY0q+mRiGtm4TiIko3gmeJtQrYESZmmli5pwGfU0aj0fuyEQOjWLVV6lXC4TBAH75lNcvVnj8uUKY6Meq52bbHW3ODV8ikOZV65mRUkimn5jwWEmovLx/Xm+bTvcWu6SqXbJLFxj8vCx1zxWEESikb203Us7izjQar1IPv+59/Kn8J6zklNZDQvsCaI4dRNlSEBwDFAjb/3kt0HgB5RXdlL0w7Ov9ryIJDQOPjxKcanF9q0m5dU21sBh7sTQaxxyP2jiapyx6BjbvW1uNW5x7/BPuNbnLchEVNJanmZvg1u1de4b+fDfz4dajvn1X/91fvmXf5l77rmHBx54gP/23/4bGxsb/It/8S+AHa3G9vY2f/RHf3TnOZcuXQKg1+tRrVa5dOkSqqpy8OBBAH7jN36D+++/nz179tDpdPid3/kdLl26xO/93u994O9vl/cHSRDIqQo5VeFQNMTHswma5T5XbtS5MRiwKuo0E1GqsxlYukzP6dORVDTXJjnoknA7hDCIel2kwCZDkaijEXEzlFSBLSFgi3EU0UHFIZAgELbxOyJeEMF0E0hBktuJPTQywzSzYQaqgGoZ5GtFpsorWMoYrqeT7lSRzAEgEBcgFFLp5l2S2S7J2cdxrRQ5R2NdnaUZSnLGH0ftNEkUp0hbOoa6zY1wFVvqoszGyQgiegF62yHW2yk28tPoKiiKR0R0kAd1CvIGz2otbPsGx/xD6H6MKXOa/ladlFZlSrIg0mc5HsITPF5wMsSCLkKkSkrYYFLr4KkCq4pBf2mRkwKEU9NYc/+SZ1oWjcwY99KnFFSwOw2G8gJq7Spi4wmSL+jUtBTXe01ausrQzDxzp04jdEtw+zvQLREQMDAGNJoNnH6bEaOG2r1ASj5EKJZC6AjwOiVlx/OJbDQ5EcBUfJjL7RmWauMsbof56aMHWVhYoFKpEItnEaQuxeIS/58zm8zld/wyntx8Etd3OZZ7bRDxRhwcjbPVTGP1x3ixsE7i+g0y45NEkqnXPDYS3Ue7fQlBlAgCj35/GduuIcsxbLuObdew7TqO00AUdVQ1e+cmy+/MjOrdULEcvtXosjykcK8ko5saUs9BMurveRDSLBtYhoOsSmTGX+tfIooCY3tT6FGF1UtVWiWDm88X2XNvHlX/cFUD+9P77wQh9+Tv+YmaQPt2EQSBvZkJlntnWWlu4/neThnuQ+RD/Xa/9KUvUa/X+ff//t9TLBY5fPgw3/rWt5ia2jGKKRaLbGxsvOo5P9rlcv78eb761a8yNTXF2toaAK1Wi3/+z/85pVKJRCLBiRMneOqppzh9+o17/Xf5208qH+Gj+Qj3dmzK212uFDrcEENsHs+hVLeYMCxso0tPN2gGLrbgE3b6jLlFhp0KIc9j2m+St2SqRDHQcYgCATIeAjspak8P0c+mKadGaKgpuoSxLQ3fEpC7oBUc3J6M1RW5mXwAKeYzFKox215hrFtAbQWYnTx6pYOW7ZCP3WLOGfCznedYCc2ypo6xbIwz2RaJ4pARAsqOi+KMM+TJNMaStJQB6fUW6U6b6OAGy2NT1PUozZ5El3k2Y9OY0W1upCzynszHaglGPBWNkwTWeRKROif1a9wr91gT0lzy52mYeWJeEqs8RbdbJ5qskqAPlsey3aHkLvHn5p8gC4f46EMPMi5prFyq0vMDurSIZvpsXbyCVPo60ewc9dgMEcnD7l9HLF5iKlLHd13sQKQs5OkbdWQJtHiYbAhibgOhuwKxk6CEQI2CFntlMXQGFMt1DMkjqbiMZh36gzKdrQGVW9A9nGffgX389fm/ZrP9OAl1L57h0y8p5KemyUWjXKtd49ntZwmCgONDx+/62Hp0/xDljsnNdoszzSbpCy9y9NFPv2Yx0tQ8ipLAcdpIko7nmRQKX8P37dfdbr+/dOdvUVRR1QySHEOWwkhSBEkK79zkKKqSec8XvxfbO5obX4bLQyrD1RRufROhXUNMvrd6lpdN5HJTMaQ3aVvKjEZRdZnFs2X6LYuFZ4vsPZ0nFFPf0/15O8wmZnlaepqO3aHQ/8koYbwb9maHeWxDpWEMqA1q5CPvnfzhnfChC1N/9Vd/lV/91V993f/3la985TX3vVVH8W/+5m++qZHZLn+3CcdVZuIZpven+UTLYm2ry+1khobr0fZ8JN+j51iEKxWCfoOaOUbHbDPpLDMVbKJgMBcMCAJwA5meF8VwI3iOSE/W6UkaoYFF2C0yJtUIJAi5FofXlwkbDgYaXd/HQEF3YCk3z1ponq3IXkQBMmaTXGuDqfY6E+02hFQGMZdu3CZtrtB1BBJCg1BOJNlT6QZJDvSn8QUTYmGsiMc2UzT1PDNry4Qti8Obi5RzOSrpHHF/wKRtsSVJVDVomIs8qQg84h9ElZPU0w668gJDZowRU+YEAQf8JovOEbzODKBiBlHc7CVGvaeJxmSs7TmWe0eZbnlUk4sI3e+QOvAL7FWHufCdKyyfu4go5Aj5Y/hujbRdQVVDqP0c7ZVzXBccShmZ6Ow+WpkTeFIIcWgv4+PjTE5NIfsWPPd7O7Noph6EuUdf870GQcCTxga1UYtH9w9BwmBG/Bpb1T40b3LmaZU9j7gUxAJWYCHEe4y5e8iZBxEHozyybwxd0jlXPsdzhefwAo9T+VN3dUwpkshnj47S6Bhs3u6xsNkgu7qMOzLBpmlTsBx0UeT+RIRodD/N5hlEMYTnW3cCEEmOvJL5UNJ4/uCVzIhdx/dtTLMIFF93H2QlTix6gGj0AIqSeKc/jzu0HZdb/VdcpBejIo/EMkSrG9i31tAmT7xnQU+/ZdGtmwiiQH76rTUVsbTOwYdHuf1iCbPncOPZAnvuyRPPfjiTXxVJYS4xx0Jjgcub1xCUCENTMWTlb2fL7ngqQkTK0jWLFHqF3SBkl13eDwRBIJrSOZzSOcyrJ0bark/NsmmaLl3TpWu5dNst1m+fR9t6krDfQhMHAKhYyIJLIIgMOXVCA5d0t0u23URxbVxJQLZdBF/E8yXcQML0VQqCxvHWCo5xlXpskou5YzRUmahmczDXZMbvQlvBsBRWunEaAxFJcIjpJmI6gSTbDEImk/1tIoKILIh0nAH19TlSgktVTTPYM0Z4Y41ws8BUsUOqG7A1NoElhhkvD1AiVcJKj374GgVf4qCQQO3FuCXPEjQ/g9VrM65dJxJucVB5gXKkjhuMgp7BKSuE0y6WorKeHiW/FkXxTcKNPN95YoHyxu/hGyco3rqG1RmgKjqx2c+hNZYgdhPFLjAmFWhGBYpthdu1EVR5jPFMinw+wfT0NOFwGN/3qBWqlDrDCIWLzPM82sgxCL+6xbfcsah1LWRRYP9wDJQk8j2/xKH+n9E8Z8LNC7wYHZDKpJhmmrHwJCLDLFQGrG11WZ8wOD1yGkEQOFs6y5niGTzPY792hMAPCPydQCfwd1oc3b7wqguedETlwEyWm6Uyj9WKbD75NDz4KKivdNXd7psc0IeZ8X1w2wznP48gSKhqFkl64wU0CDwcp4lt1/G8Pq5n4HsGrmfgeQau08J1OjSbZ2g2z6CHxohFDxKJzCOK7yxDcL5j4BMwqau0fJcAuD0+xKkqeLUSbtlAGX5vSjKllyb6vpzluBv0iMKBh0ZZPFum1zC5/WKZY5+Y+NBcVven93O1fJ2zy1dIKtM0tnvsPT2MGvrbt4TmYhpJbYh2v8Dt+iYn8m/cev5B8LfvE9xll3eJKouMyjqjrzrHZuHEPNbyKaxbN2jXWtS6JdpynY7YAL+D7EiEApFADNOIaci2g27auL4PgocYuEiBSywYsN/vYLo+tiAx569wf+UpBDVGI5ohqbQRpIBqNkvdHaI5iGMaFgISA0PBtiWuRVSiYYuZRInTRodY4BPtJFCcAuNuGQwdCxUrGcWWNKj2SfdMcssdlkaP0IyMkOsnEcLb+KEiy8mzTLUfYsgY4t4gTWWwhucNWBpMotsQlauo+jmCiEy3l+Rgt45XDlGbzNIOBWQmLzK+FWOJMYyKwvWGhWr9n1hmFFceJ5kbQ8lWiOcXeaw8xkHnNnOxZZJ7jmG07sNdaSFYPczVDr46SdlpY/Zu0Klt4NkDCCRwdK5c32af9hfEP/LPXtWhcW17ZyHbk4+iv3wFGsky9OiXGdr+Uza328QvdIn81AgHJu+nVCrhSF2GYhE2Ghb/v8tb/MLpCfZmTiAJEs+vvcjZJxbZEizGomP86DW/5/v0CwrV9S5je3aEq5umzVXJpR1P4tQbVLom06u3mT51mjFNZdO0udkfcMPUqBoRxqUWYbPBcPrkWx6PLwcqqvra9t/BYMDm5jrptIPjLDEwNzEH25iDber1J8nnP0so9PZKJwPP52p3J8g+FQ9huiYV4IYS43hSQ+i1GNxsIKU0RO3dLRH2wKVR3Cn75GffXmeJokrsv3+YG88UMDo2rbJBbvL9bd99I4ZCeZyKhO3aFMRN5M4sN54tsPf0MOH4h1cqeidIosBscpz1/iUWG5vv2hbj3bIbhOyyy4+gzc2jzc0TB8ZsG69Ww63VcKpV/GYNv9PEbA1o2TK2JFFTTNp+B1+1ccQBQdBHcbuofhfFbRDrdRAGAUEggG0Q6fZp2yGqZowWAl3RICJbaJKAL4l4ImgECIMozWicS9IUV4OAEVdkDI+c0kMINVEwido9InaBcNpATHsEBQ9/oDG2VaCVH6OcHGfd1IkEE6iCjCWaZAQFxbIQfejKDlE9SlFIYXgOGctH8UwSQo2iAGLYotOJMJneAC1MNNElY92g5sxhtSxEP0wo2UY93MTZlqlVPYz8AEm2uCAfIO25jAw3SQ1/ByGsUL2ZprxZo9lYRXR9CHZcMrVImNzsPINoQGv1AuXHFshufp3I+Ekc20MJydyqdyAscmj0x0oRoSRzn/88C//9/0C1RMYudZn7jEu1ImLrBiFLp14esKK7/PFCkVwuTLw/hLB0gF63wKayRaA77EnPI0syCOA6O9bxWzdbJHNR2rrAX5Sa+KLAiek0VdeF4hpH2lVOiC6xeJLj8TCnrQhPNbtUzBlKgzMUts5zWN7Hyfg7yyh4nse1a9fo9Xq021FOnvw8QWDQ7d2k172O47Qpl7/F6Og/QFXfxBzux7jcNbADn5yqMK2rLAQeqq5Q9ZOUdIGxQZ/AtjFvNgkf+5EsYrcMq09Cdg+M3t3Vc3mtQ+AHxDIhIonXejG9FaIkkh6NYHRsGsX+hxaEFG61yFvjNKUmznSDUHs/g67NwnMF5k/lSeQ+nFLRO2V/bownCxL1fo+G2SATev9t6d+I3SBkl13eAFFVEUdHUUZH+dFTTOD75Pt9vGYbY7XO1fOXOXzwCKIg4fgCAzegbwf0Bi0KzUWK9VsIpQX09gDVCXADhQEaPiB6BiFHQAwEfAECAgRgqNmhkHWpJeIIvkdZFGmKOmqQJNqLInp9PNFEkYdIiDZpoUF6pk5m20FpDsgVNtG9TWbycQJbpyeEaAUlmlabeDBCXI0iyZDUEgwJCa57Gk0vxLi/TeA5mIFEyUjimiq+KJAbqTCIBYxWAxrNAnhjyKRIRKcRWiZufAujOYZYv4/UXAShGhC0BOLbdfqTDZKTBsZgm8rSCtZAIPDjRELzpPIP0YuMcL7rE0gxhvQuQmOVzSvPE+v4pMYOU6gZeNUekYiCMm/jxfVXtW5uBVssHQgxd02iUYvRO/d9DiomF+00S+0ZIqEUmX5At2KQtwWMtR5CkMKK+1zPXmAjWsTNNPjZ2Z8hrISxbZvrN6/i+wEXzxS5OK9hCwFHGh4PamH+PJ9hxeiw1K+SuPAiRz/x0wiiSF5T+MXhNKvRU1xeOU/PLfNkZZthdZpR/e1fLa+trdHr9YCdbsDV1VXm5+dJJe8lET9BqfSXmGaBcvlvGB390puWfF7G9QMudAwATicid66A70tE+EvbpeCJjGV0RK+DU5FxmyZySofKAtz8Bngu1JdB1mHowJu+luf6VNZfact9p6SGI2zdbNKpDfAc/85wwg+KVtmguNxiXJqmMrRCU6gxcipE9apIt25y+8USM8ey77vJ2nvJRCpKRMrQMWsUe8XdIGSXXf42IYgiUiyGFIshjORptNaIfuLw67oEBsFHwAuwewZXn/gmS1eeR4zohKJhrEDEcCQcA4KujdzrofY6KEYP2bKZKVeZK1aoJ+LUknFaERlEjb4iEchRfCGGE3gUbQtfyOI7ImJKYIY6B9ol4k0X0XHRxjQEcYDVM6hbm4SUI0RDISSlge1sYrqHGRVmWDQ1+n6GSTZoujq2KRGIPq2BitmF2HAPLekwIgSUvSJ1vUeilaXVz+PJIpKv4RNifvghboTrGI5Icj1KJvpR1pI3kFLniE/4OAMXJVnBD9eoeNexxTnEyEkceZqt8UfZe6OB0iih2VeQFY2mNkYgieQ0hY3rDbZvtxiaipOfiYPic6V6heyYRqWzF61ssbStkR9fRa+dYd7eoCPdT8Ydwa77TLdMQuEQdkalMzuK3Y2xXn2a75RW2TL+hF/e97OklBShIRdXFblc7eJ4JkdCEvOrRbaNPlNhgVtuwJW6SaZfRFZUZk+dJhTbWWhnomm03F6u1hfp2kt8t57mH49mkAQBz3Uo3r5FPDf0pkPxms0mm5s7qfJsMkG13mBzc5N0Ok06nUYUZfL5z7Jd+NOXMiLfZHj4i4ji65/SLauK71ssumn6nkdcltgX0fFfGhg4qSmM6hp9LUnRazKcsbE6YC02kTK3EDae39mQFgOrCwvfAC0OidfvFHEsj80bDTzHR4soJPPvfAaXHlXQowpmz6FVNciMvrbF9/3CGrisXKoCMDM3Si88x0Zng+cqz/LZ059l9XKdRqHHysUq9sBlZD75t6KFdzihE5eH2DYrLDe3OJw7/KHty24Qsssu7yOCIIAsoCWj3PPFL3HPF7/0uo+zfJ+O69F2PZq2wwu3n2fz+kW0aotQpcLM9m3ySzU6kQSlsVO0M9OYgUvI6iEEIk7gYeKCAFtDY7TSo0wWC+h9h8GyS3VkCN3rExH69PUtktJeVD9GW7vGiLiF0z2C3k1xu9NkUx7CFwVCDBBFF1v06LTi9Fo6qVgdLSsQm/GoBB3WG+cYax2nbo5TJ4RtRLj+nfM494wRnZmjs3yRYuE5jLqElh4hcfgA7XiCyvbTyP0tZPrI/lX8zgqSlsIceYjiI59g7tLXsErbNEoZqt0iwr77OTE3Qme9iVnapLhWpvqMR3d8BUvcYkxLIGf2sNSI0nDSJHs5JuMmI0GVcGOFYbtOxVIwVZ177suSGFWplyzGN5tczh3mkrvAhVaNrUt/wi/Nfpy+LLI5JuPVAoaXeqS9DqbYR0BgqBuQEWzWBYkrFQv76R/QLBU4+JGPkx4dByAW3c+0sUGtt0TBOsLZdp97ozo3n32KdqWEIIocfOTjJIZe25ngui43rl2jXSkjWQbdmkqv16Pv+rQLWxw7cphEdohoOs1w/mcpFL6GaW5Tr/+AbPZTr1oEXbdLo/Ecvd5NggCecE+DMsWpeARJEHh5bJwgCNyfjHBVS1FslOmpq1TtbbzbZyDcwlUFnPQ0TmYYd3uLoF3Be+Y3CMZP48kqkihxT/4e5uN7KK20Ka208ZydrY/tfXcLsyAIpPIRir0WrdIHF4T4fsDyhQqu7RFJakwcSJFwHubPen/GVneLhdYCh04eQgvJFJdbbN1s0qoMmDmafcuW4larhSzLRKMfXED1oyiSyHRyjO3SNW7V1z9UXchuELLLLj8BaKJIThXJqQqEdY6e+ih/HNrA9mK4wSR9JY8lzND/868zunGRudrTiEIaJXKYQXiIthTQDky6vokZOLj4LKc00o0Osu+jFCtUE0nOz3wEOxpnX9fj+MBkyJOxxFvE4ueIhnI4kT18L+SgRyTU3gxDrW0s26QlqsRbVdqdOPrARhwVSA0pMNxDE59jtjtBz5xn4CdplTMsPevx/ZxEJKWTt2ysZgi/pdLZL0FgYA5/kZgfJrT+DJ3SJq7rEHQc9N5jZOaeozsxS1Ktsrq0QEeYJVO7wSB+GaV+HaMjUm+kcQWVM+4GSqTPsaTKpn2NEmGU+iiOJTH/6JfRGpfQrSLOwCTidYgKK7QXeljXPIJ6m1HfI6NkOTWk8D3FpqCK/G55g153jPnyMIf6Dnqpy5bv4o11GBnfw6Sr8ZnA48+dPvWCiOut0Cxuc/O5p9h3/yNkxieIRObRlWeZ19p0zMs8Vz+BdPEFeps1Bl0dLeRy89knOfzop15lfNZvNTnz9JNsbWwQ9DrEmjW2Ox0kScIKxTAUlRduXCcbeIiKQurIURLze7Hli8ACipImmbwH33doty/Sap8l8HeyHetuiFK/TEQ1OPg6QwNnQxq3wmmeL2+xtrLEuB2gOy70JKSZQwjhOAwqkByFQQ3sLmw9D8PHCASZx88/S8E0ibBTlggnNCYOpN8TvURyOExxuUWrYuD7wZ1x9+8n2zeb9BomkiIyd3IIURJJSknuH7mfZ7af4bnCc0zEJpg4mEaLyGzcaNBrmFx7apuR+SSj8wnEH/NECYKAlZUVNjY2UBSFBx54AOl1xgB8EBzITvJcWaDcbdOxOyS0d9/6/U7YDUJ22eUnEE3SeHD0Qa7VrnEoe4gD6QOIgog3tZfGH/0hdrlCyWnz/fgKuIvM9sd5YDCKaEdp9beo2Q06ikRLCxFYJprrMN5skzYvcnV+Hy/kJ+lYOfYbE6S9CVxvmaiyzCHtRfYaGqsrHZZDebYjo9hqBM0bkPIdlIGFXdbwTZGg76KN+HTzLqnEJsPWLdqNgySNPaR6Mex+QK3gIsajTCtNbMlGuVnHS6RQxevIio+oxnDHD7M2iNFv95g0NwgWyoQzz+BpA2JxmZHCKtIFmYtLCURRxpHD9FSfouDQsjtkPQG/axEK3+aRkEurn6fQO8Haszd59KjI0tAYg3Kf2LBKsZ/D7GiMGU0EN4QcWKhBjdGqwC+ndJ40Ha41V4m7V5kseiT6Y5iORk0QKRgjfL9rsq9ncaQXkJEkKsoYN02TA3YBuVzm9gvPsPf+h8iMT5LNPIrrfoPx3jWWLrc5vyGRtSRS0Sj9zoAAixtP/5Ajj34agMUXn2P11gKlrW3cTou44+DrYZx4BtVzSVkmDcvEVDQGski426X+wnP0yrO4CRFf2KSa/wYTe5q44haus6PH0PUR0pmP8GSxgWAsMy9sUSv9GcP5n6VVVrDaAqVumU1zgydaj7NqrTLW7RPXs8yKU4RiHyOSmScynEQRFSRRQpz8JMK1v8LuuBjbSRbsUSrNBrfEJY6OHWLfkXHCOZ3lah8GMonQuxuKF01pKJqMY7l06wMSuXde3rkbXtaBAMwcy6FHXtn/I9kjrLZX2e5t8/jG43xx/osMTcVJDIVZv1qjVTYo3G7SKPSYPpK942/ieR4LCwtUqzvlHcdxqFarDA8Pv6/v5Y2YSEcJi2m6ZpNSv7QbhOyyyy6v5mDmIAczB191nxSNkPrSl3CrVUampjiqyTy18jjXN89TbLWxPBcxpHD/dpS9Kx2EssLAAnfgYFs9ukqXkWaTpZECV/YdoK9FOWKO0CLLkDCNri0ghaokozqZTodiX0P1QiQlDTtziLYrkqluYrUMXCOGORBxcyZraZ2EHCeeuU3eXEZonaDXHCdmhAnsFI1IjwN+AddXsQs1nJjCemKa5dAMbSmLKIt48RjX9BxDZpcDpTpjXpukYJPVA+rCBq6+TSQbRnYCJpUqsmIQMiPsqw3TDkdwCBP3JXKxJmpjmWp9hG9fV9G8JWzfJDDj9GsJvHaWJiJhtYEWrpF1a8QDmwwq9wUhdDuEPRgm5RmgbmKEJqhIYyi+QLIJS0nY1mUmuw52r8V5waQsbzPaEjkkO/DCs+w57ZOdnAdrjuD5a8QLBZx6GDkcQfIGqI5Cp2kj90yudb9Lt1alurFE3WghAAlVw0oPsTU5hzA5g9BtE2+Wifa6BL0u7W6HUKdLpttDXNnEiYRwo+D4fRZD14n+9H5yB6dJpx9GD8ZYPXeVgi2QGNnL0dALuE6HhQt/xeLiOEuFMuW/eJpWpExL7pNxLY7bAsl4lurwCT5t3ode14nuG8XzAzpVk1YlTLv7eZyNSxD4TER9zHCUTrbE4uiLHM2N881LW6yXWkihMHNDUY5PJBlPhd5R2l8QBJLDYarrHZpF430NQuwf0YHkZxKkR17pbuq5HiXb4WMTH+Nrt79GqV/icvUyJ4ZOoIVk9tybp1k0WL9Wx+w53Hy+SHYixtBshFuLC3Q6HURRJJFI0Gw2KZVKH1oQMpoMEZNzlKw6K61N9qX3fSj7sRuE7LLL3zLkTAY5s6NmF4FPzP80o6kpnt5+GjXw+eL8FxmODGP0Kmzd+FOsa8+grYZRyjli1T5Bs8F44yqnbi+wNjZGdXicTHQPFXmUqJshJi7jRm4TjwWc9k2WA4+u0SFkdRmWJnBGH2Sq3cO1CzTqFepWD6vq42Z8tGwITe/hz26hDhoEG1N41RxWO8KCBhNCEUNJ0gxyKB2bg73zyNKAjLCNoco8kX6QUiJHOZoiZ0bZ220wPLxFWgjwpRhqqEkoXKeCiCQIjGAjRQ0KVR9/K0Du9QlrNSakMnL4FE5LoRvrowcQDEIkLQfJ6RBji3h4G/oSVXWeruMzsDaxE2lO2qcI+j6boQbPZle5lQszq44zV00wEVZZ0xxuBB2u6RatpEy3K9PsRhHULTZ6NSalDVaeLDDRnqOxWWegeWjYBPEB2/6AGhEkN4Tsh2gvNuHGVYTAwVDBD6WwUkkKR08hzu5B1HWGNYWu69N1HTqVIvKZpwmXShQjYTxRINMzyLgOnqXSl2FQa2N/bxs/8xlYLdG68QOej6RwtTB7S9tM33cfBWuBhRsNtnrXsWUXw5JgoLNXvI897STjSpmvZw6QbOv8sHaNOXcOv2AQhH90yQgjDu8nYVwgHrnBgT0H+Ot6i/pSkd998TpO6RAyIvLICEtMsFTpkY1pnJhIsm84hvIm9u2vR+rlIKRsMPU+aRgCP2D5YhXX9l4qJ71SKguCgL+qtChaNg8lYzw0+hA/3PwhZ4pnmIxNkgntWOunRyPEczpbC00q6x22Vyqcu7CGHhdJ5aMcOXIETdM4c+YMzWaTwWBAKPTBt/jqisR4fJRS9Sa3aht8ZvYD3wVgNwjZZZe/ExzIHGAyPonru3fSquHoEHtP/ys4/a8AcDpdbn77L9l86lm0rTqRvsexUhu30sIWriCnZhFTM/T1PEFkiCCyhC4VOCj5DBIyi2KYdb9M2N7GSMTJDqIMt6cIm02qbo224WMWdFLpBFrexEo4+FPrEO7QL+UZiuQoq2EQApTAQLM9MkGVpFxEwkYcCEz1NriQOMoTidPcirhci8KwneKj7ToRW8UtzdIKxin5ZcSgz6gIlugTS60QKD7t7RTduk7ct0hbCxjqDImiQqRbQKKIoDjo4RJByiem5klHR4luL7DtjrIWO8YeUyAkm8iSQZBqUEuNIQhtas7/5FRMw26dJtrwGZfWqatDIIYxo1naWojJWgNf32arKdLrDnHDW0QhQKWJnm3jiBoNa4S2LCD6LrlCFcXr4shhGqmA+tgwzcwIfjqGGFKJ9NYZMQ1M0eFEepaJ7CzXZYkoCq1Ehro3wIoJBBkPzCbTsQFDuk5lxae9vs3m7/wunb37CbIjrGeGEF2Xo9sF6n/9A9bVWSqCh5to4YQvE06cJN2fZawskTfC1L0pYv4crbCJJBiodpWMmUadjBGKaySHQiSGwoRTk9z47nep3fom6ZUwD2mP8Jdqi2uOSCR0k38QTDPRucWqnGMpCFHrWjx2o8yzSzV+7sQYQ3H9ro/xeEZHUkQc06Xfsoim7v65gedhLSwgvdTy/EYUl1t06wNEWWT+JR3Iy6wNbLZMC9MLeL7V5UvDs0zFV1jvrPP4xuP8/J6fvzMMTlYkpo9mESI2Z59bwHYsaGtokWHcnkQioZNMJu9kQ2ZmZu76vbyX7M9Ocr4msN2pYzgGYeX9LXO9HrtByC67/B0hory5KZYSj3HkS/+Y/Z/5Ije/8102H/8hXqdLdGAiCQq2XUes9slGpxBbMq6UY6BGcKJrqFGTk1qTAB8LsAMDB4+e4mGKOjIKouvhelApi0iVJOGhAHWihZdwGJJvIlgag0CjIEyQNboMhVdohhSqwTStboJo2yRHjfnqCkl5jSfTh7id3kvBz/D1vs5HbpWY8lMk5C7jkorhdvE8D0frI2k+TqAgp3qYcYcNM4XaDxgyDCLtPqIvINPBFdvcGgpjDnm0wlF+emqKsJInfmuZ1EaBXuoAdibEjfFtFvMZhqSAk8Y1pqzLdL1p2v06vephQnaCw5KDlvB5NpPmuqRzOfsoD1QvkB/E6eLRU/q0Uw18LcS4GCKGj68GtOwIsXaFouqSckV8PY8THaGv9ZFEh6jbIW83iCo9Al/EDCSeL5To9m/xmS0Hw+2zLHS4sG8/g04HobJNN6TR6PXYI6nk8hZ+o0/QGNCqJblx5AT6/v0cDmnEIhpXn97mpr9OV7do5H26loBqX+Ow2+Ph1jpdyafEDFGhT0UIaCSqiHKLg6GHGZ1PEj20k4XrNav8+V/8HpvNVQ6KOkHQI6osEIn/AmJwGTmmEag+6UWfzOIZHvlffp6bfbi02aYzcPjO9RL/8PTkW2ZEPN9DFERESSSRC9Mo9GiWDEIxGUEQEO9C2GmcPUfvzAskVlax77sPZX7+NY/pNky2b7cAmD6SQY++ogMJgoDn2z1u9y06rociCrRdj385/ghlo0xtUON8+TynR14ZlNrp9vjmi+ewA499U3ny4iiuFbBysUpppUNiJH0nCJmenv5QulNmMkl0MU7PNKib9d0gZJdddnn/UeJxjvyDX2T/pz5J+XuPUbx6lWa3h+26tNQI1V6ZMTdEVMygODpBfQ/u9hYe61hJASGuIkY11LQIaUi7PTxPpO2G6fQEzJ6D5ZmYVY1UTyUVaUIU7LCCWckx2Rig5bZwbZ+BJ7LVm2TLzWOpMsNinf3BIhI2j9RX2b/W48LwYaKaSX/Gwq8+w8BQqFkaviASSCL4EfRBQFiyUPUBFg79iEtfjtI0SnQjOoGawtVGQW6A06faTVEyu/xp6yb5YIwxLUs4amA6tyn3VG6K01iuwynjLEecG/S8EbQgQIlso4sORusQAz+HYyY4UraoDiv0B0nq9sN47iqKUkXRyqQQCOwBAy9BV8rS9iVSnW1E38dTVaqpNMOtGKOVLqMFB9ktckLymJ7REB+2MFIJznUdbgwErhfLdFeafKpxhnuOjcHMCBe9U1QLBdTyBnanSb1VZ1yPcOCAhlwcsFUv4dy+QaVuc3XsILe34rTVAU3DZVuqEWzXML0I6U6YSfE6XUnCTqXRYxKz7jbFyF42gxUUv8vTDoxf/whzCQmlepVvnf8qPX+AIimEj/4iQvWH3OjFWXds5vMfJZpe4LbsEmm57KmC/f3HOPkLP8/BkQR//MIa9Z7Nc8t1Pro3RxAEPNfqsWU6fDwT2+kSYycA+culv6Rjd/jY+MdIDQ/RKPTYurlK4dYKsqJw8CMfv+PR8np4nQ6DixcAEDyX3re+jfTJT6AffEVv5doeyxcqBH5AZjz6GuOxTdPmVm9Ay3U5Fguz0BtwtTvgP6y6PBg9SbP+DOcr55lNzpINZfE8j+8/d562YSPqMZbVHPMHM0R6PsWlFkbbYtADMSxhmibNZpN0+u5db98rxpIhZkIPoYkhcvroB/76sBuE7LLL31uUVIrxL/0Dhh56iPYPf0h7fZ1er0svnqKfG2bQ9ok1RTQrQJF1ZG+MoNuCjomMga1auHEBMaIgqiJZzSOjQ5ANaPVVPGOAYDkEnZ3JxaJbJ8IGiihCT8KWQjTdMXRPYD4oI3gOvVDAmppmSiuR1SwSepHZZolqNE7fkdmw40iWiWg5SEoYPRQirGmEdR1ZUZBkE03aZtBp0672aCk6zViaSmQMFx3VG0F1bUxfZBCfZzOd51okRW6PSK60yNj2OTS3yZEbVYSmjJ4RuGUdIG7GcF2deOIySnIRPdSkUz1Cj3XCQphPbI6yJAzTFRSaoRmyZp+sEdvRgvgjbMZiNESBeHcLUW7iJsoMSQG6kaRrjSJae1ADDVtMc8NxqN6WSRYylB+awJkJMWJepbFap+T5PDY1z89ZL3J4dYlC5lOcS+2j5KcZMxu4gsfywOViaoSTY23aFZ/s5Ut0pl2UGthynoFsYuwNyHgd6ILbHiZk5XkxUIjrAfGheRRrgJSIk3RdvN4YBZZY7rQISddR168xkK4yGbbIJXJ8/tF/ydDwLFcuj3H5hxdxgxXm5mNkkqf55o0FbsgeB1yXoY0+4T9/gviJY4wmQtwsdbm40WQ2G6Ek7QQhAH9SdPhcLslsWGOhsUDFqADwnbXvcCBxELfqUNi8jpVzCBSFpW99k6OPforZbBpNfG1Wpf/c8wSuhzIyitXrEQQ+3cd/gNfrEb73XgBWr9SwBy5aRGH68Gtn+LzQ7rNlOuRVhZPxCA8ko/zhdo2i6XBFStN3s0jmNs9sP8cX5z/PrcUllgt1BFEmMzZD14FvXivx0HyWYx8b5/aZEkbHRvEiWGKHUqn0oQQhEU1mJJqmaTgU2yYz2fdmaOHbYTcI2WWXv+eo42Nkf+nLRG8s0H/+ecx2G6vdwLJMLMnCVSOgjyH4KUKDBGnBBLuHBQz6KmbPRwhMJH+ATB9JGpCVPHzfx623KRsWjigR6AKmGtBXAzzbx7JcYAs5kAh5IjHLZqxko3gBCCJuVCGcHWDoElbNoiqHaapZBmGNkOKTa/dQXBGh7SJKfWQljCbHyEuz5Cq3SIptxhIWnVGbLd9iwxmlSo6+EEHyPVL1KiPVMlElhhMXcNJVNvIaY9t9khs+LMcplk8ySM2AbrA53mFTPsTHtx/nmHgTM95A6N6D65kkJY89QcDZ9DhruobZnGe+nEe2BCpJhbpik2mvkAjKTHaX8BomUl9BGxSJ2lcJgkuUIg/jSklsLUJXCtAHRUZ/uIL0okjY26RfLfDDuRNcyE9xxp1ifHsDdaVAKxWipmdZSUTY2/eI17u0Cw7fFeLEXAFV0ImvbSDEesiJCGMPJtg/l6DdHMNaiqHaGtF4CLGj0/QE1gzYp7YJCx57hvfRVzX8TRfR6eDaKzQEBUdKoyYP8L88+hmGhjMEQcCiewI90SLZv0548+v8sPKLiN4wtUGd52MOMxUILZWQvDB+Ionp+kQ1ma9e2oLJKKIkkJRlWq7LX5SbPJwMcbN0jiAIyIdSrDdu8tSFi6hLMmEvQkjQEIQ29coq3/v6Bu7pzzGUyTOhqxyLhUkpMs72NtbiIggC4UcepqcqhDIZ7EuXMc68iN/rY8ycoFnsI4gC8yeHXmMLXzBtFnoDmq7LiViYB5JRsqpMRBL5VrVN1XYYih9nvbzJU+UlZtUrXLi2iev7DE3N808emefpxRqXNls8s1ij3rM5tSfB6vkqfl/HD7epVqs4jkPT9PD8gFRYfWVQ4/vMJw/mCasyqfC7a6N+p+wGIbvssguCKBI6fAhtzzzm9Rt4rSZep4Pf7WE3m5hGDceSadpdkmMzCN4wtmFhdRu4Zh8nkAn8KD4R8EAVAnxRwEgqpFMCsuzREQeYYhPJ6yMMBCISyAgEooKEhOl7GLaB6xqYgYkngTRQwJARA4FE0Ceu+vS1KEIQoAoeomcDAapjIfpN1O4AoWLTcRWE7BjBmI6f6JNQBPb7JabtGm07jNfTEPoKuqVDtIzd79GzwEGj4UzRVU3SvQbZygJ9o8ri7BRNM0yMAU/k7+MJF6L2BkeCixyunUDEYyZ8FcHQEfzjbGlDuOEsStymHW2Tq60SG9Q51FphRJcwxBEMScDQJJqazEBRkYIlBCOC5I5hiRHW9RxCoKA2WkQ6EoKt4xU7bMcnsFWNRjbJkeotjtcvcimTItSbYCBn0bMRxF4H0ejRkQNSgxI+Il6/BUaRyF+YeOkISjjOkBZHbLfY17NxUHhGDrEgbnJWtNHVAWHrCQZGCj/QCTsicadFJKwSJE4yNrSXb12ts9lwSWGzUeuTHjvF/cYqf72u09FvMjV3mL3jEcr9GkGki7YaZ2Nli1raQ1IVeo4HcZURweOLR0b5RCbO9ytNFkoVvrn0OGZ/gaxTY0YZRa1WcGsNPCWEG84Ri0+w/1iX9XPr9LureM/+F4yTp7mUOsb17jD/dDSD/fQzBEGANjeH8JJ2JHz//ajJJL0nn6J74QrlZ1fh8EOMHx0mknxlyF7gBwiiwJl2n23TJqvIHImFyao7y+YDySjrps22KaGLYXrRfZTb1/nj839FunMAKZbj48fnkCWRR/cPkYqoPHmrykKxQ8uwmY/IKD0dYyASCB5//fwCm9YrYtuQKpEMKSTDKumIytHxxPsSmIynPngdyI+yG4TssssudxA1jfDJV09IDYIAv29gNxssPvYYhx56AAnwLZugb+MNfPxAYGBbmIaB1e9hdtu4rQ6S4RDuGygOhKUYppxBkCEc9OnpYIZA8zwkB3wkHFVDQSLkCeCYBHYfz7MIRA9fcFF8AV0IY0ghNMtCCAIEdm6q5yApLtVRn3I0zLk98/iSz4RXZi4oMEyVKcqkZAMxCV5CxLYlOp5MxVEQWzncusCIvQ6BjIuKYjdRmk0OXN1mWk/Tjkp09AaeIJMwxsg3XQz/NhlhgBgy2SPJpOUaDTFDy1Eoy1FSgkvWFdg7iJALfxwjHEGIgSOm6AlRukKAKHRQfZOINcBprNE2RARzFF/S8fwEppSgH1bxlYBJ6zb1xBE8MUsBHbcusWcjwkAScLUkXixBWJJwdA1qJUzJJOS4SH6PIOhhSCodM45s26henfFSk5ZiUZN7ZAW4F4GuGqGSSnFrrEvU7hLtDlB8H9EViQ5CiHKBujGJiMbWE88wWLzGtBZi9MRhFsQH0JWbTDgFhvQ+U/n7aW5WWNZ7FNMNpuvzJI0yi/IopYFNv2lgdS20VpFWZ4uT3Q6pgcFXpQUs0SVhjrFcMwgiEXKjw9jTMdT1MQaGSE+Z5OOfeYgbT36bTrOOe/Uc9ugl2lKOx/8myrGLFyEAXJfB4m3i9TrOo5/EG9vD4KDL1h//FXa/RLRaITb+CfyJY4iqirXSwlrt0BoLc02yqDkex2MhTusabm2AlNERBYHPZhN8ZbtGvzHggDlPvX2GxXaLOSnPg7P3MZ15ZYE/PpEkFVb45tUixbZJ0ws4Fsh0uirr9RKuZKKNzBNRZXqWy8D2GNgexbYJwFKlxz88PfGOBKy2Z3O5epmW1eLhsYcJyT85U393g5BddtnlTREEASkaQdZUnEwGdXbmdYf1JV/nuYHr4/VterfXaF69SeXmMqZl4uyfJJbTCfsmpjfAFVsoQkAIFdEU8S2wrSiuFQNPxkOCwMMNBARAF0Q8QUVxRWQHNNtGt2zEIEDSNLRMloftANnuI9ogWzqGnaNAj2a0TSzcJKK1UdQeMbOLZkSY8AcECegNVHpeloGvI3oR9F6FZM/EEVrUYz4ELpIXIKICApYosaJl8C2BuDIgJ5hoQpeckmHMFUn6OcKOhBQIdIgSBNA1YKC7GIqNqIt0hUlCVhdFNgiGI+SsKlZzEc8Jo8pD+FIEQmmynsvw5hxWzeDsbJiNkEx96F72BGX2Nm3KapSqk8KWIuS860iRCJrooht9TNegrcr0oklcTUJyHIqGxfKwg6YZZHwLdSCjWGkSdgR13SRdsKimo6hRBSs0YJCwUOs2cvkiMcdBzU3iL1yi5UNGHNA4e46Y43FEsRkZ2uLW1QX+j22DIf0AQtBEHuH/z96dh1lS1Yf/f5/a7770vk3PTM8+w7AqIIIaFUElgjFuSYyJuD7u+Rr1UaOQRKNGA8bgFpefRqPGhcQIAooiIMi+zQyzT+/b7bvf2qvO748JHTozICoygPV6nvt097mfOlXn3Ftdn1t16lzKyh6e7w3wr9kcFZFF+gHexBz/tq/G+coCvekC96VDhJZGkyHpJR/XNykFWU46/rkc9wcncc0Pr+Xg/p3svfU2OptW8QfnvIU9P7+KxXuuh9k5jHVN1INLVGWWvsFRAtVitpmmVpHc+oUb0NaMMXV/QFw4hbJzJ2qlyaF/v5q+O+7EXLuVOOhF6Aa/mKqxpIb0lE1O9ATZO5Zo+AGZ9WWstUVyIZw5F3BFx2ahWaG0WKJKlV3Zed4xVj4iYRjtyvDyp6ziu7dP0XIDrqk16LQlaRmQzwvO21JmbLAbP4ypOz51O6DW8bltvMZ802XnbJOtg498ZtMojtixtIPb52/HCR3g8GzMZw2f9cj/AfyOJUlIIpH4nRGaglawKD5lE8WnbGK1lBDHy6fGH0rkhTgtm1a9TqtTp+026Dh1qvVFGtUmTsdHhiqubxCrKq6lEyhZtFgSqipqWMGKYgIBeRmRxURXTYToJfYETQ/aIkZTItTIQRd19FQDRBMr28SQi8ACUsR4bRV1KiAIFSxPJZQqkdRppi2q2RyeriKRKHEMfhYrLjOQ7iY0M+iBT9bvYNod6l4HvbFAVKlQJKZblWzOu7gFjfligZ3xiUTqIJuCFCWlG7NHokUNXHc3k8oQKTzU0ERoLXytSm5OYXdhA3vzazk00seIdTcnT9zOnJfD80IyThVTxKQJ6XJrtKXKVCpFNmhgG00m8y5hXkdTAmJV4a7Sepz0Wgp2h67pRUoLTSxfsqFSg6IKx8XMmlA7oFGaDLBmfk7PXg8jlWb3mmH+m20MTtfor86hEaJOVunG5QW9t/KLDXXMLadTSM9TL+r824SNoXr8YbpNVGnzM2kwrmT4T2sLm7I5duavxzQUVncyOP0xertA0e6nec8EuyObre1b0VoKddcmtL/HT3bfwNbgBJxGBlUoxDuaGCpU1kHXH1/A7IE8+6fvpl6bRNbmCBYkkVUk7s7T2PJ02vsn8BbG8e+cpmvnPKppEW4/jr29w7huxPMnPLZkXO5xZ1joNMnP6uT2ljGaEkvR2GLcxESjwaLTj2sWsJSQKxfv4LWlIw/25YzBU1YX+Odr91Fv+fRLhT4tw9Z+C2nXgW4MTaE3Z9GbO3x5RlUE1++tcOO+Cut7cxgiArsKfhuKo6CuPJRLKdlX38fti7fT9A9P358zcrT8FjuWdrC9eztFq/go7OG/vWOehFx22WV8/OMfZ3Z2lq1bt3LJJZdw5plnHjV2dnaWv/qrv+L2229n7969vPWtb+WSSy55yLq/+c1v8opXvIIXvehFXH755b+bBiQSiUdMCAGPYF4H1dTImnmy3XkGWLXiOSklbuhgqiaKoiKlxPci9s82uXVvlaaIaHghlXYHr9XCcTsEoQthm5zfouQ5lHwohCrpWMfXS8RGGUVI0kQUwghLuqiigYKHWQwg7aMv2IggILYkQU6lx9IYFAotRSGMi2heH0aUQYsiQldiRhCnGoihSVLsItto4Fd05hb76Lg5UtKGmkHJ7tA132Er80Rhlpg0SnYIKzeASPUQZHsoKAG1MGA+1PHiLIaXZm18gE32T/HHf07dTWO2fDKNKifXa1TVDK5iIA0LRVFoxymU2KEnsLFVFdMPGNMjzKyLNCWNbI4+bwZHq+ErOkYmQN3qMGLOk9cdZCQIKwrlQZP2mKDaKZGfBVtCpahyd34VjThifP0AKbOPtYemMWbmGfFqDM3bvGTxVip7d7NzeA2KUaI/zJFt3c1JCxWyOZeu/CjfczZwKAyZsu8nl26iZ+YJWxauMoR/chfWrr101+fI3r2Ip2TA3kpaGcCI96PrdzMf3Um3nmNvaxiq0MwaNNZmufPez7LY0ZmRBu21TaQ8RKToYBaxuvowzSL5Ui/5+QJrx8cZm5ugaEmqu9p0T3WR6juJwQbsrcxxn+bTjkIyNUH/YouuokVgzoB0MNUUUnHJacM4Yo5rdtzACeVNrE8Xsf0I+38ur8zVK1x11w202hpBpKOnm2zpnqK6qOL7d6Dp3ZhmGUMvoesldK3EcfoC93QWacw73Fa/jqflF0DKwztE93rY9kfwP2ddZtoz3BbcyOTEJKqqktbSPKX/KWwqb+JHh37EeHOcm+du5pzV5zzq+/dv4pgmId/61rd4+9vfzmWXXcYZZ5zB5z73Oc4991x27tzJqlWrjoj3PI+enh7e97738U//9E8PW/f4+Dj/7//9v4dMaBKJxBOTEILUgyZVEkJgWhpb1pTZsmblbY5BFNN0AtpeiBdENPyQ+fYCBxfu5Z6ZnSy1bUI3i+5myEYGxdigX4vQpYaISuSikFwckVUDcn0xpoxQFUk+lhBLQCAjQYQk0n0CI2RJuMyFNguuwzoZ0NVqE1lZKCnUhtJ0zBAngPn6Fqy6Rq5ZoxxPkPZaSL9NiEsQd2g2JzCcYSx9BKFkyKsRpqbQkRmcMMRvrkVtZum3d9LHDIGuERZVqgMlorqPE6rs6RojTqcQIkDKJXK2w0ClgaUEuJZCEFlEbQW9IygLG9/yafemsFdb+MU0nUKOlO2iVYBIIT0TYSkwPL+EnTFY0DPYhYj1lRsZLx9PaqCbjt7Fvu6NHPTH2HRwL39wx49ZvbBEb7ObE5bStHpj7FwdJYKlvE7k6ZxUEQzFC8xIhWvjBfbXsgxMd9NAYVSdY+2OfQxGC5Ro4YXdNMMSS56GqxQxwheSyv6InLGXRbNFT3OcaphiqW1xc8MhMgMWjBJhJk+gFAljHwhQlCpeq4XumzipAnbfiUxmt/CL9evZtDRD1/xBRHWc1dPzjA+tYb8QLLmSSJTxfIWGkKTMFsNlj7Kp0er0UuiB9bkaO8Iqk57k7378A47LnkaX+b/znhycvRXHc+lJh7iBhh3DzqZJyWnTqnTQ3TrrT+zFUcYPv4lrB6ExxSZlgBvszdzmGmy1BIW0CVEAlb0w+Uu8oRP5xfT1/PLQ9+lwEN8JePqaF3NS/+no6uH1nzpwKhPNCQ7UDzDXmaM/c2y+t+bBjmkS8slPfpLXvOY1XHjhhQBccsklXHXVVXzmM5/hIx/5yBHxq1ev5tJLLwXgS1/60kPWG0URf/Inf8JFF13E9ddfT71e/51sfyKReHzTVYWurElX1nxQaRm2bCIMW3jePKbsIVpYojUzy8HJJQ5O2yxWPfrUDK1YsCAhIEZRQjQRUogd1isNCtJDi1TUWMHCQ1UmkdEMaelRVmFNCiJiGrZK2NlEW12HUZ4hnZ/C0NsUevdRG8iwT+vGFRvRFJuiUqHcamK0A4KqiTPvodYmKSkW2XSelJ4lpdTwyREY/XSKOWZyvRjqXqzSEnY5i5A6qhQMRpIBW3C/N8hU3sbWy+y3ChwsGgynd5CZryD3+kTzGoWWTdlpkRF15FKd2lSBidwQe/U+7iuZlLrrdC02wZWsmp5HFx6iW6e1pYBYFBgRbKrdBbLAYtcWavFaSmGbcq9J/enPwZ+GQqWNiHyKM3XSzh6aRZ0gnWNJyWMS0y1s8kpMf8Nkz+QcNdmgx2rR3Q2RArNxjkmlj9nWRhqdLGMyJC0ktrSwG+fRVncio52UxQKhEiHNgL5Fl52DG0gzQEqm6aOCHg2T9xSM1iQibLA0FLHkBUTabZi5M3CCPnabKfSeDFt33cmS32BxcR81axBVGeVM1aQuYQ8OFa/O/KSKHvWh0UPfmhTPHLmD0WqB703vo+54zNdH6enrp7c/y/75HSgEdOd0Tl77NHbMxeyea/KL6XkGo5tRdJ/dMxEHUyrHb95IX1BHbyzS9jV6eiW5yGXBy3FN7mm8+NTTUWbvgT1XcWD3f3Ld/I0suAcJwiZDepazewbIBTtwOiW03DaiukdmBjYUN7C7vpubZm7i/HXnH5OZWh/smCUhvu9z++238573vGdF+dlnn80vfvGL36ruiy++mJ6eHl7zmtdw/fXX/8p4z/PwPG/572bz8DW0IAgIguC32pYHPFDPo1Xf41nS1ienJ19bLQxjFAkoI2kKIyOccCps8Tx+csUV/MFzn42mmkR+zFLNZbHhokaSNRkTGUZ4dgfbnaVjT+E2d+E1VEQ9R9oG04nJ+gGBl6ZiD+IEGoo2T6q2CkVbjZauItJ1rIxNb8ahlpbM6XnqWp4DmRReJiJXaGENR8zYa5DVLIMNj5JdpxREdBsqph6SypRIix5CMUpH2LTjeZqFKuWwjgw9QqvCoKySCftw3D5OTzdQxCJuRzAbns5kzxqUNR3qhRkGaj9EjgeIcZWuWp3SjE1dzxOqBm0zi1PIY2oB49pq6laOu4c3EoZp9G6fUn2CtFuHpZh87X7y2QkUa4h+fxV5W8ET89ipNurSHtTF/QDknJhqRmN/f5pOWSWrQL/cSN7p5Xj6qLU9vMYsRlPl7vx6bh0+jkWri1LkM6JETEcxxTBiTaBjKRaqPIm8n0VrHSKW06Qjh94pGJluEmkOq9xpjG6XzvEx5Q1PozRzFrvv3Ie700bpi5DZGkrqB3SZq5hwRmnaDo18N3arzZKbImzZPFW9l6416+hKqQxnfsmEa7K3PspStUAkQwZmO1Qq24kKNzAsNRT9IL78BUtTz6PQqOMqC5RSGi996nGsHRxjbHE3n/3ZHg7UqthBms2+SSQ9bj8wy6TXYVBdQPM0wmgV2biHri6XQ7Mtbh/fTY96H5bfz97FOrPOHoIplyi9mq36U/EXS8ghDb84w/zCNTTmd5M+uA1FGmwf2cAeuYep5hT7q/sZzY8+6nvWr/M/4pglIZVKhSiK6OvrW1He19fH3Nzcb1zvjTfeyBe/+EXuuuuuR7zMRz7yES666KIjyq+++mrS6Uf3HuprrrnmUa3v8Sxp65PT70VbTZOf/PznR31q/IiSNKRPwtSrGKVJHDlHGNiIMECREkW2UaVLFLSoNRbRmgXUlo7VsEipeRQFUkrMQCakrZRoa3kczaKZiainYkbEEgVtEV2NUCwVP7aYFwZltYtylEcVJoFQUEWBTKOLYqeJa7Zo6R4ZtY4p26SEj8weIsDHbqv4ziApt8xWy8VUYKgGaeVZBKtMnIyPnFxA2EvoXoPFdAZPt4hUDS/WcNMGt245AU3R6PaaoETEapFAi8n4C1iRT7+TZ0CYxLqDk8pz1/AA81qBIWeQki1ZO3M/ucVDFKOQjfMB47bGTM9q5gt5NpKlLHsoGAO0s1u5P/BRFcFpM3Vi1cc1CrjCoCVi7sma7BIx25sOGxf2It02iAJCKWHGe4lclzVzC9TVAULZh1jyCGYyXH9fGVeZR2sOocYZmIsJ89NkcvuYUg4R2TapoMRSVGDGGCUdtzmluYtyOMHC3rtRzpDoeZ9+O40538WkbBGHKfoincV7O9ip4wk26UxnDxCkpqiwl5taw2SiAYZlg3+9/V46t/8AvTNFVOugRVsYcsbojnIg2hid/TTrt9PJuThGDluEiMYUqqrQEgp2HLP7zpDhVJM4Mih0OmzzYGTB5ZAySCzS3HWdRDVCMsX9DDrTqHEFT8uxaKexI5vxcJzZ/bM8xTgeVWkiZQ/w6JwVsW37Ecce84Gp//dUkPwtvqK51Wrxp3/6p3zhC1+gu/vIqXcfynvf+17e+c53Lv/dbDYZGRnh7LPPJp9/6O8k+HUEQcA111zDc5/73KPe3vhkkrT1yen3pa2/bTt9d4nKxE+ZnPw5XujjAy4R1dBjvs/HjRfRoxirGZOelXQtahRdE8vPkFLqZEQRqaYJqhqxKkCBiMLh2VBMgWqCqkqUqIErm9RVF1doWH4XKb+EHnRjeEUUNQQlRioSVXHRFRtFBJQApEKszOCHEEQClBAnUhBhjGZkEaMpxrMbuT9XYNGwsEMfpb5Ez/Q4RqjyzJ07WR3MY6oN6mlBI12CGKy4wKgYJatEIJv47kHczjjFoka6nMPtydJEMDMUkWtvo2e/izHrUYgG0So6cVUhQKVuxOQyRUShmy5VZXfso0hQpAQkmhBoukF/JMlVJhG1/SyFMbamwBqJMmRCPIIeTqEqMYpu0+hYdB2yyfgex43fzfzAVoKsjuIZ1GOVsDPAgaBASZunS/GwhMt++umLFMqKil7oYq7RIjJapO6ugKURhRpEiwzpTZSuBlFnGBGNsrevgKM+g25VoyH243MfmaLAdftZkn14dpXAGCFt5jm9R+FZ2hYW9CxeO6BHSVEOVdRWRKc9x0xXnnzJQUsZ2IFE9QPaoYavK0SWwmimyQnGAFsXPLJmNxt74dp9Eat7NxEHkvT8ZnCXUPJNrJMm6cnCNn2I/5qawQ7mSRfvYW22i6HBC9D1R37778N54GrCI3HMkpDu7m5UVT3irMfCwsIRZ0ceqf3793Po0CHOO++85bI4jgHQNI3du3czNjZ2xHKmaWKa5hHluq4/6v9sfxd1Pl4lbX1y+n1p62/aTl3vJ7P1FQxv+iOiqE0cB0gZIGVEHPscsm2qTpOmV6fl1Wm6NRYX5sjunSBuOCidNinbJefEGEoaqeXBECgZUFMxaDGBiIhERMdsEKoxUsQ4QuIFGQynH4ISUVhCxhaKAqqIQaYRfgZdamgiRBMeqhKiifjwhF4oECsIKUAobOjAxk6EIhvocYgRqoTWKIpsorOECAUy9Ihdl0Uvh1bcQtHIYAiXGJeGvI+qPETsa2QXFYIli1TKQi1oRHkd25hn/+phwtIoelPDqjmUmxPEUURN05kNuillVtGv6pQ0QSv2sSOfdhzQFhJTGGRtUKRAS6+hXWrhbZyBTEREhBarZPwUFja63sYqBMwVywzuqVCwF+mpXEu8xqQ61os+t5WgNkhf3CYQEVXVQXdbFJxDmFqA3pXmfquXaupEVC3A9Fy659rkGzF530Y3mkRBnYlehYPlMpawSDmSzQs97Mjch5IZZ8iqY5h5KtVBbKeIY5YoelkaTpZsKUucVtmBT087Ym0YAWtwwxLZ2gJ5qbGqz8Cz+2g4Hl2+yXhs4LWrHL/5RjJmA3vdCfQ1IRvsoidV5Pg/eA61G+dpVww8s8xM7l5m99/JQFolk7mDIcXn/lCysynYmB1BUYJHbb/+deo5ZkmIYRicfPLJXHPNNVxwwQXL5ddccw0vetGLfqM6N23axL333rui7P3vfz+tVotLL72UkZGR32qbE4lE4pFSVQNVPfJLybZlH3oZO4qpBSHVIGTJ9anNzeDNTaALD6Mxj1icRDaXcP06oRZCKAAVVOVwIqE6BNl9SKEgARErREEOz88RB1lQLUSoo0oFVaoosQHoCHQUqaGgogoVVSqYUpIOA3QpEJiAgiYEiAKhHAFdIPQYJRXST4gq48Mzk4oF6vE4i2qK2cxmfMVBtR3UTgitmKCpgqGRjrIgBEJdwEzV8AZ3U3UU5uL1NOMC6ZZNT3s367RByr7KoIwBCbFAhCGuX2NOiRhPFZnv70dN5Sm20wi3xWJg4LgS0czQG80zqtYZKTp0DIPZwS1k5ubItBcJ5nw6YhF30x0UWwdpzq4mcDSCWsB8zqTVXyQuGiimQDVUFMNGCI243UMt3spSTwyRQ96Zx0XiaybFekiuM85g00Z6OVaZW1goD5HJL2L07CJTvBdNriaaOBGfflxL5a56h/FulZYODbdNHDgMSQNFlMjbPpnOHYhGxNr8Lnw1TVkIVKMXXbO5cc8aRlMNlvQdLPpthltLjIoO9R/GpIynow6FTBVu4ubqnXQ8j11NyWDVZHWYw2KWQG+y0FRZPfKnv5P94Fc5ppdj3vnOd/Jnf/ZnnHLKKZx++ul8/vOfZ2Jigje84Q3A4csk09PTfPWrX11e5oGxHu12m8XFRe666y4Mw2DLli1YlsW2bdtWrKNYLAIcUZ5IJBKPN2lVIa0aDFkG5NLQU4Tjthw1VkpJJCH0WkSNKdzaHjrNgzhOBRG6+K6LZ9vYnQ6eU0WPQixNJ/YFka8TBxqECjLQoXN47FsMxAgiqRAIBVsIFKEfTljQgTSRKBDJAioaGgIVE4HEiyJmwza1YBW+WEOkCkQHDBETaRFezif2Kgi7Ai1oaCaKDpa5gHDrhPNlhJCUWKSsV9CKEakul6Z3L3HURTrOkYnzmFEeTQpKoUafZjBSgvutFlMyxXzQS6papOx08FSXdq5Aw4054JoUWhVGLZs+6w7uXj/KneHJDB+YIjvbZHRmDqdcJexx2GFspkwf232NuKYTNiOE9NGjDnrcQoQRtp/Fk1OEikokBEIcft1CwyTvuGRbbXQ3RIsXyaqwtqHSSA+jT69FK7sImUXRwHPaKFGLyYIkFgX6VZtar2BqTqAoLUZ9g6zQUdwtzHgTzCsB/QPzFNJ1jgv2MesXENKi7pv4+DQ1mM3l6alvYHDvLK3yf2EPHeD6TgfLsOgSefxWBzewuc+v4sYeNS/gysY++u6/jtHjX/CYvdcfcEyTkJe97GUsLS1x8cUXMzs7y7Zt27jiiisYHT08Wnd2dpaJiYkVy5x44v9+r8Xtt9/ON77xDUZHRzl06NBjuemJRCJxTAkh0ARoqTyktpDp30LXr1lHp9Phqquu4oUvfCGGYSyXh2FIFEVIKVc84jhGSkkYRjTnmizuGmdx/yLtpQ7NsEOg+kSKJIohlgqxUAENGetoQkcYaaQ+gowjJDYhc1S0XmKji5zSIhu0SAUuad9FswNQwBMSVywgWUBRJZoZY6lpUqJMiS5yYZFTOx22iCxzSo65tM6CWaQTBxhxRJxJ46Y0bhQKN3e3UdUUMU2k3mTP6hSD+1M0nRRSKmQXY56vtdGsFK6agkhF8yVSsRAU0EKBiAVCkQgZYcs2TuDQxsWJ61jOfswgwAwFWuAipYOhxNRjk2yQR2+UMeaKeLkSbjqNnmpjELBtziNO7+dQdz+ekaEy2EdxdhxbTpHzVNpRk1DXkd4cu+dihFZERYFIEMQuGhJb6DhCoVf2E8brmTIELecgd7UOETZ8hoKIl6XWYBdXsQOb+4IOHdel6s5SFR2uUyNe9ai+Qx+ZYz4w9U1vehNvetObjvrcV77ylSPK5AOzxD1CR6sjkUgkEocvi6uqesTNAJqmoWkPf3gol0us3nL4A2MUxigKCBlB5EMU4FeXaE1PERk6dqPJzEKVuUqDhaaPHQaQcdDiHD1tH9OFUHSDpZHSbGRo40Yd4tgFOkh8QhUiDl+BClCJhIchxyk4i/T6/RRUg16tTUEXrFdVQixqaNRknqqSx1V9KkHMvGHgpCSeAULE7OgXFJcCzjrUZCSwMAjQ3AoEvyAMNGxlFa42SKyaBLpAVRUsYaAKi0KsU1QMdK+J7kHFmacVVgk1jU6xiFNcgy86dPx9iGgfg0sK3e1hosYgZFSaq3rIpYpIvwullqHsL3DdoELGcjgwIshMz2N4C+TUDEKaRG4fyCU8qdBWuogzeQzZxItayFCnWwzSpQwSioCmP8lUaz+BquLqFiVV5xZzEcOroRkDrJUqYeBgS4EbaTwt9chv5ng0HfMkJJFIJBJPbKqm/M9vCvzP7JzGUJGuof+9EWD1g+LjOEZRDi/jxzGLtsvS3r20pmdpN+u0qovI+hLCaUCUJhYGmlDQkBhxiKI4hPg4scICGjNqk1xk0xeYFN0cKSWHpoT0I+jBIpImNgqBLYkrAS4arqZgawJFBqzuQDpOo2sBGvPo/r2EvqAuNiKkT9qfRIt8it4E2bCCVAJixUTVekDtRWjdoKXJlbZTlzazwRRCVVE6bXQ1IKWsZl8xRb0sKC8Nsy4oo8sQvxLh5mO8tIWvZHGDEufMznPbYBPbrVBuuJQqDhnRRBVj+G4vob0GNT2PkpGoccDuUhFPCPr9EgPueuw4y5SyQJNJ0nFEuRZRzIHarVIXOnEzRgazhI5BMciRDvowUyVMceT4pcdCkoQkEolE4jH1QAICYCgKQ9k0QyceDycevyJOSkkzCAhlRE430YVYcdYmiiIO7J/mjltuYml6D3N2labbwXLrFFxBWhSw1DyIAB0FIUFKgUSCG/1PLSoClUjGBDIkVMo46rMISoASYKo2JeV+suEsUSCR3v/ckRNFKPEBEAdQVAXDWo9ibaSMzohcRSWYYD5u4AYC2TEpRpvJZAoYaYHjBbieh+W10Zca+M4s7XIfumkxrISMHgK7U2DJ7dDQukAopDsNdJHFUDVML09X+z5YdYis0JnjJLJhP77WZl7bw4SYIlRNilGaXicgaMbUmhCZJh69hJ5JKFV0zWTYKpF3i6QLPb/7F/4okiQkkUgkEo9LQggKDxqr8n+pqsr6DatYv2EVnudxcP8h9u2eoeGGTLkBTrNJdn6SnsYs+UhFkQJVxKhIpFCJhU6Mioxt9DgmilKEsUUsNRQhyYUVctFOwtwi7bKD22PgaGUCkUUhQpM+InQgrKFzA0V5D+noNFSZp5csvfoSPi6evwbPzzIbhzhei8nGNMJu0jE66KGH3g4x6wFhv4HtbqQYD1OUFhltE1N9RW7qsgibC6yd3kux08KQearxNuQBjXxa0N/TTyNfY4d5kL3GIaQ0MGOdUr1MyyujKlX02EWzIzLGDDIootZ18rZPyp1ACMnCWA9dL37pY/jqHpYkIYlEIpF4wjNNk01bNrJuwxiO4+C67vJXcriui23b3HPPPWzdsgV8D9Wu41emCOYnUaVLLH3UuIIMXOLABd9hOsqx5K+i6m5CzAek51oUszXMog7FHKQFKAGR6CHSOhxSPNLhXfR21lJoj6KFq9CkRUaVZDMLLFg72aPPUuwzWNsSqB74vopoCELPQE5DEO3D9abJpdZjlDZihDpPaWjEYpDWqj4aQRPhLmF20nQHZ9KlZlAqbaLJuxm27qG1JmIxr5G2deqBy1ClSm8lg64HxLpP0fDQlQZGrBKGeVpqTCPlY2n1Y/K6JUlIIpFIJJ40NE0jl8uRy+VWlAdBwMzMDCefcsqvnEwrjmOQEkVVAfCCiMmGzb75NnsXWuypO4SHJhgcn6BbVkmbDprWQPVVbDR2xgZC5OkVPRgyoGHuQcndxIAMkKakajmclIGxSCDcGJkT1OYMWjUNS3EpDFexTRs7nKKnMUbgr6GTSmOaJq4usK00ZjqLavdguyEdJ8J2xii2+3hmdQm9tIgbLRLZDVSvih5CuWYSyQz1YZPZwZDFnKSeaeCqAunA1kz4O3tNHk6ShCQSiUQi8SAPHrMCYOoq67pzrOvOcc7WAQBq3hZum2lw1+3jTB+cQqu3MGyPQtMhrbTR8i4taxJpOqjpcRy/yHVmioMiwMTm5zLLyU6ZgVBFt3wyaxuYsoYuPVQEOa2JjkoQHMSQU2QjjWkZMaUfnsSsoPajmZL70hqTxUEK7W7KrSpmOIISSUTsIM1F2oVZKrk6jaxCoOuowkEVkrgYo5gh+Vilx9SZP7hwLLo6SUISiUQikfh1lUyd567p5rlrupma28j4XJuGG1B3Pdz9e1Du2QHVJkoqRgQjZFM2mwyH3jjkelPhFsvgrnxM3s/QE66iNyrRF6bJRS6lsIUlWxiyQ0p10YKYQ2aDXdkasYT1dp0Rf56OFnOcjNiqSFrZPIuZUbx2AemlaOtduOY6pAKhVicwZ+iYDTpaFV2aZJ0sBVmGrMQ2W/i+ekz6MUlCEolEIpH4LQz3Zxnuf9B8/M9chz99PEtXXInvujA8Sji8Djddxu1UGajvYLe9l2l/jnbosOBNUPenOBTqZMM0Gc2gECqU4xzlKEs70+ZWyyGWg4w5vaxzetFxKIdtdNlAj+vEcY0omicMXTximnEvS94aqmIYnxyevRpXDWhaVeoZQcMssBhqiJaOoquU7elj0ndJEpJIJBKJxKPMGBqi/89fhZQSZcUXpPZxMpsBiGXMdHuGu5b2c8/SPubaVRajmInYpRN0aLsNgmYLo+2SimJGvSKGozMjPKy4gCZXoWEdvpVYqZMWVSylSkk06MJhjdyPjPfgCos2RZphN1lvFtv2aYY+VcVkwcyxYOYJZOaY9FOShCQSiUQi8TsgDAPxMM8rQmEkN8xIbpgXjp5FzatRdarUvToNr8GSu8R4c5zZ9ixFq8hobpSO26G5NI1s7Ee2PGSjQLo1gBEVMbXVpOPNpEKBEXVIxxUsUcUSdbpEk27RQEpBrEBoKoSxjWIvErY9ftH1B49ZvzxYkoQkEolEInGMCSEoW2XK1pEzlwZRgKZoKyZqk1LieUsEgcSxJZXZFlOTi8zP1NgzO4uVK9CIS7Q9H7PjUnIceqImOTrkRUCKEE246LgYwqXQu+axbO6yJAlJJBKJROJxTFePvKVYCIFldWNZkMtBb18vW04Yw3M9/vv7V3HaU55O6Eo6Sw71mToH5mvMuT7VSEGJAghdCDqIwEOL4awzn3YMWpYkIYlEIpFIPGkoqoKWlvSO5h40H8owp4Yxvh2CACn/98tgZXz493ThoWem/V1KkpBEIpFIJJ7kVE0hlT82icbDUX51SCKRSCQSicSjL0lCEolEIpFIHBNJEpJIJBKJROKYSJKQRCKRSCQSx0SShCQSiUQikTgmkiQkkUgkEonEMZHconsUD9w/3Ww2H7U6gyDAtm2azeaD7t1+ckra+uT0+9LW35d2QtLWJ6PHQzsfOHY+cCx9OEkSchStVguAkZGRY7wliUQikUg8MbVaLQqFwsPGCPlIUpXfM3EcMzMzQy6XWzFX/2+j2WwyMjLC5OQk+Xz+Uanz8Spp65PT70tbf1/aCUlbn4weD+2UUtJqtRgcHERRHn7UR3Im5CgURWF4ePh3Unc+n39S7wAPlrT1yen3pa2/L+2EpK1PRse6nb/qDMgDkoGpiUQikUgkjokkCUkkEolEInFMJEnIY8Q0TT74wQ9imuax3pTfuaStT06/L239fWknJG19MnqitTMZmJpIJBKJROKYSM6EJBKJRCKROCaSJCSRSCQSicQxkSQhiUQikUgkjokkCUkkEolEInFMJElIIpFIJBKJYyJJQhKJRCKRSBwTSRKSSCQSiUTimEiSkEQikUgkEsdEkoQkEolEIpE4JpIkJJFIJBKJxDGRJCGJRCKRSCSOiSQJSSQSiUQicUwkSUgikUgkEoljIklCEolEIpFIHBNJEpJIJBKJROKYSJKQxBPOhz70IYQQVCqVx3S9l112GV/5ylce03U+Wv75n/+ZTZs2YZoma9as4aKLLiIIgl+53OTkJBdccAFr164lk8lQKBQ48cQT+fSnP00Yhiti//Vf/5Xzzz+f1atXk0qlWLduHW984xuZnZ09ot5Wq8Vb3/pWhoaGME2TDRs28LGPfYwoio66HTfccAPPf/7zKZVKpFIp1q9fz9/+7d+uiJFS8qlPfWq5nQMDA7zxjW+kVqsdUd/s7CyvfvWr6e3txbIstm/fzhe/+MWjrvuqq67ijDPOIJVKUSgUOO+889ixY8cRcb7v8zd/8zesWbMGwzAYHR3lve99L47j/MZ9umPHDt70pjdx+umnk8lkEELws5/97KjbeeGFF7Jt2zaKxSKpVIoNGzbwrne964j95K677uIFL3gBq1atIpVKUS6XOf300/m3f/u3I+p89atfjRDiiMemTZuOug0P2LlzJ6ZpIoTgtttue9jY97///Qgh2LZt2xHPPdI+TTyByUTiCeaDH/ygBOTi4uJjut6tW7fKZzzjGY/pOh8Nf/d3fyeFEPK9732v/OlPfyo/9rGPScMw5Gtf+9pfueyuXbvkq171KvmlL31J/vjHP5ZXXHGFfPOb3ywB+ZrXvGZF7ODgoPyTP/kT+fWvf13+7Gc/k5/73Ofk8PCwHBgYkHNzc8txQRDIU089VZZKJfnpT39aXn311fKd73ynFELIt7zlLUdsw9e//nWpKIp8+ctfLv/rv/5LXnvttfILX/iCvOiii1bEvfOd75SKosi//uu/lldffbW85JJLZD6flyeffLL0fX85rl6vy7Vr18rh4WH55S9/Wf7oRz+Sf/7nfy4B+YlPfGJFnZdffrkUQsjzzz9f/vCHP5Tf+MY35MaNG2WpVJL79u1bEfviF79YWpYlP/zhD8trrrlGXnzxxdIwDHneeef9xn36la98RQ4MDMjnP//58rzzzpOA/OlPf3rU1+rlL3+5vPTSS+UPf/hD+ZOf/ER+9KMflfl8Xm7ZskV6nrcc99Of/lS+/vWvl1/72tfktddeK3/wgx/Il7/85RKQf/u3f7uizj//8z+XqVRK3nTTTSsed91111G3QUopwzCUp556qhwcHJSAvPXWWx8y9s4775Smacq+vj65devWI55/pH2aeOJKkpDEE06ShDxylUpFWpYlX/e6160o//u//3sphJA7duz4jep96UtfKjVNk67rLpfNz88fEXfrrbcecXD793//dwnI7373uytiX/e610lFUeT999+/XDY1NSUzmYx84xvf+LDbMzU1JVVVPSKJ+cY3viEB+fnPf3657CMf+YgE5G233bYi9uyzz5aZTEbWarXlso0bN8rt27fLOI6Xyw4dOiQNw5CvfOUrl8tuuummoyYxH/7whyUgr7766ofdfimP3qdRFC3//h//8R8Pm4QczWWXXSYB+ZOf/ORXxp566qlyZGRkRdmf//mfy0wm84jXJ6WUH//4x+XQ0JC89NJLHzYJCYJAnnDCCfKtb32rfMYznnFEEvJo9Gni8S+5HJN4wpqcnOTFL34x+XyeQqHAn/7pn7K4uHhE3Le+9a3l09nZbJbnPe953HnnnStiDhw4wMtf/nIGBwcxTZO+vj6e/exnc9dddwGwevVqduzYwXXXXbd8Snr16tUPu33/8i//wllnnUVvby+ZTIbjjjuOj33sY0e9DPKjH/2IZz/72RQKBdLpNJs3b+YjH/nIiphf/vKXnHfeeXR1dWFZFmNjY7z97W9/2G340Y9+hOu6/MVf/MWK8r/4i79ASsnll1/+sMs/lJ6eHhRFQVXV5bLe3t4j4k4++WRUVWVycnK57MYbb0QIwbnnnrsi9oUvfCFxHPP9739/uexf//Vf6XQ6vPvd737Y7bn55puJoojnP//5R9QJ8N3vfnfF+vv6+jj55JOPiO10OvzoRz8CYGlpid27d3PuuecihFiOGx0dZdu2bVx++eXLl49uvPFGgEe0/odytD5VlN/uX3RPTw8Amqb9ytju7u5HFPdw9u7dy9/8zd9w2WWXkc/nHzb2H/7hH6hWq/z93//9UZ9/NPo08fiXJCGJJ6wLLriAdevW8Z3vfIcPfehDXH755Tzvec9bcZD/8Ic/zCte8Qq2bNnCt7/9bb72ta/RarU488wz2blz53Lc85//fG6//XY+9rGPcc011/CZz3yGE088kXq9DsD3v/991q5dy4knnshNN93ETTfdtOJgeTT79+/nla98JV/72tf47//+b17zmtfw8Y9/nNe//vUr4r74xS/y/Oc/nziO+exnP8sPfvAD3vrWtzI1NbUcc9VVV3HmmWcyMTHBJz/5Sa688kre//73Mz8//7DbcN999wFw3HHHrSgfGBigu7t7+flfRUpJGIbUajW+9a1v8ZWvfIW/+qu/+pUHreuuu44oiti6detyme/7KIqCrusrYk3TBOCee+5ZLvv5z39OuVzm/vvv54QTTkDTNHp7e3nDG95As9lcUeeD63iArusIIVbU6fv+EXFHW/9D1flAmW3b7N+//2Fjj9amB/ymffqrhGFIp9Phxhtv5AMf+ABPf/rTOeOMM46Ii+OYMAxZXFzksssu46qrrjpqsuc4Dv39/aiqyvDwMG9+85upVqtHbc+FF17IC1/4Qv7wD//wYbdx586d/N3f/R2f+cxnyGazR435Tfo08QR0bE/EJBK/vgcux7zjHe9YUf71r39dAvLf/u3fpJRSTkxMSE3TjjhF32q1ZH9/v3zpS18qpTx8yQKQl1xyycOu97e5HBNFkQyCQH71q1+VqqrKarW6vC35fF4+/elPX3HK//8aGxuTY2Nj0nGcX2u9r33ta6Vpmkd9bsOGDfLss89+RPU8cAkDkEII+b73ve9XLtNsNuXmzZvlyMiIbLVay+WXXHKJBOT111+/Iv4DH/iABFZs08aNG6VlWTKXy8kPf/jDy2NaUqmUPOOMM5b77K677jrqmIaf/OQnEpCGYSyXvf3tb5eKosjx8fEVsX/2Z38mgeVLV1EUyXK5LJ/97GeviKvVajKXy0lA/uIXv5BSHh47Asivfe1rK2K/+MUvSkBu2LDhiP75dfv0kVyOeeASxgOP5z//+bLZbB419vWvf/1ynGEY8rLLLjsi5pOf/KT85Cc/Ka+++mp59dVXy/e9730ynU7LTZs2rXhNpZTyn//5n2WpVFoe//PlL3/5qJdjoiiSp556qnzFK16xXHa0yzG/SZ8mnniSJCTxhPNAEvJ/r+kHQSA1TVse3PeFL3xh+Z9gEAQrHi972ctkb2+vlFLKOI7l2NiYHBoakp/4xCfkHXfcseJa/AN+3STkjjvukOedd54sl8srDgyAvPnmm6WUUl511VUSkN/4xjcesp7du3dLQH74wx9+xOt+wGtf+1ppWdZRn9uwYYN83vOe94jqmZ2dlbfeequ86qqr5Lvf/W5pGIZ885vf/JDxjuPI5zznOTKdTi+39QGLi4uyXC7LzZs3y5tvvlnWajX5jW98QxYKBQnIc845Zzl2/fr1EpAf+chHVtTxQCJzzTXXLJedddZZMp/Py29/+9uyVqvJG2+8Ua5fv16qqrqiD3bu3ClN05RPf/rT5X333ScrlYr89Kc/LQ3DkIB8wxvesBz7QGJ08cUXy/n5ebl37175ghe8QKqquuJ19DxPrlu3Tg4ODsqrr75a1mo1eeWVV8q+vj6pqqrctGnTb92njyQJabfb8tZbb5XXXXedvPTSS+XAwIA89dRTZafTOSJ2fHxc3nrrrfKHP/yhfMMb3iAVRZEf//jHH7LuB3znO9+RgPzkJz+5XHbo0CGZzWblv/7rvy6XPVQS8vGPf1yWy+UVY4iOloT8Jn2aeOJJkpDEE84DScjU1NQRz/X19cnzzz9fSnn4rpD/e/B/8ENRlOXlDh06JP/yL/9S9vX1SUCWy2X5lre8ZcWnyF8nCRkfH5eZTEaedNJJ8mtf+5q8/vrr5a233ir/5V/+ZcWB5N/+7d8kIH/+858/ZF033HCDBORXv/rVR7TuB3vPe94jgaMehLq7u1d8Gv11/MM//IME5B133HHEc67rynPOOUdaliV//OMfH3X5W265RW7evHn5tejq6lr+hPvgO0ROO+20o67ngcTsox/96HLZ/Py8PPfcc1d8un/3u98tTz75ZDk2NrZi+SuuuEKOjIwsx46MjMh//ud/PuJsShAE8h3veMdyggLIF7zgBfLCCy+UgJycnFyO3bt37/L2AjKTychLL71Udnd3H3E25dftUyl/s4GpN9988xEJw0N5wxveIDVNkwsLCw8bF0WRzGQyy2cSpZTyBS94gTzttNNkrVZbfjz4vV6v16WUh/eLVColL7300hWxZ5xxhty8ebOs1WrStu3len/bPk08/v12Fx8TiWNobm6OoaGh5b/DMGRpaYmuri7g8EA7gO985zuMjo4+bF2jo6PL80Ts2bOHb3/723zoQx/C930++9nP/trbdvnll9PpdPje9763Yt0PDHR9wAMDBx88/uP/eiQxD+WBsSD33nsvp5566nL53NwclUrlqHMzPBJPfepTgcN9deKJJy6Xe57H+eefz09/+lP+8z//k2c/+9lHXf4pT3kKO3fu5NChQ3Q6HdavX8/tt98OwFlnnbUct337dm6++eYjlpdSAisHbvb29nLFFVewsLDA3Nwco6OjpFIpLrvsMl7ykpesWP7cc89lfHycffv2EYYhGzZs4Nvf/vYR69c0jU9+8pNcfPHFHDx4kO7ubgYGBnje857HmjVrGB4eXo5dt24dN910E9PT01SrVcbGxmg0GrztbW9bUeev26e/jVNOOQVFUdizZ88jWv9nP/tZDhw4sPyeeyhSyhV9f9999zE+Pk6pVDoi9lnPehaFQoF6vc6BAwdwHIe3ve1tvO1tbzsitlQq8ba3vY1LLrkE+O37NPH4lyQhiSesr3/96yvucPj2t79NGIY885nPBOB5z3semqaxf/9+/uiP/ugR17thwwbe//73893vfpc77rhjudw0zUc8SdIDd1M8eFCdlJIvfOELK+Ke9rSnUSgU+OxnP8vLX/7yFXdhPHh7xsbG+NKXvsQ73/nOow6UfCjnnHMOlmXxla98ZUUS8pWvfAUhBOeff/4jruvBfvrTnwKHDxIP8DyPCy64gGuvvZbvfe97PO95z/uV9Txwh5GUkk984hMMDg7yx3/8x8vP/9Ef/RGf//znufLKK1ccmK+44goATjvttCPq7O3tXb5T51Of+hSdToc3v/nNR8QJIVi/fj1weBDkpZdeygknnHDUg1s2m11O6O644w5+8pOf8IlPfOKobRoaGlpOjt///veTyWR4zWte8yv74mh9+tu67rrriOP4EdX505/+FEVRWLt27cPGfec738G27RV9/81vfhPXdVfE/ehHP+KjH/0on/3sZ5cHJp9wwgnL7Xywt7/97TQaDb785S+vSOwe8Jv2aeLxL0lCEk9Y3/ve99A0jec+97ns2LGDD3zgAxx//PG89KUvBQ4f4C6++GLe9773ceDAAc455xxKpRLz8/PccsstZDIZLrroIu655x7e/OY388d//MesX78ewzC49tprueeee3jPe96zvL7jjjuOb37zm3zrW99i7dq1WJZ1xF0nD3juc5+LYRi84hWv4K//+q9xXZfPfOYzR8zemc1m+cQnPsGFF17Ic57zHF772tfS19fHvn37uPvuu/n0pz8NHL7d97zzzuO0007jHe94B6tWrWJiYoKrrrqKr3/96w/ZR+Vymfe///184AMfoFwuc/bZZ3PrrbfyoQ99iAsvvJAtW7Ysx371q1/lL//yL/nSl77Eq171KgA++MEPMj8/z1lnncXQ0BD1ep0f/ehHfOELX+CP//iPVySBL3nJS7jyyit53/veR1dX14ozGPl8fsW63ve+93HccccxMDDAxMQEX/rSl/jlL3/JD3/4Q1Kp1HLc2WefzXnnncfFF19MHMecdtpp3HbbbVx00UW88IUv5OlPf/py7AMJ3tjYGPV6nSuvvJIvfvGLfPjDH+akk05a0S9vectbeOYzn0lXVxcHDhzgU5/6FFNTU1x33XUr4n72s59x6623sn37dqSU3HLLLXz0ox/lnHPOOSKx+djHPkZ/fz+rVq1ifn6eb3/721x++eV87WtfW3HG7tfpU9u2lxOuB/rzuuuuo1KpkMlklm9z/u///m++8IUv8Id/+IeMjo4SBAG33XYbl1xyCevWrePCCy9crvN1r3sd+Xyepz71qfT19VGpVPiP//gPvvWtb/Gud71r+SzI+Pg4r3zlK3n5y1/OunXrEEJw3XXXcckll7B169YVdR4tGTx06BBw+DbtU045BYBisbj8IeHBisXiig8Qv26fJp7AjunFoETiN/DAmJDbb79dnnfeeTKbzcpcLidf8YpXHHXCrMsvv1w+61nPkvl8XpqmKUdHR+VLXvKS5fEK8/Pz8tWvfrXctGmTzGQyMpvNyu3bt8t/+qd/kmEYLtdz6NAhefbZZy/fGTE6Ovqw2/mDH/xAHn/88dKyLDk0NCTf9a53ySuvvPKo1/WvuOIK+YxnPENmMhmZTqflli1bVox3kPLwnQ/nnnuuLBQK0jRNOTY2dsQdQg/l0ksvlRs2bJCGYchVq1bJD37wgytmEZXyfwcSfvnLX14u+6//+i/5nOc8R/b19UlN02Q2m5VPfepT5ac+9SkZBMGK5XmY8Tf/dyzNG9/4Rrlq1SppGIbs7u6Wf/RHfyTvueeeo267bdvy3e9+txwZGZGapslVq1bJ9773vSsm9ZJSys997nNy8+bNMp1Oy2w2K88880x5+eWXH7XOF73oRXJgYEDqui77+/vlq1/9anno0KEj4m688UZ56qmnLr93tm3bJv/xH//xiL6TUsqLLrpIjo2NSdM0ZbFYlOecc85Rx/r8On168ODBh+zTB7//du3aJV/ykpfI0dFRaVmWtCxLbtq0Sb7rXe+SS0tLK+r80pe+JM8880zZ3d0tNU2TxWJRPuMZzzjiLpRqtSovuOACuXr1aplKpaRhGHL9+vXyr//6r5fHeDychxqYejRHG5gq5SPv08QTl5Dyfy6uJhKJRCKRSDyGksnKEolEIpFIHBNJEpJIJBKJROKYSJKQRCKRSCQSx0SShCQSiUQikTgmkiQkkUgkEonEMZEkIYlEIpFIJI6JZLKyo4jjmJmZGXK53FFnsEwkEolEInF0UkparRaDg4Mrpvc/miQJOYqZmRlGRkaO9WYkEolEIvGENTk5edRp+B8sSUKOIpfLAYc7MJ/PPyp1BkHA1Vdfzdlnn42u649KnY9XSVufnH5f2vr70k5I2vpk9HhoZ7PZZGRkZPlY+nCSJOQoHrgEk8/nH9UkJJ1Ok8/nn9Q7ACRtfbL6fWnr70s7IWnrk9HjqZ2PZDhDMjA1kUgkEonEMZEkIYlEIpFIJI6JJAlJJBKJRCJxTCRJSCKRSCQSiWMiSUISiUQikUgcE8ndMYlEIpFIPMnIWBLbAVEnIGx1sGuT2O0qIQqREERSIULgRQG2t8T2084mVyo+5tuZJCGJRCKRSDzBxXFMp+ZSnWxgTadY/OF+Iq+F11lgpnkb1fY+XL9N3fQIrBhDcTFxseIQwxXoqstTz37VY77dSRKSSCQSicTjSBTGuJ3g8KMd0Kq65LtSWBmdKIxpuyE3zta4p9LG8mK6WwE9zTaFYJqc3EdZnWK+ZRMLBfw0eS9FyRtGDVN0Kr8k9peQQQioxCiEsUbdvBqSJCSRSCQSid8vnh1QnarR2jON7QR4EQR+jGdHdBoBbisgjmJE2sZz5kk7swzEVdbrLnq6jUj5SDNACBPRLqG2Sij+MEoARBKAEGiqMaaTJ3JdAqliC0lb1ZGajqwem+9JS5KQRCKRSCQeZTKOmd6zi8B16V41SrbUBRLiTkDQcGlVHapT89RmlogWHTTfgzgilhI79mkJm3bcRg3bKG4IsYHquIyWd2B2+yioKHaIsNOoi2W0oAsltJARRLEkkDG2CGiIDjXTo21ERESULMgVhzGMiJRqUxY2GkvcUuw+Jv2UJCGJRCKRSPyWZBgjPRfZrhFUFzh41x005haQHozHKWyRpa1lqQmNZk1Fd2N6BPRoEkP1kZqNorfR8ChKj644hCggFPOEokbb2wxhFyycQXp2EiMCBQukRiwloYxxsKloDRayHu20JDIEuqqgSJUoLKGGOoaxRCqeISPq5GNBTIpFrZdudfCY9FuShCQSiUQi8ZsIPcJDe6jddojmgoPr+thOgN3yqEcq82KIKaFSlREAlnTZjM82aZLTJZreQVPaCBYJggNEMzPQVFHVPgy9H0XJI7RVoKyliIqtlPAUjTmzC0+vYJuC1c15fDFHJW1TUUzcyERGGkoo0KMYM1bRgy6sWENBguxiIeqmJXTGU2kOWgXmtAzn6ZVj0oVJEpJIJBKJxCMQxRG1zhxLc3dTnd2Je3+EOtUHTpY41klLjQ5QFwqOqrBYTmEJhRPnlhh1K+REiK8ViaWCcGtIdw+BfT96c4pYKFTLWRRXorkL+KpNzhhEyQ8xPjjEfAZqaZ+qlSNSFELFwLZqxPEg2yZbpNsmItDQYjB9B80JiH0LFxVH1mnLCClbTJVGqOTX4yndCCRWINgQhJTXbz0mfZokIYlEIpF4UpJS0olimmFE3fOZUnTuazsoWkAkJVEs8TwPpES4LrLdJm61CBoNtMYM6d4MzaygUp2juljDbQYYjkp3q49iZ4xYmniKhiskoRIjUTCBQJPs6FGxjQg19mmMasSLBmtqMX4Y0glaeP4viFIOoqyjFPtQLB8BRFLBmeklijcwMbiK2Z4UlrqEICKWEIgWHb8PghhXZvBUlTu6T2Fr/X5K9SrpjklBbsZRJW21g6O5tPUm9VQI3WnmmioEB0nHB8mpGik9gx+XKQ5uPCavUZKEJBKJROJJoRaE3FZvs+QG2F6I5zgo7QaiOoEycxdxs8HNB39GHDgIz0EJbWQUU5htEcYasWGhizSGkkYXKQI3gxqblBQDQytha2l8NY2rWlSEBkIg4hAZeKh+GzNwmCvq3N9dIFLAdCNSoU/FhBsHJb8Y1Vnn7mVIvZtIt3HiArHU0EILKVN4kYmuw/xxg0wq/USBRlZbpBjU6XLnaMiQRsuk3J4h41uEUmfPwCo6VpY7Vj+dbfts7FSKg5ZGqAsWCzbj3XVS2hwblUPkZIfFaZWwlcI3JL7eJo5t1KjCYqsIbH/MX7MkCUkkEonEE1q143L9zkPceWgvNXsfvaJKt5jDiBdoaRZVrYulUpm4mCWWClJmkSjEQgWhYW6OWDfTon9WIBRBoAg8VdDMqViBSugqtEObwHOIoyXUwCXrt0i7Sxj2LJZsE1oKt23cxnRXH1E0R67VZNTZh1a2KXR1MZ7ZjBsX2U8/lSCgr72I65q4jonjZ3GiQTxrNc1yh1RqASFcSs4cQ+OT2Bm4RXbRu9SkFKhYgUcQxwjHZLizxN1bBwizeW49oZvhRQ81iKinYzppGDAP0aMuoEiFdjwIA2NMj/USxRFW4LHOP8Dq9hQvOPkpx+S1S5KQRCKRSBxzMorwmkuE7Sphq4pTr9FcrNOqNogiFyOjQErBMWLqasx04LPQcal7NgibvNZklTrDWiNmSfYwIbtpatsghijSCSIDGStocYQWRyixQBc6gaHgmjq7RixmSz6bdzdI1WxaSFw1JpQBIo4wnA5Zt4UpYjQRQBwSGBHNnMVSYZD9I2NEGR3N8tks7mONtR/HsnCVFN1+nY21kD3Bdvbq/Sz4GlP+KiKhIHMmGb2PlCiQFioEGaLQ5mnKDXS7UzTLFvcurKPHE+SUbmJdpWGoZIIOptJmtrebtBEwnxF4psp0r4FV3cXpzSX6lHGkF2MrOuPuGPuijaiKQHNjuuM2w3GDrr5RlBOeTT3XQ/8xeN2TJCSRSCQSv1NSSqTr0mg0ub/WYLpjk486FMImenuR9ux+FioztEWIh0VHKeCSJlZA0UIiNSJoRsiOj6Y4mMJGEz4F6bIpXsCUHjPhAAfUTTSVIoovkIFCEJuk7YDeZpuiM4dJiKZBVu0hL0qYAiLRZm9fg13lItWUzrXbSuTGNQZ3zpJSQM2YKLoKhoZdTOPi0MimqGYzLOWLOIZJhIaUCgVRY3t0C1o+Yl9mDbGiUXNGcCpDdO8tUnAqbFVuZ7ynTNvSSVMgZ3Rh+iqW1ubeQowaLfKSqWsxIo9DA31UrBRjQwsQprFlhqZaoGNYLFk9iFwviqOzqj3H6sZ+7hnoRtctskVQjQUUR8G2e6hV1jGrpggtlRgoE6ArJgtBnuZehezeGaaz3WzKZx7z90aShCQSiUTiNxK5Ie7uSToHprE9m1ZoU3FazNkNFnyPRhTSsdK0NIOOouMrgjiGWAiWMkWa6Rxm3MNazeEUc4HuToNIjcjSoqy20SIP1Q9R4ggUiRCHl42FQiAU6hS5VX0qdaOE4cXoLggMUoFH1rdJB1XaZpZqvosdfVvoDgye2lLRQ0lAwKJSoSVrWBOLbDo4wfRYDzOFQex1FgdGt5GK0qAohEqMp3hIJURDEikKtqrjCRWAXneeVdEB+oJJYgSdlkFzKk3T6cG0LQqdBjKqUrUkpp5i0PMwPIOyUkJoCotFhZ/nbPqj3Wx39zLZ3abScvgFz+a4eIlufZJQA1O6ZOOAjFhCR0EPprGCCE9tsZT2Ob6dYzy9nbZSZG9qGwfbKmNzZcY6bbb4MxTDOQZWDbE4vJlFL0V7voXXiJAh9HbcY/IeSpKQRCKReBKQvk9QqeDWm0RxTBxLoigmjGIafpvYzBGUu6m0HSptl8Vmh2p1iXplgfmrr0HTBIIIPw5penWUIEb32pitKla7SaoTkA0ytLJp6pZJQyg0VUFbFXiKIBU4yFAnFDohCr5l4ak6UgASkDF6GNOvz1FWK2iRS9Zu0uvPk223UYIYqUiQIEMFL9AIIo3Y0YgdlTjQaBg56maBulmkni7RIksYqhhRSDpuUXbbZP0lFrQC46leJrp7aGXTFPwq50yMs3VJIxUJjKjNgjFFoMbMixKL2jD5qEnX7ibrBmeYWLWaeqaEQpVQRERKBEIjlBZxZNIb2Kz3lsjKBUrxEpb0QUBdKTBTHyGoaKi+Ty70UQgwlSyBYdHMpnBUi77YwEYwYbnM95exs4ucVruFDdVJOkqLG/JdXLfuRRw3HWMtOjTDbrxUQFUFx7DICY2sEtEyA1pqTEsrYLspgrBI3BA4+TRekMX0oSEDBtQ068wyoz0ZfN8ifd88Q15Ix41ZkhlcDcRC45i8b5MkJJFIJB6PfBvsJXDrEAUQR8gowF/qUN05RWO6jtf28Z2AMJREESAVIhmy5E1S92eJQ4mM48PluoGqGkhdRyoKmqLRK6BHArtDQl3g6zqhriM1lbZi0VbT+Foaaawj6koTqCqepgICKcT/JhhAS/HIh9MU61Uq6S7qxQyRmkUPDXr8BmvEXnr1CVKxTSpuEfkhRBIRx+CC55jUtCLpwINQRQYK0o/Z0TvGVH8/LS1HLBWQAiFjRByTjmzWelXSrRA9jllQChzIDNDKacymA+J4mlV1iz+Yi9hgZzA0n4lSyC/K/ZSmm+iejScjPFPjjp5T6MplWRfOsXXfHaiF+1GwiSOTWKrICFpxBkfR2aZPUxIuntRZECmaFIgdHcNJMYjLnNaNraaRcQstFvgijar1UI1NqsJkIqsxonlkFIeN1RsYaNxPj5gmVFz2xiZ3micx2MkSmDExc8ReTKZus7rhEVn9/LJ/hJ8XJLYfIVQJqQJZ2U2363Ha/rvJVndx9+lnoK4eRV2Tw2poTEw41F2HrOei+G1Mp4ESSgpqyLDqMbDp9GPyNj/mSchll13Gxz/+cWZnZ9m6dSuXXHIJZ5555lFjb7jhBt797ndz//33Y9s2o6OjvP71r+cd73jHirjvfve7fOADH2D//v2MjY3x93//91xwwQWPRXMSiUTiV5MSAgffaWG3W7TaLdqtOgVvEWdmgtr8PLVak0a9Q+TalG0oBha63oOqpJEIpFCQAnQkOgAKEoEAMuoA+UyeRTlP1dCppMoEqoalBHiagW8YeLp5+HfVQIqjfHmZUEFLEysWCACBlB5K6GJFMTk3IOvHZCKBqluMF3PUjS4aXRlWLcxw/I4DpFI++a5FjGwHIUMsHCzXR62oeIHJvDVATS1QEzm0qIMpmsymiiiqJKc67Fq1iWq2C6TEIMIIXHJ2k4xrk3Y7mLEkVnRizWBvqp9pdRA3TpGvOWya8wGd3kCSD7qYVx2u7Y+pBA7dMzNU4jTC0HAyKTJ6gbPUgHuyGncrA9yR2k5PtUBG+qwOQ0ZkiyINcsImIsbGJKVJbNlDWw6zK9sFwmeLtp/esM1GtclEVxe3FtbCJAROkUldMuK6bO2kWC8j8ulDEEwQKQEyLjJdKHLngEO7GrOp1UVH95EI7ly7nuP33sUap0R924nc21tmyuggxS2YkYLuP4Uep8BmM+a8+XvpyQbsV1O8+GXP4/sedOougewQq5KpWKVlpGgV0kRqP2udmKE0rF3lYw70Pnbv/wc5pknIt771Ld7+9rdz2WWXccYZZ/C5z32Oc889l507d7Jq1aoj4jOZDG9+85vZvn07mUyGG264gde//vVkMhle97rXAXDTTTfxspe9jL/927/lggsu4Pvf/z4vfelLueGGGzj11FMf6yYmEonfQwtNh8vv2MVc08aLwY3ADV3ixhzUKviBxI80ZKyQ8V0GW/MU4waW0cK02hiWj5FyKQz0k/U3o0gdKSVRFCJjn0Ct4lDFbQucjoGLxUypwIGeIRqZHmKRIVRUIhRcJCLqYIU26cAlHTmH7w6REVbcIRXbhw/ykY8pAwwkGaVEMbJIyw4pGaFSYU5fYJ+uEAcqvR3ItnxiV6GjZuj0n8SqTpqgmGPRrDGRlrRGdba0dpL16gg8snUfY1GgtBQcw2CqXKZRjhBRi0zkI6WCGmtYgK2kuWbVmbhWGlMGrKtP0uUsYYXB4Ss7KkR5lTCERqjTkg4DtQnW4DOrrybQAkJFEPpp1sRFJAr7TAMxt5fVXgNdRqimgVHqp2hYFJQ2gWiwENzP7aUBTCtNwywTO/eyL7boxD0U4iJFr4rvmMzFvVTDHtaQRVdDCm2dXSkN1T+OZ6V/zoh+L6vDSTbOh9zRPpV6uMjx3MvxasgqFcJIw2n7BIZLJb+Fdt82ms4UvdUafWI1gYxwOy3Gi10sFcr84rQXMqV2YwkVt+nT1b6H9f56UkGZmXAQP6PyVOcA63pLKIXVhKkMpabGc2bbXB65dIQk028iihqOAoquMNqUpHXJUtHg58UUA15ENvXY7ytCSikf+9Ueduqpp3LSSSfxmc98Zrls8+bNnH/++XzkIx95RHW8+MUvJpPJ8LWvfQ2Al73sZTSbTa688srlmHPOOYdSqcS///u/H7UOz/MOz5r3P5rNJiMjI1QqFfL5/G/StCMEQcA111zDc5/7XHRdf1TqfLxK2vrk9PvS1t+0nXEcs39hmpv37ePGffvxOguIKEaJBWooUEONKDaIFYOC0qIsKhRZIk8Dw/JQ1AhVhugiwEBQcI9Dj7qJUXBVaJp1mladWqqDY2lElsBVMyyIPqbkGmw3TxjpxLGAUCEbK/QEESXXJeN5KN4Cpj1PyqthmW10y8fMhEQphVm1jFDTDHh9DARF9ChADUJUZ4bI2UknbOJFKn6oQEqgFiQqOqprcl92E7N6L8c5vfTHdSb7KtxazhOoOnoYsqY+yYlzuyhHLeJUTDVn0ohVrAUf2UgRBSYNtYyT6SVUU9hCsKd/Lb5m4GiCvs4cRbeFooAqQjRcVNUm9l2aho2nOows9dLTyJCLNTDaqLkOtYbKQLiVHAU8EbM3nEBEDoqMMLN5ZLmAZfqkVYe26nJvej+6EiHEGPszm4mNFjIex3TvRcYpBiunkHazBKHCtNKHFAUyssEzQx0rNslKlWxpDxh1hLGI5nSYrTyF0I1IafvoMyaxVEE2l0HKDI65lkmOoxZl2Zn6JWoYYMkSNa3MouKyYWIOI8hyaOAEIiWNriqkVAUzbBDWx4l8SSlaA1Klz15kdeVucimNoee8kEOzi6xdO0YMXGu7/CAV4hoK202LV6zvpRjCrlsWsIMIc3OeJT/kBcf1o6vKo7IPNZtNuru7aTQav/IYesySEN/3SafT/Md//MeKSyVve9vbuOuuu7juuut+ZR133nkn5557Ln/3d3/HhRdeCMCqVat4xzveseISzT/90z9xySWXMD4+ftR6PvShD3HRRRcdUf6Nb3yDdDr96zYtkUg8CUkZAxFCPPAzAiK8OGLKcZho+zS8kKjZoKdWZdCZQ8uGBF0ZhKITS4VUqkMm20SNIoQj8QMLOzCwI4uObmDpTVZJhYH2FuyowJwocX1W4Y7uNDklZLWzSDYKaBsZ6qk0gSZQAkEUaahhRKHToquzyLbF/WyYnaAQ6uSzG1CMPM1cilm9zLQpWEgv0d31Cyxtid5WGaW5nZaziTiAdOjhuxXmnSnq1Ah1h6zoUJYOXaGPJxUyaZuUFeGkSnTSPShKRE5rY1k9CKHQjl12yS7mzX6EBBkK+uemKE1M4wQGoVSIIg0tSuNnRrFz6+kIycG8yUxfhozSIee1OP7+63G0DtVyBtQ2cVeHTKpFFEdIKRCRyWgwwlb3RMIwYsLbSxw00ZyYgj1KrzaMEdscCncyFxXwApOmXmT/qmFGSjUM/wAyXUE3XQaam7Fb62hIk3Z5nvFyAU/J09EWyVduI+MFjHbW0GdsRIuz3BvEqEqT0fxukC6R4vNMZxMpJcPPQ4uJVooxp0OvUufU3N3sM0yuSofM6FnOKZ+F5Vl4dYUDzgEOGLvQAh3TPJG6oZF2NLYstuive0wXupjr7SEyVUQYUPfvJRA2Ob+fAW+ENR2PzNIMQSSJu0pY/V0MpGFRRNwWRcwpkqWMQVC26DIlTwk65A4JIl9gliKs7uhR31ds2+aVr3zlI0pCjtnlmEqlQhRF9PX1rSjv6+tjbm7uYZcdHh5mcXGRMAz50Ic+tJyAAMzNzf3adb73ve/lne985/LfD5wJOfvss5MzIb+BpK1PTk/2tgauS7u6xNL8Xu6+5xr6xnpoiRb1qEktaDDjt/EiSZfoQvjd1OCkCUwAAQAASURBVOwUHUchCCOKnSpjCwfpatbJ2zaKjFGlgIqOO9ehMZbGGLJxpcZMrZeOnabjpsAXhKrA00HYJkPxaVRkH5OKRVsNqGQP0aXUeF7VoSGyLKllKlqR2BEIVwVFIWN3KNnzdDdnOa15HwONKqnQxZIBgakx2y25b81zyYXdrGs1id0cXY0ROo0LSOfuQ0gfpW6QsuvUopCD4QLNuA7KDKgOUpXk/IheJ8LGpB1ZLAZlOtJgqTDKQHqJgdQ87VjDiR26GmOsqRoc3/k5deVWftb9VO63RrgtvZ1o7XGsmjpAb2UOV8uwUByiky7hptp00gaNfAZF2mjeImtm9yBUjYFai+6gQa2oY7omMrOVKLtIypxn0Csz1tmCEvtUtAqRBlE9Q7aRoyu3CQQsZaeQWoSvmVxdfAbkB3nVlhLd+2/B7xRxvQx6J0YXTQaH2qz29tJpVNjlZ/lqz+n47hBLeQ2tcwdmcR/bUzUQGovtkB2Bx4KQjBoOKamya6BDgbNpLtbpqs2TVnQ25JtEayyyT3ku9fv3EnoOOwtt/uLkE9hb28PU/btQpiLS8gTmcsNoSshpfsz6008knh/HqkxTz7UJ+0cJ5H58v03JyvMX217EejWm9h+XM5NKUcsMcMAoEWnwy2iB0oY15FSF1VmT52zq4Z4gYI/t8pRQx5cNNF1h2zMG0Qz1Ud+Xms3mI4495gNTxf8ZECWlPKLs/7r++utpt9vcfPPNvOc972HdunW84hWv+I3rNE0T0zSPKNd1/VH/Z/u7qPPxKmnrk9MTva1SSqbqbW7Zc4j9e3fQHU1juAvMh22WFGioaWpqjtoctI0yjjqMEmbJ+hp66GN58+RCBz0CLQYj0nG0fnb39TBkzLNqcYYep0aU0zFaDsW4g3XA5VCln135EbS2imZLUhkJeQGWoGhnWNseQREpIjo05QRLYg6lI6mV8lRzvbiaiYgFhBqZ0KOvMcdgfYFsu0GuushAVKUkbAzFp6FnmLAsmoM9VHoG2avmceIUuxWfU9q3U9FX0dU3g2Y2kNLDTc9TtSPmmipTbhd7MhpNcxOqyJJrZemybW61JJFUyPkdSkGdTpRDzalUsx5OoNG0NTYu1lnHHBl1gLBwCqa4lg2LO2i7Ee2BdTRSWXaMHc+O0ZPxDYtYVYEITShIJSJWG+ScGXLNPVRzKXTTIB/1sbYSMHJ/FT2M0XJt/KHTme7VKClFDE8SdZagUmEw0PCUiNLgBlB1prUepuI83dEkXXqVv7R/ieGmcWYt5mQGPU5RMCGFRzE7RdqbZyo2cAol3MYiz9n3Q25Y/TTiTDfV4slMBvdyc3yQDh3CgkS31xFqm3GL69AKi9xWazAYTZNtjbPKWKBgTNEeO8At659P5Cwy0qVz/cFJKnOLTP50hkhpYAchvWovzfIwoQkjvkJnTT+3pwSsGsFptUgttAkW76BevI21GYULrFE2LBzCP3CAlB6ycXuW4JRTMe5cZOdkHb2qYSwGPOWpg5y2sQdVEQxKyalewOQNc6iKwvDGLlIZ63eyj/06/x+OWRLS3d2NqqpHnKFYWFg44kzG/7VmzRoAjjvuOObn5/nQhz60nIT09/f/RnUmEoknPid0qHt16m798E+vTt2u0K4eoN3pMF/xabYEoWeAn8LR8rQyJTqpIQLFQhEpjNggE8YUOxF9zRgjjg9PlkWMFmuEUS+uX8EMPYwoRo98XMsitFLsH17HrrHNaMJlWBwi71VJ3xORXeiQrsRsD2axixlkwcB3FaTjkvN0hvV+FNFEygXq7i76ZIdW/1r2DYzhGSmUWCVrS3rbi4y0ZunvBGQ9MNt17LiBLjoEKswpJotKL46ZRlNBLIXMhiFpdmBGJi6CfbkGfdkfUZcmipPBcXXinIuX1wi6IactMOyVmGj2sLS4GsV1sckgBTTNNE7aYFsww8kD91HUWqQdlUm3hRs2aZotwqZNVXkmbrCOWucvGK/fSi5e4JT6AlODa9g/+jRcK0U6jDD8BgWnQS6T5r7iftSoQlp6pNQyab9MbMS01tm0eheJDmQx5zUEMenp+9gYHY/QXdz2ItX5+ykQo8cB7vrtoKVwjIg5tYMalfBlhtFgmrjTIRAKsaqgqzF6OgKtg1aoYRNxgDUsBCk8X2VERgwyxRvDy7mjfCL3KWNMOifihBuIWEA1CpQG11B11rNIin3tWVKdm9Gq/8FTnSEyekjPlh4qT/kTRiMHN3QpWQ4NJ+KumXGmnT0oSkxXNESZZ7G7UEJJSbqlQaSZqIqglE2RP2071q57mPHuJqM59DlZhg62sA/eAoCSTpE/9xzUbJYzB7Jkbp7mxuuX2J62MA/azIoa/WMFNF3Fm7LxnRAjpdG3Ondsd9b/ccySEMMwOPnkk7nmmmtWjAm55ppreNGLXvSI65FSrhhUevrpp3PNNdesGBNy9dVX87SnPe3R2fBEIvGYiqTE8QMqtSUqtSrzizVqMy5ZK0tfdx+OZ7NQm2aheojYnWevKZk1IwIsRKyjSBOfYUJhEigqYUYlzmlEqoGKSirWyIaCoiPp67j0tmsUvAA9DNGjGCOKEH6HKOpgaXmkqtHQdO7I+0S5GJnysNINslEHhMpMahDX0LmfEaJ4Fd6JJn17a2yZ2okZLuGqdWJbR2BRUgcZNFejCkkklgjDn7NU7uG+gS0EoouCo5JebLCm0SQftbBkhBkLelsRBSdES+cody0SmS2WmnCwlSUXu6iqhqOkmMoNEUUCy/UpKQtY6xx0KyQI80SLKXZX11PTsjh2RKZrmm5tkiIueipkVJ1HGHeysNTLdKOPqfQwpTjkZEXQd2KLrB+htwXz4yUikcPtbbEnY3JAKZFvznOqN4yJyrri8fiKCz0W2/P9REaeijfFqH4XLUdjoa+fa+LrSAUOuTjHs7RnookxFolpqnvojSWj/cMYZh9s6sNcmke0lpCRh+e6NJrjiFwR3dKRI+tR0wUcJWKfuxM1m2Jw7LlsDTIszvVQWZyiy1TIhSFq0WKxL6LWJ5isjCKrIUp9D+X0FOm0YLA8who5j0ENK7iFvlKGG8xt1IMMBW2QjGogFI0udZLxhRyB79BUswy6Fq4GqwbH2HzenyH0lWfZX75R8vV7fsR/HvwWURzT68SU82nWDOYZyVmc31OknDHIWzqKcvgM/tzxOfbtniXl9fMHxWeQdRSiWo240yH9lKegZrMAGJbGyWcMMj13Nz19GZxGwMzeOgvjLQbGCszuqwMwvKmE8igNQv1tHdPLMe985zv5sz/7M0455RROP/10Pv/5zzMxMcEb3vAG4PBYjenpab761a8C8C//8i+sWrWKTZs2AYfnDfnHf/xH3vKWtyzX+ba3vY2zzjqLj370o7zoRS/iP//zP/nxj3/MDTfc8Ng3MJFILKs0Gvxy736agcdpW4/D1HRcz6fjerQbTWy7STPwqXoeS57Pgucx63p0fEnoC8xYQZcqKgoQododjOo0OgGKjFFEDmkVUTWFfqHioeNpGh46KqAgMKMYy5MYQYzphWRdh8FWi0HboeAFKHFIELRxcXEMSc1sMhs1CFSJ0HWyqTwjKZ3uVIfnmXUaSoWWGjJv9hFLsJwmxzfupxb34RlF5lM92BmDxVGTK1efguU7DM/PYIUOaWsQjGGaQkUzJ4hyd3JD4dm04gGKrSK5msP6id0UvQZRWkNNdZGJi/SGJax+gabto0sfR9AD/mqKSpmnll3UYkRbOHxq4CRmjDwZ1+XpjTsZLNo0dYv9uRH2OJtIWzF92Rq5KEBzBOH4RgZVkx71IH6mw0KpgTAi8iNzbBnbhlnRaNSHCNYfQrVsTLVE35SKlW1QMXx6rG3UXJ9Ii8ilYpzqAdLKeuJiP0ahgG6lSIsuRCuk27TJCsn0BpurvduZdBpYsc4WuYZ+s4jqpchLg2Z7hJoRMWe7SKuL4YFRhi58EbUf38bSfQ1akUeweSNjJ63Dq9tM7D9EM4o4EC3gOjW6RJtN5Qo5BKbjozZdunt66c4PEc979E1FNMYXWXQOEqohxmgXcSYgNxBQGNAx92qoSxbr2sP095isylWZDFN0WRk2DJyNZt+DXfk5tUO7+IGyhQqCdnQSC0aTP3j2c49IQB7QU1A4eXATs3NTDJt57spM0ps2OHfVIGuzK2+G8COfG6dvRCgKm4ZOYHjVKb9yX9NSko2n9dGpBkzuquG2fSZ3VQFIF0y6hrK/7e78qDmmScjLXvYylpaWuPjii5mdnWXbtm1cccUVjI6OAjA7O8vExMRyfBzHvPe97+XgwYNomsbY2Bj/8A//wOtf//rlmKc97Wl885vf5P3vfz8f+MAHGBsb41vf+lYyR0gi8Tsg5eEZOWMhcGOJE8d0gohax6XW9plu2+yYneFgZYm66xCHAUj40j37QRWAgFiDSEUoMcLwUbUQTfUx9RBDiUhrBn5QIMIglpJUrNElA4woQMqYw/f3Hf7EKIlJ2z45EZKTIZkwIBWEGA6oriT0NVT/8LeoCumDDHB9j1A2aWca+CUHL9cml7boUlRScZ1uWQcsDLWIEFUiYnQljaIISvTitFWiakTbTVOxy2TtDmPhLGY0wbbVNnO9fezLj3G/P0bV6qfVs46cVLBiHYUIV61C3E8UvQocg6IdMDgzScmuEGYl1VyOspInLYooSoF5JUUhnmKjcpAgDvHcVbTCU9HSkmxqhkBx+X73ZpqZND3qfk5XbsAwqjSDgGZFZ2Gpl3pvlno5Jh83WTvXJNcUBMIj0grU4vVo9SqFuRA5kCfTFWPFHunsLEvdFRYyJrqIeWq0xM6TijQn8uiBBgi29m1kWlvCq0wj/BKZ0laW1vRTd2fRFyV1dw5VrZORBrenx7jWv5qF2CGbKbDdG2N7agNZXScW89gHFERgkZN5mrpOFC6S6UqR66ynanchuy30ssHqVd0szCwyX1li3tTYF86jxA6bCgGxyHDwrtvpXb0W0oJ5fYEtTzuLjJnD3lfl4C9voOUsoeYM8tuHWHXC8XSPjjA3/118f4lgYDPFqIRWnyVXM0gNHceqsEJ317PQ9RRYT8U/cDtlq8OrlTv57sILWVBVpns09umLnMLoiv0liAN+Nvkz9tf3k1dznG++ihvEOL5lsNCZ4r6ZcZzCahpeg7pXp+E1sEMbAF3ROW3gtEe8bwohKPVnKPamWZxsMb2nTuhHjGwu/8pxl4+lYz4w9U1vehNvetObjvrcV77ylRV/v+Utb1lx1uOhvOQlL+ElL3nJo7F5icTvnSgM8Dod3E4Hz27/z+9t7FaLxT27uEqBOgo1CYt+TMUNcWJJHIREYYgXhHgyJpISlRhNiTGUkF4RkI1dNAJcxcAXOrEmkCZIXaIRkY4d0nikY5dcq0kmaGLIAEOoaJ1hjOp68oGLJiOkjPDwaIqYliLpEBE6HUzfJq34FDMu/VEdsxYS+RpBLIllREcV1HMqoi9ElGJqmQyhaqDjMqAs0h/ZBDF4XhlN6phKnrJuoyktpJR0OiWWWmuRznoUz0LR5ugObFw61FMxG1KLWPi0zDxS5BlWl1ij1tgYTbFj5hS01FosXUfBp8kSrcNpDVI2KNXm6G4vgS6ILAXdVOmJspQdhYgaN2duJq/PsQ2bfbFJ0LKYbfbRa1YppLK4cZlbSoIDxYix1M1s9PejKC6xKOLUVlO1Q/pEjcjKUy/10R7dTODdR1dUI4wFdbOIHZew4hHSmoXVydDwYT5fIe6dJE53kDJGMSTXlQfR82Ok+gTmvEdTc4mHh9h+n8p1zgHu6qpjbOripLGtTOzuYzIc547gx8Ram832JoSbIaX1M6pXOMXq5RXPeDNulMNdOIi78xrCYh6/1UWbfoRa4ZDR5uDdC+Ru/2+OF6spZPIohsndOw7i2jVmjAbtlMfJJckJmZjU2ldx9207CTyXXLkbK19gToXi8SPIMGB67jaCUYmxlGV47VZWn30qev7wQM3+/gvo2PvIjqxFdf8/aC4iGlOUOiqMnv+/O8vkLzHaDfT8CUSdFFtscK0c9w5b/GR2J1u6tpDWD5/ZsAObKw9eybw9jxCC0+SJDCh9FLt7GSu0iZxdLNqLLNpH3smZ1tI8behpZPRf/1tuhSLoHc3TPZwlDGIM65gf9ld4fG1NIpE4ZsIgYGrXfczuvZ8oirGjmFYU0QgjdukG+9Ip/IFRBh1J6NgEzQYysBFKSKwIEBIz8Mh5DmnXxfQ91DBAJyBntMhnmoQZBV8xKAQ2JgGhohAJlUhTkVFE7AhCV8MPdFzRheoP01UOMIp1RG6RVGYWv5plsRGwTzGwlRR66GPIgEhKLNXFTQUobkSt4lOLLISAXHeLXJdNtuDRlYkYVmMkFrYRUNDmmfe7aNkFDnqryDoOPbUqmpdGi0ZYrQ2Qlk0wfkzDKjIRZllcgIZTxSnpZBQNJZtitZrhmakKdrpERe+jHm+j2y9Tnvkp2fJO+rU2Y137cfbn0H2Nmn0AP6jjCg1ba+PkIiIrj2XmyKhZuiNBX0uQCXRaUYO99j2c5M2Sz9u4msEtYY7dmoE2vJtMcYL19dMwlTVMDLTYlLmTAbdFwQuwawNUmj2oeob+fIp0dw9n9gzyC2DWgju2H89c7CGm9tBQXGS6ixMPKKQzXVRP3cQBfzf3eNDwRsmHEs1z6K0dYCS3hrW5EZ418iyEEPz7/f/O9MQuxH011soe9m0rszt7N3feczt+5OOxgJJycNKSxWyb4XoPzxLPplq+h+eLPJn9V5FZ9TRo/RKG0gyMdHFf9XTKkYLXZxLfs5dOZYLe0CSSTf5/9v4zSJIDu+9Ff+lNedfe2/EGwACDBRbrsbskV0sn8klXlKOeroJUxFPwk/TeF1KKoBSPEaLRFRmU3r2kpCuu6FakyDXcBdfBYwCM9z3dM+2qusubrPSZ70NhBhhi4BcYcDm/iInprsrKyuzKyvznOf9zTgeH7rpHO+6wqzdZLIU8NhqS0ESY+jjMPMqSlGP9/Gk8x2bpkY9xsbxLv9Nm5bmncfs9jLEc03v3o/sG7oUG8rFRBElAlhNk0ocHX4yph6G+Aq112HgOJh4ASYFOGVa/M5jto2XZ2k6Tl0X2HVrmqnadc27Ek9sv8Nnpj1PtV/nq2lexfAtN0vjMyKfJnhGwibiRlSnoBX5s6lOsN04RxiFZLUtaTZPVsmT1LJp057TOO0GURNQPiQ/ktdwTIfe4x99w4jimemONa6dPUu52qXoBligR6Co7qZirgkk3AMl2EXyPWrdBsVdl3N6l1K8x3K+Rsfok+g5qHKLGEbIU4OXByst00ypNMYUlGoQxuH2JspclGbqkYgchBNkXCNwMkZsg1sZJyyX22BFqFCK0QVU1xNJLBGYNIQmynmVfxUXogi+qhEkZIQGa6KNthdR6KTwT1KJFNCIjpBJkIoNk1CeOHWLLArtDxgkYMT0W4g41O8dqY5SurbMRL9AXJkknl+gHPhP9LYz6g/Sjc4R2lW3VpJU3iBSDjuYzqUYUCXBdg3ywn1pqlp4ucaTSYMT5CInOHO2JU+Q1i8bMOarnxvFimY6iIckRSnoWRdMxhQSGIDOMQ16MSOg9hos9Gq0N0rTRI4iaaS7549himqGCgF7s09MlvjPuMi2fpSi0kSOPwLbpXHOou7v0RhSmjRFG1VE8UaYu99nX1Wi3eqypNRoZSMgmoiCjjiyxlexRSSVRsz3CzQaFToaACknKJNwmeAWMl5PMSwsk5hIIgsAx4yD/89y3aRshnyz9BNn9CV64fGowzddvIckOiqozObWAKZkY5020SGE+/5OMCWvQ2YZr3xoclMVFzL1foHC2DZs90js+4+YYQiGH26ni+TYdsUVTa2GkevzI3BBzi3shOwWpERAHvS9Gl/aws3YNt9+jfOUSvtXjwnf/kjgM0JNp9n7042iKgfVchbDr41xtYuzJ3/4FGT0E12cGIqR5A8pnoLQMz/5HqF4CxaQqjWF7KvLkHj77wBTXN2Oe2b3A/9rZpai9zEu7LxJEAVktyw/N/hDaWogX9biWkYh0iSFVYSGZZyH5yQ/2yw98ZfUrRHHE8dHjlMzSB/7+90TIPe7xN5hOrcrLJ57nRqVCp99BoY9ndGj6KpejEVpuijjqY/guezYvMtPYJOd1yTp9jChEJUKNg8EskigmNkXccRFrLIskimj9PmLgonT7nJHHucA8RhDjuSJaFFKK++yniUaKIDVKXBwm2XUxezZCFBF5u5jBJRLlFcLVmNZwEndaIGu0EEYjBDGGSABbJOpLdHspOkkVfaKPqCuoAqRjyLdlBC9JuZuh22sgeQZ5zaGQ6GG5Pn0Eql0DKQxIoCAqPiWzznf9XbxAJiuOUdCG6fv7cbIeUioioYukEn3mijvMuBuUG2PYUZH1II0aOSz2TBpaBpmAYWcWYctBnfoexeQ2qaMVWvVj5K0jtCUPT+whIpBEJWl0CfIdrJkSk/l56uUVrqx70BEx7RbrnTFEc46f2FNgdLLOCTHHOSPJlHQD17ZQvJh9tVGiKzUabkypmMAZiWnPemS3ejgNn8r6Lht+i4xTYJ9jcXWsz/gOZNU8eqqGpemIXp+xy0+Tr/t43QVaQwrlaYvJ3DGy5ybxdkUuPnWF2o1djjx+FOEPzjLsmlQKERv3hezb2U9SGcOjgaSsocoKRz75eVLZAt9Y/waNkTIzu2kWutPEx44gnP2/wWnD1EMw+3EQRcbmMvRPVZH7Ppopk5nIErQ01oUqWklhVEwzu3SAmbm5Ox7fkiwzfegIV557iu0rF+muXSGYXyBTGmLvIx9D0QfpF31/gf7JXbyNLnJeRxl6jTlUUgbRkMY1aG/A2nfghf80+FnS8PP72dzdB2NjjB2cwNBk/u7EFJc721Qd+J+bZxmTAyZTk3x67FOwZuNv9QC4klOAmIN3Y2gLEEQBm91Nwjjk0fFH78o23BMh97jH30Da7TbPfe9rbF04RdRrEvkd+kpIVdG5kVuikRhBiCUU1+HgzkU+tvI8Q04bnYhAUvDQ6MpJNpJFtswhdpIF5GGR+VSdtBAjIhAGJlo/xVjZJ9ft8mhUY1/xCicXDtLqzSFYBhoSm6KIoflkbItivYncr0FvA6QtpKEuqmbhRhrr7hhdWSbZ6CIofUgEhKmYQB5MQvV1GSkX4SgK3XQBJZSZup7Cr6coOxqBu0Vb6RPrKexUibXEKLoyD+oZJO8ypuKRVHVGtSSFnQ62dZEvCtd5vn+IajxBTcsSKQk0w6IguExEbaZyF0mFu0gdkaHwOie8GMl1EeQuQWqWQMtyNhuzpUmUOof54WqPoeHnUc02CeMJ+v0XoDFJL04gyJBnna4ZUpGWsNZNnl1rMOx1SIc+em6UnfyDZPM+o50K9ajJE90JjFSZ4chB6ffJdmLyZyW2Ny/TVFX0iSnGZgyOF12qI8NYqRTy01UmOgUCLcQyFSKnxJHqEGmjykfXn0c+/TThyBzJnIWYjbnuHkWbGmJ6zuXTM59hYuynie4LOf+d06y8tEV1o8XT/9//Tq56nUPpYcJP5GldDrkhbDCayKMGFURJZ/6+h9AzaV7ceZHV1ipCQWBOXkTwwN0K0B/4x+B2IDmY5hp5IeGlBsN5jSirkl7MQRTj7yjsGxqmWfCQZZmRkZE3PdYLE1Oki0M0dyrEUUxudJy9jzyGJL96+VOKBtp0GvdGB/tCHSmtIr7WOzF2FK4/Ba0NKJ8FaxcUg/joP+R69yiB42GmVYZmBh22hzSFn55c4reunmDFz7EnM8+nxf34z9WJg2jwHRw1qMohkiCw5y6JkGq/SnBdR5M0tHkT3p/eZW/KPRFyj3v8DaLT6fD0c99l++mv0muWCaWYQA3pyjpVeYz10iKuliAp2Oxrr/C5S09RandAEAlUhWaySFUfoaOkCHSZdiokkY15UC8jSxKeqOKFJru9ZVY7w4y5IbtpWFY2KFkZUr2IqTM+gXSVvqjRDhP4sUQvdpCsHTb7dfpiSG/SZEQfRooLxHHMijFCOBxQkNv4sUK/O0+rnuF6K0mkR2T1HoYhklcFij0NvWLQbtVRg3HCyMEKW8RSBtNTOS9oNNQkExmfh6ZdrDWD+uooo7lRtImzhMEG6zmX0Y7MVNBjTD3JJU9hWy/iJG2SYYTpRYykrpLvrdChRz2MuRanGKmO0E6o9DQfvBX6QoKd9AQrRoEV3WMrPMrj7QxDiUvE5jae4hCmVzBtFcUVkeOA+9wqfrfDrrRFI04RRDH5fJ75j/89cnaFs098hSfyaUhIjCrnSDgxha0aqQ0ZZTfHriRSVxSiVAryQ2Rll4LbIX35JJf8PRhplaJbYEJY4nwsYkl1RotDHCzMkYoFBK+M6IISl7CsGcYyk4T9CqmWSWrnKH7UQy4aHPrU/QzPj/HyHz2NuXERX4gQJ2ZIn82ybbVZ0c9jjidISgLqeJFLyhZXzn8bP/IBeGDkAYqTk1gvDyIQykQK6aYA6ftYJ3eJ+gFGVsc8WkJKa/Se3QZAGUow8TZHzwuCwNz9D3Lx6e9hlIZZOv7IbQLkJtpClqDpEHY87LM1zPuHEV7p04GsDiI0vR2wqjC8H5Z/mJp6P83VKoIoMHd06FZfD4CPFYa40d/PlVqfG9sKT3t1HkBGTmvoSzleijzoWMybGuZd8mpsd7ehrmEqBeLormzCPRFyj3v8IBB4IesXGkRhzOyRItIrJ7XQsth69gwr6zuctdcJGieROnVCLyRAwo01mlqJTnGYWm6EjBAwZVV47PLzTJevgjBoXX59ZC/r+b0k5QaGsYqmlsm7GnMGRKJBHxPXM9nqjfNyL0/djyiGK5iOwnxo48UKOwIMBT5GEEDQJOXXKIQNtlzo+Rn8UCQ5FJJZjPFVkSgSaEZ5LkvjNDDBhxvtCeSGTMpNUNczCFKA5u2AHTOx2yYRDCHFMWp/hb3mJJEMrqCTZRgTDV9xyQcddqtVnLZAdb2BEuZZUo8ir6/Rb6v493URkjG7cpaglSCluexNbSAsHCAwJymIffL1p1BaG3SCmNV+jqtSgbT1COWpDKJaIqFFWH4ZHZ9ifZuldoNGTkIebXNiSEay95BpzVI01zGNFnraRggEGm4WyclyWIoZV0BIKIjDBzASaYTNPyMOfFpjKpJgkVXrjAJyuYG3nqfe1fCSBlXfRxsZobCwRE6WaEceO5VLyGEfI6WjzH8EcW6ajeerDPUD7EjkaCBgVDyixH50vYdgbeObS5AYJxL7pDIeqjeEUNex64N+E1JSIZUSuS9p05jKQSnDztAezG0fk112Uxd5yRdImRnQG4j1gU8jr+c5VDrE3vxeBEFAKRn4VRv3ahPzyBBh16N/cpfIDRENGfPoEFJCIbR8wp6PIIBSfGe37GY6w6FPf47Nr34VQbzzBV8QBcyDRXrPVwhaLu5aG30+++oC4/fDxvNg5CA9ijv8MOtPlQdPLecw0+pt64ssnx+v6Hy3E3JKCHheibFHk3x+cQhBELiw3gbgYPLuDUndqJYhFEmnU5gp9a1f8D5wT4Tc4x5/zek1XVZe2qHfsREEgTAM0YIqK888QX3nJLZSJ5Zs1K5MbBsIgoAuiQgFlUxewUvmsPQxZl2F2WbEJ25YaME++tmDrJs6K2mFXNBgXrhAQxRI1mYw9Q5SfoeemKMnJLnUnuepeALL9slWOzzg1TkYCIxFVcIg5Ea8QqKns6UmMaKAUnKHQn4XWbUZRSQR+NiGip2VCIWIjpJkK5nGw6for2NaObY6c1TjETJqB2IXOQrJ+AHH+w0OxOdwEhrNrEbs9xElmYws0ijqfGNyCK8d8qmKxxFLQQ7HmDYWafs9bEEgHXoIzStIeRkrBXVnCU1uIeV1tlSDEQ28lEe4+20CTUdW14jjTexkzDNRgZeNcaY6C0S5LHoiw+RcnuGJPFOTn+QvvvMsG5fXyXldDldbGLbK9nAatRejhgqqN8lQJoEhb9CJQraTSc6jEtk95qOQkqFhOLu4znV6NNhVAprjWXJ9j2If3A2P+u4skSgTDieoWT6xAlJhgcX7Ps3RyQy1tat0TlXItE4znQs5P7Kf59eaTJU0SlWXPYGMAdg9H1uICZyYYuMKnlXE35ciNXGaWI/JZh9B9pIEDZuw5RJ2XKwTl4m6Ovmho0RHD9PtRExkYvZPLvO15i591yIqplFEmZnMDAeLBxlPjt/Wp0JbzBHU7IEQWWvj3ugQ+xFSUsE8OnQrLRJUB/0ypJyOoHz/h64BiKaCsTdP/2wNb62NnNOR868IHsWAhU/Dznnipc+xdrpB6Eck8zqjc5lb64jDGPd6G+96hziKeUxSGRpN8aQacUmMsXaa7E0a2FFEUpKYMe7OxT+KI3Z3moDG8HD+1ajPB8w9EXKPe3xI8eyAds0mN2Iiv3LSjeOYK889TbOyTTJXxHNMdq67WNY6ofQiUVTj0ksycVRFUjuYJZesGRLYCkojSU7oYSgB4bCJZ8xwNn0YR0iR68CRyg776jXcGHaUEt1UFksLGRFAF9OY9QmSYo1o9CpeImBTzXLNmeSZzhFCF3KNKkdaNY5HGnskB0f0KMc9XjLLTFXHqWspuqkc3dwwdjKHpxpktTIH1RPMy6v0fYd1Ic85ZZJamEGuu2T8PqlAQLAzHAmrTInX6WdMmp5EouNRsnXykU4uMlA6Wwx317kq6Jj5jyJmdeZTEo3Jaey9SZ5LqTyxeYEfe3qX2XqIEfponSpx0EOUA6wopsEI9dUcstEjMb9JcwkuxRkSZZFMYDGiraHHNWoplSsJg3OugNbwKWYkkobOxNgQpVKRAwcO4AQx7eJ+iraIuXsOPVQRlRwLLYFI0pGTCcYmJllcXCSOA1ZWvk3T28SKdrmgGoS+RcW6QMKBSDNwtRwX/RRdVwJnjGC1RaevI2d0kqVR1pouUVpGyw8TF2d4/kabi7t9Pro4w/KP/zzRs7/JaqXB1QsvgzlH6cFRDrZ8zr54Hm0pS9+OaF6u4ElJ+okHGKr3MSrfRNsrksjtJTE0DoA2lyHyAtp//m1iZxdBNoknFmhdapMUBNL7C4wfHkfv/V1eKL/AZHqSA8UDpNU7TySXEgrKZApvvYvzSltxOathHindJjaCqg1wu2n0fUAZSaDWHbztHva5GomHRhG1V7Zj9DCMHmZntU2nZiNKInNHSrcu4EHTwbnYILQGKSelZKDvyfOgLlPqu/xZtcWG47HheAAcSBqId6lxWMNp4LdBFERGh4t3ZRvgngi5xz0+lMRxzNUXd7BaLhuaxMRyjtKYxuaJJ9j83te40ezT6eVRDIvU0AaGWSMhW+hygFKIIBKIAxE3VHB8CVX3UWdbZOoC7WKRvvQwz+QOoTgCZi/gwc0VcvZVLmVqrIspRoQORTXPWiJHz29RjBVGR3aJ05tUVFiTclxqHKPRGWextsnC7kvMyAmG9WEUyaGu+6ya13kiM4Lu/zjVMZGC00XTdVK6TDbtEU6PUElN8rudg9TbDfpeSFcwybUdfqh9ic9XXuS0otAomswKNZb6Af1YpG/bTEgFEskcbSGFH6UJ3E0k5wbnJRc1f4wwIbMwuZ/nHjvK8bNniE4+i2I3EKwWddEg5wQYzR5RDCgy1dE0HVnEiccRUwoN2aBSkskbFdhO0lQNvEyJdF4jzE6gmyk6lkkuFpjLzKNbOiMjIwwNDbF//34kSeI758s4tsUkFT6/N+Jld5GGJxOGIYIgMDQ0xPT0NJOTkwDkckUKm5t8qbID/gZCeJlJHzRBIOqLXOsVuSTM4AY5jjcqeIpOeipLaXKWi20QsgkmSnl+6oEpVms9nrpao2P7fOVMmfGsQcaaJt3fYTI8wwMPHGf/eBbf92lWX+LhT00yJ0psfulpzm24uNlhdhUBcaWJuKuQ2T/OZuI6kiwiiALBxjre9V0EUcI8tEwYaChyRNKQSbkBvWe2GZ8v8VNLP/W27rD1uQx+2SL2I5SigXGoiPAan0TkhoTtwYwwufT+mzj1PTnCjkvY87HP1TCPDt3aD7vnsXlpkJKa3JdHTyjEfoRztYn3StWLqEnoyznkIfNW1GfW1Pg7o3m+vNOkE4QA7E/dHUMqwFZ3C3oKSTVJpnj3UkL3RMg97vFhI4robO/i76yhOw3s7hZPvVSm3NyhV3cwgg6jw02mp1/CSDjIWgBqTBQLIAggQRwL9CyVft3A66skpzqoBZ/rhRmEjcc4nV9E7IiYtV0OX3+aILfNpWWPckvFiqEaW4TWKvquhzoW0Z5p05NSuNEw69Ykp/pHyLQlPl4+y5RzjlJ6gTCRpKVr1BIdvMwqQ8U8o+2PccVTCAQBf2GYfzpmMd+7zEoH/seVJieCInUjjWeqyAI82G/z/ymeY+TGSa5pSYZn5rCy4C4WObL809jPXcA+u4FvBYgICIKIFau0hh6lmk3RcvuMumPsSRVxo5fx//ASCc8nLce0/A6yAsv5Yby5HM2tLnrbp7GQB9lBszMUJYH85AT1zgt8JK3w4s4wm1pIIPkMD5lo2ghx7HGtqrDbdaALUiyRK+UYGRlh3759SJLEbsfhyk4HsbHC46UmheFpHpj+PGfOnsX3fURRZHR0lLnXlJamUikO791LYmyC310d4UpnmZRTI29tURFynEkM+lc8FjnMDe8lk80yPj3Hd673sD2btCbzxSPjqLLInpE086UkL91o8uL1Blstmx15mYflkxwoOqQSHSB722En+T0K7Zc4ojXZXf5p6lEb/zqIfRnv0jWExQVCwyCo13GvbQIy6sw0jpgAdVDmOjqVwrveIXIC7PN1vPUO5qESovnmo90FRSJx/zBhx0MZTbxOuATVPnEMUuavVK28TwiSiHGwiPVChaDh4F1vo81liaKY1ZNVojAmM2QyNJ0itPyBh8UOAFDHk+iL2TumjEqqwt8bLfDNeoecIpNX7t4leKtWAX/gB0lk7k5KCO6JkHvc4wMjCALK5TKyLKOqKqIoItpNhF6ZuFvBru+wu9VgZ8el1hGwHPBcBzuw0OMmRaPFnqkGmVKTSI+JtBiAKJSJA4koVIhsHddTqbVlgq6I5PkU4wbCeZn2UolR1eTykI3tRwS9FvOVZ7AOVgkKsNWcYTUxTE9R8WWFUb3JeKqCIEf0hDHqdoa1+gJWN8+BXpuDu23GRJtw9CE2UxkSaIRyzPGpEvvzPlu7LmPpHucck+f0caq+wP/7soJgHaLmBwhxgEBMjg5zccznEm1+dLyCfeEG59Ux7NwY+aXDNISrJGoS27VrZMUh9P0lVLuHMqSwWDC4fLqHI4vs5ATG11Rm+yZx+btcs9uEgo6SG6ZXUrHUITLJIfyRvRzcs0Am7uDeOEH5UodqMwmJJMVDBxk/PMHX/6LJiuLh+pcYFn2yczF1t43rxXiRzgXLo9/vs1fYSy6TY2lpiYWFBcRXTI8XK12waiyIFYaMGJY+Ry6R58CBA1y8eJFcLsfy8vIdZ3gsZFJ8Znqc55tpyk6B+WiaU4HIuKJwvJDlsyOFW6/79uVdbtRtFEngbx0ZI6W/erFXJJHjcwX2j6V5brWB4yfZP/EoRvUMrD8/aOz1WjZeIOz2UQ2D6ftFMvkaNGISp0TC3hZxtYp28DDW6inibIS6dx/m/YeI4xhBEEiXDERRQB1L4m10ca93Bg3AVlqYh966CZaUUpHewBx5KxVT+uDu2KWkir4nj32+jrvaRsrq7NYdrJaLpIjMHioStl36p6rEfoRoyBj7C8i5NzfNJmSJHx3OfUB7cWfiOKZcqQEKQ6W7O1H3ngi5xz3eA3EcAx6+3yQMQ6LIIQwdosghijx816KytsXqhW22rjXwnIBI0hAFFSWKkEOQIhEpBJ+YUBKIRIlQ8NG0BuPFG2TMBoruIGg+kuYRChAgEQQ6gZ3A6yXx2kk6vSJyRyLsNZBCC1nyyOoufW2UvjxLqTxJa3aLi/ks3XCbQtjFfdjD0oe44S1QMadY2jzDTO8c8axPPZMjEE2s0ORMbS83rElSts8na6uUxIhCNgXKHnp6mjIOI7JCaShDaX6Txpkb9KQJbFXBnFgiVXFZbbcY6m6hxAGmpCOl8jyWVPiCu0shDBH7Eo3GCBc6OoEkYqbH2aNMUaqr7HQr1LRd8mMF1KkU6tgUgjw4ceaaFS5fu8b4ZYF8r46e9mjnxtgxkpTzScYVi41cB7WgstAB//rznLr6bWYzMr1GEctJQ2GGqYf2MzyXIQgCbNumnCgiZSY4qJdJugLrOZ2+qHEtHiEjbVGQixxOH+bBBx/EMF4Nq0dhxJWVFahfY8+wA9MfgUQBgEKhwEc+8pFbYuWNeCSbZM12qYoCJ4QEehxTVBU+PfyqADm90eLUeguAzx0YYTh954tfSlf4zL7hwS99HWpnB23IrRqorxgqPQvKJwl7LnFmkY5wdfC3nX+MzL4DdL72dfztbeLTz2OKoC7Pkv7cI3esNBEkEW0mg1w06D1bJtjtE/X9t4yGvBFxEBE0HOCDScW8FnUsSdh08bZ7WGeqlPuDNMr0gQJCx6V/rk4cxcgZDeNICVF9fwyz32/abhunHSIIKmOjH3yX1NdyT4Tc4x5vQRxF2L0uTq+La1m4Vg/L2qbev0LTX8PubXHyG3+E4Li4lo/fA68jEPVTeC0D1/LwEEggkEDE0XUCPUGkGHiSDCIIiocgOqjJDnqySSLRYlhpIAsCIg6CHBIqMaEjQ1NF3VJRqiJuN8J2eji+gyRV8TQRWZcQNRNBn+RybgYhn2dIKtAVfV5MjmOlagyJuxwxTuF4CcTAYMlf4VPWE4gZjzAFgh0jb8dccQ9xvn0IYpWHgjY/sn4WOT1LOxvR0mRs0eNpucmDoowoaDxrBdS//T329GtcFEd5fmiYsN1BjHyO2bsoioAsqSzqMqNyHz1QcdNTRIRU3S5Xa5tEokQylWP/6AE0R0HQilwPN9gurbN87DiadvsY8pHFFNe/eoVMvU+ioKHOJXlp6hDr6Qyl09+m2iojh7vstTJ8JKFw2YkoOwLP3khhqikSpSmmDo4hJF2q1Sq+79NutymVSkwf+Rj5YAW2XmKuGVOdfZDv1s/T7XZ52HyY6enpVwVIHENjlc0zT9LbitDFiJmhDEzePvn0rQQIgCwK/HApw3/brhPEMbIg8COlDLIo4PghF8sdvnelBsAjC0UWhlJv72A281BchOqVQbnp/OMACFsvEnseYaTh0CM0TGQ5QyZzBFFUyfzoF+k9+STO2XPIpRLpxz/zhqWuN5GSKnJBJ6g7eBtd9OX8my7/RgQ1mziKkUwZMfHuhMx74aY/pLFtYdcdzOk0ST+kf3HgC1GGTIwDhds8LB92ylYZugoJJUG2+M6H4n0/uSdC7nGP1xBFIVazidUa/LPLN7CvnccrbyL7Lr4eYQs9PC9AtCHh+iT9GCeIEUIQQjCFJCkhS2A79P0qRuQjICAHMclQQIr6uBmZfk7DHVEJiyFx0kHVLHRRQIlVkpGEFI0jWEkc28C3OsT1GkoH9F6CGIUwltFigZIaIiZ82kqMYxi0ihPUZ5bwjRGGWjkmLQnJjnmx5HAi5ZEJVD4Wv0hKEilILkaji9ho0EHFE2TsKEVqMyJZS2LNlUjoLnLk8kMbJylmDhNraSxRoCdW2VXLHEoqjAYjSJLJhmTz0d46QdelK2oYpYiZtMJMr0o6qZDW0ywVZml6HapBi0CKqOgWVUPGq7SJhSaldIIjP/05ZMUg8iOSpoy3e4Gu1eRK6wr3Dd936/OK45jtJ79GsW0hCBKMjVL+7CfYqLWRdyskUlkakUlSEzhWPICcX2R+YYydE23CsIIlCxjZPps7a7Bz8xiIiOOYTCbD9MwMCLMQ+YjlM5w49z9o9SyGoxFGVJfJrAxRBN1tWP0utNa5uJMGMcnSwhzSfR8B6d2dZkuqwifyab5V7/CJXAqr43GiXOPabo8gGqTi9o6mOTbzDkP7kw8NRMjOeZh4GDHyELYvE/ZcwmQBJ95F1scp5D+GKA7SI4Ikkfr4xzEOH0ZKpRDu0OzrTmhT6YEI2bbQ5rO3olfvBP+V0tzXmjw/SG76Q5qXm0R2QMLycFcGPT60qRTaYu6ulbe+Wzbq2+BKpJIpktm70Cb1NdwTIfe4R+iDZ2FXNln9r78LN66B2yd2+sS+jybG6GIEUkwkSRAbSHEIdkDkRgixiqoWUPUhZKNILKkEioKckkkDIS6BUKOjb9P0K4w3IdeDTBTiah08RSMQMgh+EcGXSXQU9LZJ3ErTlkwECRQiXFllZ6hPY7aHKdbJCCpqoFDr+2yqBlU9QW1kkt38JB4KB2oSE20BOYx4Jh/y7VEDzTe4r5JkpvsTJPLPE/dqOLtdOr08lSDJ5eIx9qp5JtxTdDQH13bopC1+uFqmlFrEVVJ0jSRXkz66mWYfkLRkJlSd4liKvb0KRtPGbQQsDAU8cO0pWr0RglSGUNUpzu1BWR5ifzFBFEdUq1W2trZo12oE21tMqSqLn/kE+ujtd817g71UrAoXGxc5OnQUQRCI45jud76H/cIGqBJOegh/bA8nyy1iGUZ7LSrWJsrYEIeXfoTU6HEcy+fSs2WSms7sRIbEWIAgDcRMHMdEUUQQBGiaxp49e16NWix9ni2vy9XGWXp2xFEMlqIVpJPXBiIjHJgSfWRW5AUYn2D50Oyg0+Y7II5jbD/EckP6XoDmhjzgi5w4vUPPDW4tV0yq7BvLcGQy+84vzJmJwb/2JsL2y+Ssa5AO8CODXlxGSGskkkskk0uve6mce2eCRyroSEmFsOfjbfXQpu9cpvtG+BWLYHfgB5E/QD/IXyVSJGxNBjyyiogggLaUQ5t6Z/vzYaFcqQIipUIWSbm7EZx7IuQeP9BEdkDQdMBuE1s16DegXyewKtjdLTyrjdVp0G/1cLbbCHUb4hiBGEGIQYoJdAkvqSCEPpEToAgRpphBTGVQ5AyhkKMfadiChIiIrSq0lABRkZF1gUB3EIQUIkuo8QLd6RaC0kAUXOJIJvR1vPoUyWqSjGUh+RV6VLiiN+kkVeL0CII6iSJkEbQY3QyxBbgS7rLRqWGbOo6WZH1qmUAzCf2YR2oS99UjoqjH8+kbfGvCJx2Nsa+a4/CNmFa3T3hOx+6nUEjjFyYZGV7kQcnATEJleS+XttokfPjijSaLyjCenKGqGjSnC/zkjyyyqCuc+YsXqOzu0BV6tLdfwlw5Q6YJCTVHX05TiXv41U2ifoPdxz7OtQkDrC7LBHwsl2RkZITh4WG2/+RP8BWV7MQ4+r59r/scF7ILPLX1FG23zba1zZg5Su/b32bn2UvEkYg1k6R4+CNc3u5hn7IxsgGRvYOLSyFX4L6h+7B7HpeereA7AXpSYc/xKVTj9adA3/cpl8to2qvj00NintEk6vosk3KGudwSuVwwmKwauIOqpJFDrJlH8IIepirx3LU6TlClmNQopVQKCY1iSiOhSoRRTKPvUet61Houdcul3vOw3JAoju94LOuKxJ6RFPvG0gyltPcWFZh8aCBCyqfIWyvADB0gCm2k7DjFwsff/bpfgyAIqJMp7IsNvI0u6mTqbUUN4jjGW+vgXGsBoIyYSHexgqO+1UNMKqSVJGZGQ1/OoQzf3TTGu8XyLXpNFzAYe5ut799P7omQe/zAEbkBfqVHuHoJKmcQ7XXC0KXvhnQsEcfyEQN5cDeNAn4eJcwgF0eIRgIiJSRSXv1fEnyMOED0dLTOELKdQARiAUJJwpciRLHOJdmlrNq4kQQExPJ14rhFJsgxEWVJqWniTEhHs2lEMko/j7CdQthMENkuTrgCbODkDE7PLLE6NkFastm2FwhCBU8LyUkZFi2RrNVhwh8iK+Z5oSByenoMLRZI2B0+We1xrG6iInHDqHItt4lGEaO/yt7VKyjr4LoJunGMIijUhw4yURhnVIgQXYtK1eYv5CwNNcXe+gX21zeoF6dYHZG5nq3x//qJB5jPp+mf3mVheJZsKku5dYntcxdxZB9rZJrh8Uni4iEMq4LeqTIuiQQvPUWjtciV5X1cbzSoXLY4RMDcxg3i555DIoaZafonTiAmEkiJBGJy4P+IHZfldoLr1Susbn2FZDiCs1LBdgSs8SyJz+xluFjkLzfbCF5Ecr1MudtALqQ4nHiAwILLz1Xw3QAjpbJ8fAT1HZR6vlB5gWs71wj9iOXcUeYfegw0beADsWoga6CnuXT6ldkmksBGc3AHX+26XCy/ui5NEfGD+A3FBoChSiRUCVOVSeoyc8UEs8UE8vfLd1BcBLMAvV3E2CdQVTq9LQByU48gSd8/A6gymsC91hrcEFT7b3nxjqMY52IDb3vQc0ObTqMtvouIz/eJOI6pbXQBGH1gmOR06q5ty/eD7d42dBVMxSRXTL71C95n7omQe/xAEIcRftnCX9+G7dOIvUuE/Q7Xdndp2xG6kERXDUS9Q5jrEWh9oihACAcnkxiIRYgUmVh65QQTgxiDEMuATGgIuJkaYdjEcwR8V0LAJRdvIYoWC4RIwTiVMINIm1zURJdUAiOioVpURHcwrM1Ls9WeZ7s7RiAmyBV3Ody7wHTKp5yb4URpmX5R41D7MtwY52DLop1W2Mil2JV26PY2GI805iiAbnDc9njo/Gk2pRtM2llmrCWk0GHX38FKdkmaJRbaHofWzpGsb7MtyzhGmlDdg2TsYUJOEzgRF2Ofttfhop5kN5IRFA0pjnBDi7yzycZ9YwjxZc7sPMXwtYcJ2zZRt0Heu0509SyC3aGfk5CnR+nnxyCrUjSWOLz8BaKTJ3EuXmJ+e519G2tctz3aQUAljNjZqTDh9BkZHsJf38Bf37jjZzzp9+jV17CE61jF+3D7GVpjBrUFkUNTB/jzuoVzf47Mbh/37C5RFJH2RgguJDgvbhFHMWZGY/n4CMo7qGK40bnBie0TNJtNDpuH2Tu/99UoiSBAclBd4Pgh12sWURzTtn1A4P7pHJosUusNIh7NvofrDyaF6YpEMalSTGoUkxqFpEpKlzFVGen99hgIAkweg4tfAWJqSR86DqpaJDF68Pv7VpKIMp7CXWvjrXffVITEfkT/TJWg4SAIoC/nUSffpun2faLf8eh3PARRoDCW+GstQAC2WttgyyTNJKn83fWDwD0Rco+/zsQxOG3C6jbe2SvE9RXk/jVCt4dlt9hqlgm1aRJFg8jYxRV9iAIiv4fXdXACDz+MsCSBlqESerPEnRSRH6F6AUlbRAxlJDQCLU2Uk1CSNSQxRFQhTFiEeGyGQwyFDUzRY0pskxE8bohFquowtqjhCSIBEnU3R681RtMaIYp9otQOzdIlsmGKpCfRD1KcjudYDScY3q6xES6hZESUdI/haoL7rq7SjnbpaC5dQ+RquMaxssawPEwsChyUxxDFUfAldu0m20WRcnoYxe8yUt9lqGpwJb+PtWGbXiImJW2S9xv02wtM+xNoscSKluGCENHXAsb1DnsmI2YTSbSpcTJOi17bJfenl1jvXyEbCsjDJkHk0Ws1UZbm+chhA9Frs5mZoK/lWVxcJJFIwKc/jb53L93vfpdEvcGBYo6apnN6q0JzYpqNXI7S8hLThIwFHmnXIe73iXo9EAQETSerjSAmu3Rw6KoTdDISvaRNdnmcP6v3qbg+hiKxL93j2XQVKS9zaGwZqS0ShTGJrMbyQyPI70CAdL0uT9x4gnq9zqQyyXJhmbGxsTsue3WnRxjFeGGELkukdJlHFoq3CQo/jGj1fXRFJKnJd/eCNnyQePMkjn4RMaEh9kIMcwYpl/2+v5U6mcK70SFouQRtFzmjvW6ZyA7on9odDKmTBYyDJZTi3esoepPaxiAikxtJvKNj58PKVrkKQCGfRdHu/v7cdRHym7/5m/zKr/wK5XKZ/fv382u/9mt89KMfveOyX/7yl/mt3/otTp06heu67N+/n1/8xV/ks5/97K1lfvd3f5d/9I/+0etea9s2un73Vd893gNOBzpbRK11xF4VmmuEtQpRrYbkdvBtCzsIqXouNdEmzJuohocQukRWk8Dp4TU8/LqEa6k0hAyVtEYzIaNFk6TcCTxJQ7CvMtzpoUcypmrSHt1LTx8nsmO8po0obmOkrqMmHARM5MhjVR7C1DwKYptQEhgWO2yLOhWmWfXmaDfTJHqgRBJpOaJWcEip53i8f420lMKUdWqpPEbUYaqyg91J0lLhsL7C4vYqds9jXRhDFjRGLY1xK0/sw24cY0kwYRRISUXiSGFF9jg1X8LRYqrJOoq1wWZSp3r0ESTPY9m/Rju8warepiWF2FFAPL5MqZ2i03YpEaAUevzM1dPsS5vIRx7j0toJ2pcuM7/bBtmhLWuoM+Pk8xl2G1XcB+8jv7SXZPQyxAJLew9A+vaLtTI+Tu7v/B0IQwRZJnH+PJn2tzmbynLhoUdY13XWX1k2IUnMmxrzpsa0rqG8ciEfrS6yc/EE2+sCIT5b411gipbrY4gif3s4y9fOfo2YiIm5UR66bx+BH9GtO2RKBtI7qM4Io5Bvrn+TeruO4irsS+9jeXn5DUtsL1Y6xHGM44XossSxmfzrIhqKJFJKvf4CfFeQZOx9n2a7/iILdoChTiNKClL6+2+2FDUJZcTE27bw1jvIB1/tTRHHMf62hXO1OWj6pUmDybl3aarra4nCiPorrdiLk3c/dfFecQKHdt0CDMaG725/kJvcVRHy+7//+/yLf/Ev+M3f/E0eeeQRfvu3f5vPf/7zXLhwgampqdct/73vfY/PfOYz/PIv/zLZbJbf+Z3f4Qtf+ALPP/88R48evbVcOp3m8uXLt732ngD5a4hVI6xdwy1fxttZIWzvEHV3EJ0GqhiiCjJCIBL6Es1dh6ZtUU+E+JkIIRbRxCK+L2PXXdpbbdy2jB1mCWQTR1WJYxGjJ5Jq5xHVWUCgpzaQZZNoQmZlZhhnPM2wUmNYehlf6LMhZmhFGmHXxGgbCKJD08/Qc008R0LA5wgrDIk95kKXReE8PXuHLafERjiDJYgklHV+ePMyo+EWjZyAl465biaY6pxkdsunHg9xLfUAlWiYU+oEp3I6Gb9BJPpEiomUuB9JkEhGHoJoYkgmFVckE0es500uDGmIsgCCSOStwnCSRekwe5ttjsXX6WsGXx/+IknJZ3f3KYJUiB+e5UzxE2ihwJws8pGew/RGh77U4/TyCPW8ytCWj2OqXBoN6c1KZMYNHtImsbYUJFlhdv8eeOnJwWdn3nkgliAIIMuEnQ7Wk08hA48e2s9Hl6ZZtV1W+g43bA8rDDnT7XOm20cXRfYlDQ6nTBYzi5R3LlO1q1gjMevmCOlIxZQkfmokR3X7KrvdXURF5BN7PjEYFa9K5EdfnwKo1+tsbGwwOztLJpN53fMv7r7IVmeLTrPDcfM4czNzJJN3vhB1HJ+tpk2t55E2ZJKazP6xD3flRBxH1GtPIBBj+uOoShspk0WQ3p+7Y3UqjbdtEez0iRYDRF0msgPsi3WC+qAZmZRRB23eP4DW7G+H1o5N4IUoukzmQxCVea+UrTJxV0aTNYpDrz/m7wZ39ZP+9//+3/OzP/uz/JN/8k8A+LVf+zX+4i/+gt/6rd/i3/7bf/u65X/t137ttt9/+Zd/mT/90z/lz/7sz24TIYIgMDIy8r5u+z3eP2KrQefEH9C8/D18x0GJA/SohxZahF1obMUEVkxk27i2iBUp2NMRwTggSAixhCxkcHrTSLHG1uh3aE6k2KlOM90/hOGruFTo+BskazFocxD57OQcNobTxGoGRZdJZGLScp++7HBZLdClSMMxaPcNen0dX5DQghgz8PB6RcxApWBHJOwGB5zTKJo5mH5KgwVW6YhP01azTLktNNehb6hcNZY5n8+yZD/PWhBRnc2ST40hCBZu5xLiroxh9emZAq6aQ5YKiNYunpog0AQ+acSkOlW6rsMzpQJlWaUlTVJIpZjr7bAZdRjp1vlRLjAh2jiywRN7P4U6NM3hdJpRbw9/+tzvsd3ooHTXmJzcw9/SE6SfPUmgKJycClntXEEdKjH9+R9mY+cEvZk+F2rnCDa32JE2+YR8P3MHj6BGg34O6Jk3LU2N45juE39J7PsoY2MYRw4jiCL7kwb7kwZBFLPpeqz0Xa71HTpByMsdi5c7FnvaIaqXoh1t8lWxzFC4QGTv8FjRwPcCnrn4DACzk7MMJd7c+b++vk6r1aLT6bB//34KhcKt52phjfXdder1Ovu0fQxnhu94Y3STy5UucRxjeQGllMZ907nvn4n0faLfv44ftIhRSbGEx4n3JRVzEymlIuf1wSyW9S6iIeOsNImDGEEU0Bayb7t65oOitjkwpBYnkh+q7Xq3bHW2oS+T0lOkCh+OG/O7JkI8z+Oll17iX/7Lf3nb448//jjPPPPM21pHFEV0u13y+dt7CvR6PaanpwnDkCNHjvBv/s2/uU2k/FVc18V13Vu/dzodYFCq5/v+292lN+Xmer5f6/sw80731a9UIAiQ8hms83+Bde4v2K41cawUKbmLqe7SjQXsckRQBteVCByJIFAQjBhxv02QgUgSsQORSqBR0h4kY4q0tAs4UZqEKPDAWA+Z87RsE3/9OsVWTKwdxsr5rKckmukcgaqiE+HpKo4rUm5r1EjRk0wiZFJ+QDKK0YQAkzYp5TozmRukkxJs7scQAkRjhEv630IPfTw3oBCuMiyuMCTFhF4diNgRc/zpxEexSzIP9a9gdEtYmcOM5LNU9BartevM2n0SvkyU0SkuzDG/76Po1yyufvdFtv08xeQYVyKZqYzB9niaViCR8H0+ee0s3U99gunRJiOXrzPvaowQ0c0d59SRY/QFkYws8fGMgSoc4cZyldPfukoUVHjIjRmbmMfLB1wsaqyouxD0uF89ipnTSJ61KekJmnGOa/Em56V1RqaWmSioXN0+ie/U8FUFd+sFAApGgSFjCF1+9YTnnD6Ns7GOoCjoH3uMIAwhDG87JsZlkfG0wWMpneuOx9mew/Weg7+yy67V4LlUB1vO03PbzEZXecH2ec6NcJoOoijyyNIjb3r8RVFEq9UiiiKiKOL06dMsLS0xPDxMs9/kon+RQq9AwSswYo4wPz9PGIaEf2U7b3J+q0W166DLAqoEe4bMD/13vdU6TRRGROE4QaNNGIWQSr+v2y2OGUQ1C3uteesxKauh7ckhmgpBGMCd/8TvmXd8XnJDGpUecQzZEf1D/3ne5M32c2OrTBzFZJJJRDl+3/bpnaxXiOM3qRN7H9ne3mZ8fJynn36aj3zkI7ce/+Vf/mX+y3/5L69Lp9yJX/mVX+Hf/bt/x8WLFxkaGtz1PPfcc6ysrHDw4EE6nQ6//uu/zle/+lVOnz7N4uLiHdfzi7/4i/zSL/3S6x7/vd/7PUzz7jXI+ZuA3GqRfuF5ZKFKQt4ilH0CJUaISkhiSChAZNs46x3cnoATyXSSMlYanNkYcconDkQUT6TV0Ng2Q+aiZfYEYyA6bBjn2d6RGdcksvk+ohATeG1oSHR6y6wUJ6mIKeTYxkmmSKcMDvRr7HQVyn6BVbNATTYIYxhx+hzyPA7FMlNSAnyXC/I1kuMvYUoNlF2NbmuKXXeZXX8CXxLx1Q3GlBUO9MuUrDaa22NXK/K1+z6KXRAY8rssbuqE/hEC3eakuM41Y5OcdJ7SDR8hVhHGhxkv7WFJXqLcF7i6YTFq11EzKS6HJhuZNG3FpBQH/NTL38Ggw9mZKU6NXmbe3uSj7XEs9XHKEwnO6gZCDI/4PXLx4Gz/YjXmdLdM6G0yK6/y2bNQTwe8PB3gxTGL6wJjvSTOxDixoiIqCuTTnEpe41q0BkBWzDLuO5h+C1spYGm3RyFM0SQlpMi6ClMnr5F1Zay9+3AnJt72sSK2RVrNOjtih6+WLpDVD3Ek9JEjCzd28Ts+sRNTMAssFu78Xb+J53nU63VEUUTTNGx7UE6bTqe5qlylFtQQLIE9wR5SiRTpN/FJdDx4qiKyYcF4AvZkIxY+3JkYwEFRv4tAjOc/SurFy6iNBr19+3DHx9+/t42hVNGQA5FYiOlkfPrJED6EQQa3KeLUZGQ9JjH510OAvBlBHHCicgGjWWAmN0p29P2L1PX7ff7u3/27tNvtN/3uwIfAmPpX3eE3JzK+FV/60pf4xV/8Rf70T//0lgABOH78OMePvzqr4ZFHHuG+++7jP/yH/8Bv/MZv3HFd/+pf/St+4Rd+4dbvnU6HyclJHn/88bf8A75dfN/nm9/8Jp/5zGdQlA9+/sEHydvd1ziOqf3f/5muvoYQt4mUDpEY48ZTRKKA4AS0almiaoooHMaXumzNxzDhk5xsoCoxft+kZ8ns7mp0siKGb7AnXkIxJSqJMtb2IZbCPIl6H3urjJ+5ilqEcnKCc+YCrqAQRz7jcZKuOIXZ8ZlYLTPqQyHnIBRj9qs9PhFu8kDapxDXiSOJjW6OdStJMbIodCFf8PBGRcT0A3xlZxLbCenHPrE4jZeeZ/xwnnx6B+obfK9fpJWx0SIHyZE5Mf8xPj+U5SnHQb84ysOCgLi9QiSIZPYcZO/xj/HJyU8iCAJPrdTpF5ocHM/wieUSf7xa5ffOVdCDkBFXgB/6Ived+nO0zZOUMzKNkb088lP/Ckcy+e+VJotRzEdzSY6lB+L6et1i5XSZR+N51NRz1M7d4MJ0m64BRmmUQ/IUM5aDbNiYyQzXh4b5oZ/8KTRN4+/EEf/90n/n+crzCAhk2l0mhBy56Y+iFhYJ45Dd/i6t1g5Rp0PU3cGyu1xcCslnRjn62HEWc4sYskH8ShvyNwp5232L5/78m0h6n0ZhncfG50krAcdHjvHA0AM4jsOLL75IHMccPXqUVOrNyzrX19e5fv06xWKRvXv3srq6ytbWFr2wBwJ42x6fm/gcw+lh7r///jed9/L0tTpFaQd6HgfHM/zDh6fQ7jDG/YOg2XwW215laOgLyPIbn7va7ZdothaQ5SHOnE6yb2ICCgXSX/gCyvucyg67HsGujTKWQLxDs7j3i3dyDo7jmAtPlrFzPtMH8pSm3v8y4SiOOLl7kqyWZS4z964rp95oP7d6W2x/vY8qJ/j0xz/G0PT7t083swlvh7smQorFIpIkUalUbnt8d3eX4eHhN33t7//+7/OzP/uz/OEf/iGf/vSn33RZURQ5duwYV69efcNlNE27rTviTRRF+b4LhvdjnR9W3mxf4yii+rX/jH3pvyEJNoLu0JCyWNEodpCh3QqQt1ZRbR9PGcfODdOdGiaZ2yCRPw3NMcJQJ6iLqK0Uw3qB0XWTPSUV3fDosgUbm+zpROTiHLgKjW4bt6nR7A5zcuQYSCF5x+LRusDq+AztSCJVa4I4RTiSZWs6wbjZ4dGoxQOpjxErBSKpitM7Ra3/NJZkowoGuXYfdWQYc3IPC8OLqGsF/uibTxATMVfM8LGFh1ElhaiX58+7JXbyN5DFmKnY4VTqEWIv5Hc7HUJNJD8Vcd/mVQLPIGKGhz/5v7E0vBdJHFzUmnaAKEqMZhOcaNm8uNVlNqEz4wsIeYltq8aTksJM2GT/JZkry5/iO32RVmARCQJzSZ2H82kEQcAPI55caSKKEsemi+wb+yL/9cLzdBNd1LEx7pt/hE/MfgrzsyrdP/4ygd3HWllF2NpCXlxEEBX+0cF/xMenPs6z5WeZaf85qu+yGUcsdGRGyyHetk/FDlkVHdalPtuiRUcPUWeKPL/7PC9WX2QuNcfejQnSJFH2ZYmzEl7o4Uc+Tuiw2lrl0omTGB2RnmZTmB5lIbfAVm+LU7VTWKHFhD2BIAgUCoXXpWfjOMaLPDTp1e94r9dDFEUKhQKqqrK8vIxhGPyv8/+LrtMl6SVJK2n27dt3x3PDa9e9Uu1T7riMZQzum86TNO9Orj0ILHrWaYgjut0XGRr67B2Xi+MY276MJEpkMwchWAHbRhIl9FJpEOl6H1HyCuTvXrfRt3MO7jVdvH6IokgMTWWQPwBReb19nZdrLwNwqX2Jj45/lIJReItXvTF/dT937V3EvkpaT5MfTr6v16F3su67JkJUVeX+++/nm9/8Jj/2Yz926/FvfvObfPGLX3zD133pS1/iH//jf8yXvvQlfviHf/gt3yeOY06dOsXBg9/fBjz3eJc4bYKNl2h/57eJr5/GFCMaqsyGNkHPmWKjv4ey3+X+jb/E9ODG2BzRtEFKETBdAdN0kd1lXM+keQPiIEDREkTdIqPDfRKKDlELp3aDQh8K0QSS5xJa10kFAbuTH+GMcRjHciiFZX5aO4GZup8nc3ksVWFGL+BoIc9NBxgZl72FLB87+sMIgg5ijLuzzbW/eJrY6WKHJSQkekGRTDiD7zbYbDzL+bMS2cQV0rrE/vQy1u7ztO0El7sS6/M2guyxL2Nhzv44f/vZLt8MXBqSwJAk8/en1thedeiEBpnMQ4jrRRwjwEyLIAy6bwLU4oivntsl8EOOazo/+clpdtdO8j+fukg5M8S1zh72BRXUC02ujtsgCJiSxA8VM7fusF683qRt+yQ1mYfm8sSr1/iYN8PTRZn9j/w4n5j5FKLwSgTgk5+g9dWvobRadL/+dZxnn8U4eBB93z7msnNMyTl2T/0lW40drvdOsBK/RDrW6OMT6iCmUkjpUcbSy4zoKpIgUdAL1J06zSvbXK62AYF4I6Y21KNR6t8K0bdbTcZ2E8iizMLRAzx28FPoss6F+gW+u/ldLlcvs7K+wnxm/jbzaBAFrLRWOFM9Q82u8ZGxj3Bk6AhRFN26U7tZFSMIAsPjw7gbLjgwHA0zNjZGNpt908O5bftsNPr0vZChlMbRqXc4TO77SLd7HuJBI7SedZmsdz+q+voqJcfZxvdbiKKCaS4g9c8AIJoG4r0qQgDq26/pDfIBRbW2re1Xf+5t8wdX/oDDxcM8MPIAqvTeypW3e9ucX78CkUomkUJPfnhuhO9qOuYXfuEX+Jmf+RkeeOABHn74Yf7Tf/pPrK+v88/+2T8DBmmSra0t/ut//a/AQID8/b//9/n1X/91jh8/fiuKYhjGrZPJL/3SL3H8+HEWFxfpdDr8xm/8BqdOneI//sf/eHd28h4Dujtw9Rs4l5+kv3aSwLaJQ4E1qcBLwjT9+hHq4Th9fZUHr32XlBPhZCYxx2aJ0fD9GHOighTI2JZGY1VBEtooZoTt5TCWI4ajFGKk0PJSjORMUtEYUlvGDuFUZpzmwqfIdFM0OzFxrDAlSqS5j7VsDklzmUybzCqbfMVME6FihkUmmkNceKHFaHoL98bX2b5+ldCKaFPESS5jqsNY1Qo7NzRiP+Bq+TJRLCEnNRbm5hhlBKvWY7tygYbRp7Qak502ifb9BEtSkkQq5B8IBvZCmiN5i7PfOAWEpLKT1EYm+b1mC/nZFrosYhgyFxsWoi5SWa3ieyEHRJUfPTaB0rvBePkJfmRY4ffaM1ye3o9yQ+ezbZcXrlymvbyHHypmSMiDuSWnN1ucuD4YRf6x5RKqJNI6eYqpKMvi/k+Tnr19/Ly2sEDm7/1v9H/ndxB1najbw3rmWfovvIAyNka4eZFMr4kpFKkLY1xKdrDzWeRMhkQ6S8kcomSWyGk5ni0/ixd6jCZH+XjxMXZWr1AXGvQSNmZPpbSTJOnoNGc8epFFbkenpJeYnJrj4NGHb23TvsI+0mqaP3n+T+i6XVbsFe7X76fn9ThXP8eF+gWcwLm1/AuVF1jMLRI5gyF1siwPGqm9woX6BcykyV59L6qlMjs7+5aHdbXrstWyMVWZw1M5jLvUzCqOI7rdcwBIcoIwsGg0n2Vk+AuvW7bXOw9AIrGEKKpI1qCqSXoLwfU3Cas5EPvZ4Q/OE1ixBtezYyPHqNk11tprnKqe4mrrKo+MPcJ8dv4dp2iiOOKlnZd4sfIiUVNHk1PMjI1/qLq+3lUR8tM//dPU63X+9b/+15TLZQ4cOMBXv/pVpqenASiXy6yvr99a/rd/+7cJgoCf//mf5+d//udvPf4P/sE/4Hd/93cBaLVa/NN/+k+pVCpkMhmOHj3K9773PR588MEPdN/u8QqhT7T2PawX/xTnyklit46LhuUO8Wy0h6ekLHNqESMpoSpX2X/+u5R6PmglOrN7iFWdwFcozl9BTVTpV/t0NnIYSgcx2WYjmKP+YI7P+i56x8B2VbqCT9Q4RK4lEvkJvEKVz//8P0dzbP6vPz6FqkfkQpdluQBinmtpG1G7Tird4cSQRlKMKGUm+USUx9nuIN34Cjudl7E8C8dRqMjLCBP7GMkazM5Psfn1P6Pf67B+0sJP+SjFFqPH7uO+vZ8jtZXhdPmPWZ2WiPoaBdmDXgLhpdOUFnX6CIyMppifK3Lm2d/HbruIpJCmF9mYShFEEl07IIoCnJZHzfVRApFhUWROkPl/HJvAEHtw4U8hjplZ2MO8l+T8GYfy+H5u9CwevngWbf8ys6bGRqPPdy7vUut5ACwMJVkcShKUywS7uwiyRPLgoTt+lFIqhb2wQPbxx4muX8c+fYagWsVb30AO2giqij55gE899r/zSMag6lTJaTmy2u1zP0zF5GtrX+Nc7Rwj3RTTqRlmp5cQDqYQKj7B1Q5E0Kn2eFZ5mYJXIpfMsfeB+163TcP6MIviIpekSwTZgC9f/TJBHHDTb59UkhwoHmCtvcZOf4fny8+zKAxMq5lM5pbXI4ojztUGF/GHph7i2tY1pLfRL+NSpUPXCRhJ69w/ffeiILZ9gyDoIko6I8NfZGv7S/StVRynjK6P3louDF161iA1nUoNBgVKfQskCekdTsj9QSWKYvqdgQhJ3KGz6/uBH/ns9ncBWMotcWzkGNfb13lq6yk6Xodv3PgGhZ0Cewt7b/mo3oqe3+M7179D2RoMLhplitHCFPnS3W2D/1e568bUn/u5n+Pnfu7n7vjcTWFxk+985ztvub5f/dVf5Vd/9Ve/D1t2j7ekW4HWBkw8MJhF8Qqdzklk+SUa6w7Cledh5QJKo4prC3SDUSr+POc6KU6kk8wwQdJT6Rl1Rtafp1R3kUlxY88Sem4HqFLYu4Oe2MJu+ri7KRKST2w4VMwRlD05ZrXLmJUJQtHGHz6HujZCXJ+iQ8DUcJWl/+dPEsU1vvONc6wHBn6qTyndJvSmOR/FnM4H6KrKrL3GyuTfJpkq8FOjBfqty4SV38EKNohFmRvKHN3SMnuXFgkCnyAIKBTznFZBCzbp+Ca6VCRbipD8LYJLba6u/THnRtJ0ErNMjE8wFaW5fvIkQ57N6lN/iZGeZfrAMRrV02xfvIogiGRKy3w3kUdLGRwtFTiUNGh1XF6+2uBKyycRSyxFKj90/xjJpAgnvwy+A+kx4oXH8a78DxbGHeLeQS7eqKI5O+z/7nf5yv5HuVIbVIEYqsQj80X2jw38IfapUwBoy3sQ36IiTJBl9L170fbsISiX8SsVVH8FqZ9CmHwQhoZQgJR255PdbGaWYyPHuHDlNJvrqyQLKsN7lpBUBabAz+hcffoU5fo2BQwSSpLFpQPI6ddfELa2tlAFlQemHqCSr7DT3wFgLDnGoeIhZjIziILIWHKML1/9Mpcbl1HjQWj7tQ3KVlur9Pwehmwwn5nnGtfe1lfg5fUWAHtG0yS1u3c67XQGKZVUch+aViKV3Eu3e4Fm81lGR3/81nKWdZk4ClDUPJo2ShAESJYF6TRS9p4IAbC7HlEYIykiWuKD+Uyr/SpRHGHKJml1YCieycwwnhrn1O4pXt55mbpT56mtp3hm+xlmM7Psy+9jPDX+asr0tesLq/zR1T/Cj30UUeGxicdwmyZO4GOm734n2tdy10XIPf4ac+L/hN2LMPMolJZATeKLEWtrX0JtnWfnxDdQPIs4JdBXJFy7QNefotrpsTMK98caKXUFtC6ydZm5fhtZU6nuMRiaeZGelCKR8RDCLp1dkf56EqUnIRk+tUKCaFonJTQYcVwSnoykRCT9GtltnV15no6iUl2UOFdvsn62zbPdHA0FxHyfkjdBqJtcVEOaSZMH5C2OiQL3s8qO7vPk6d9n6PozKIGPn1FoLT+Kao0zp2eYnJzg6tWryLJM5cIZuo0uNbVIPK4jxApq2ETd9qmKf8INNU0lNcrw1H6+ODHLV6otOP5xFravsb11Cde6zOYFl57zAlEYUxzby6lghKYoM2cYfO6VFApJg92aTd8LeHS+wNHJLLIswoU/gV4V1ATs/zGqXpOu12W8IHN0bp4npSQvn+tz6oaP0D+PNjfHoYkMH5kvor+S6w5bLdzVQamtceTw2/74BUFAGRtDGRuD01egL7xhp9S/yv3F++GFNp24xYvKeT6lzpBAoe/3eaL2BOWhLUbdDDPRBFOZKRKLrzfoBUHA5uYmAAuzCzxUeohrrWsUjAJF4/btGEmMsJBd4GrzKs+Wn+V+/f7b/B5na2cB2F/Yjyy+vdOi5QZc2x14Bx5ZePcGwveK77fp2zcASKcPAJDNPkSvdwnb3sC21zGMgVem270wWC61/1Z0SrL6AxHyPjYq++tEvz2IEppp7QNLW9yMVowkR257T0VUODZyjIPFg1xtXuVi4yI1u8a11jWuta6RUBKokkoYhYRxSBAFeIHHRe8ii8EiI6kRHp9+nLSa5iX7OgDqB1iR9Hb4cG3NPf7aEDW36bzwFP2+CCvfQkycRJBEeuk6UbTGcL9HwgNXV2mIMo3AwJZCPKlMwywwh4Ak1tGMFn35CgstB3mvgJeNSBc3IZSIMJB9jyhKEtzIUFh3EXt5Vo708CYFUnESx1YQrRHkSEWWuqRfEInVETp6yNV8itPdw0RXLLoNk5agQrLGI77PpBuSyypccDYY7ygk5mIqG2cJ26fZzU4w1tpEFiTSpb3kjv4sV67s4GgOk5OTOM7AZ6BFAa1KmZonohx4hAxVhuQnqdZMkimwBJWV3P0Mz+zl0UKWXhgSxDHDyST79h3HXVdo716i3biEbbeQZJ3Ugce5eG4FUZT47HB+IEBeodYbhIiHMvrALHfjWdi9BIII+38M9DTXtgf5/qn0FMemS0ShyJO2jXvpCsONCo/fP87Unturz+wzZyCOUWemkf9KZcnbxqoN/k+8PRHir3eZ1+c4713gSm6Dr699nQdHH+Rb69/C8i0UVWH5sfuYdScQdfmOpZzlchnf9zEMg1KphCiKLOeX3/A9j48d53LtMrvuLjW1dquMd7e/S9kqIwoiB4oH3vYuv7DWwA0iUrrMnpG71xik2z0HcYxhTKEog2iGoqRJpQ/SaZ+m0XiGsbFJPL+O6+4gCCLJ5B5gYNyX+hYA8r10DABW+5VUTPaDixjcSpkkRu/4vC7rHCwd5GDpINV+lYuNi1xpXsHyLSzfum3ZMAoRBIHDpcM8MvEIkijhOQFRGIMg3BMh9/jrTdjrYZ86TfDs71BpKdTjPEI3i9Y3kCQHR20gyn3itk65V+Rqf5RyX0RVLIRkTKQU0dRxfA0Eo8Kuf5WpCz4iMv6YRqtokgld/FhBVAUCMYV5Y5Shqo0z5HDjgW3IGYjRGJ3+HJvuPAfYxYxkvIubVPQDhIkCu3uGaCo5FDsm17DYlZLMJiocjc8y15mgbRhcjZ5nPc7gqyKeEVBNDVHoVpjtNSilp8lPfxx5zw9xfWMLx3HQdZ3p6WlefPFFAKJum2bfY0cfYSI3zGf2L/CXL/85TtalEB3jpZGPk5kYZcLUeDib5CvVNgCLCZ1exSWZn2B0aYpq5b+BDdNHHuMvewGRAEuqyN7Uq2kRL4ho9gd3aMWkBvVrsPbdwZOLn4bsJHEcs9peBWA+Mw/Ag7N5sqaKlw0YPv8S4omnCaZHkYsDsRC5Ls6FiwAYh99+FOQ2fAfcQXvrtxMJiewA93obSZDY/+AxrrR32Onv8GfX/gyAnJ7jszOfJa+/sSAKw5CNjQ0Apqam3rSPx03SappZbZZ11rkeXydm4Bs5Ux2kMhayC5jK2+t0GkYxz6/VAVgaTqG+g8F430/iOBxUxQDp9O0VgNnMMbrd87juDv3+Ko4ziBqZ5hySNDi2om4XIYoQRAnxfRhc99eRm5GQD8oPEsfxLVPqG4mQ11IyS5TMEg+PPXzLRyIJErIoIwkScRjzrY1v8fDow7dK+z170JhQ1SXED1n7+Xsi5B5vi6BWo3/yJO6VK4h+k8gq0xQMzsaLhKbNjFFAMLeI5JAYk7Y7wlp/P4lGEzOMEKU59KSHKBYQfIXQ3cGqnCDZFtG2TFr6MN8e+iz3Xz2PKq3hliQUOSIXm+jmLvZ0h3I6ppdOIoTDiMajrLkisymXbE2lXnNo+5BPlOhMjRJNi3zywGG8ky3WW33k3TXy8SpzTpq2rLFbtGn7AoZiMl0c4sfml8kt/i0yZ/8Y0bMGF/ax+3A9j/X1dWJgbm4O13WxbZvIc+k0W6zV+rjJUY5OZdFzIk5mHC1ax87kcEfz6LLEj5SyiIJAxR1c3MY0hW59UCKaG1FQh1IEfoLt4kPsrG6jxxEfS77mBBjH1Ns94sAjqQgk7PItIyqjh2FsYNisO3Xa7uDiPp0emLsFQWB5JEU8fJyOVcW7sU7na18n+9M/haiqOOfPE/s+UiGPMjn57g6O/itREC0FyluXeDpXm8RhjJzTSU8O8Xj2cf589c+JiVnOLfPYxGMo0puXEO7s7OC6LpqmvWVfodcyIUygiRq+7HOhfoG57BwrrRUADpXubMi9E1d3u9R6Hqoksm/0vV+8w9Cl1T5BMrGEpr35zJvXYlkrhKGNJCcwzbnbnpPlBJn0EVqtF2k0nyEKB1UwNw2pMEjFAYiZDMLbEHI/6MR3wZRad+p4oYciKq9LI74Ziqgwnnx9d1vf91GE278/nh0AH75UDNwTIfd4C+IwpPfkkzhnz73yQIyeqLLl5Tgj+nzbuMRQkMLthMymz5KN6shbAZV1m0RQIQwjhDiBWgyJMiUiT0avrSA0TyJFEZmWhCWW2M1OsVBdJSvfQBq20UmRC0fROi2cuE/ZENmSxtEq+2kpjyK2NtAlhcl+mW5XQ+3WyWklkvmIOeE5howpcC/ROTDNU9+8Qkq6wbxr0xdLdFWJ5J4s1uU0OVnjE/MHmcu80j782D+BOBx4LIC1tTW6YchLeoaNQGJvZXDn0Wu2uV7pEiRyJBWVh2fznGudIUqN0w5KnCQFWy/yebFKqiLhyCa9js4NKctT9hBiA4ZJIptlBEvAMuZ4qRviuy7H+zsM+y04uQbdbQgDqm0DqmlKpgsnW4NtTY/B4uO3TMGrrUEUZDI1+bq+AoIgkPrMZ2j+j98nbLXofetbpD7zGezTgyiAeeTIu89/v4NUTFC38Xf6CALoyzkEQWAyPckXF76IH/lMpabecjuiKLpVNTc5Ofm2qlhuYndtFrVFanqNEzsnaLktojhiNDHKkPn2L/6n1lv03YChtMZw5r331uh0TtFuvUS3c5bR0R9H096esOp0B16WdOoAwh0MipnM/XQ6Z/G9QTm2LCcxjOlbz0fNwQyXe36QAXbP/8BNqTejIMOJ4TuaTL8feM4rIuRDMp34tXz4tugeHxoix6Hzta/jbWxAECCPDKNnfeKyT7nb4JSUotCq4KhNqmmRPVoDyY1o76Sx7DyWkaSTy7I9s8zy6CUy11RSN9boeFdRxQhRBQUVX5NJU8FMt0nmW5gi4GUxnZjAGWI9VllPJin1HyDR3U9ZbNJXeqRGHZS6RLLZQRcCRnMmpumQHOoN0gPXvs1qy8B3dcJ+gxEzSdszYTLJw4Uj/JZ0GkGR2TP2mhP+a+7ke70eq+UK30Ujnc2z6/mc2WmStUKMtW0EQaI4s8CUu4MsiZxtbvGyP0KxOEWps8vxYIuFqE23L/PHgcpa4KEKVdY3Gtiux0VZ4+y1LqNKyK6eIfZW2V95lmPVF0nq0+C/Wr1RdQdf1aIRg2JAcgj2/AhIg8dvS8Vk5+/4eYqGQfpzn6X15S/jXl0h9jyiXg/RNNGWlt79gXIzEvIWqZg4jnGutgBQJlNIqVeF0lhy7G2/Xb1ex7ZtFEVhdPStw9c3sW0bx3GY1CaR0zJtv33LkHqw+PabGe50HMptB9sPmSkmGEq99zvmfn9gDI4ij3LlTxgd/Qm0OzQaey2eV8ext0AQSaX233EZSdLJZO+n2RgMBU0m994mVm5GQu71CBlgtQZRkLthSn07qZh3i9sfiBDtXiTkHh9mgnqd/okXiSyLoNXEPnmKqNcbmBbn5xFqAtHms+zYLi+IIAYBy50claJFYrTODS1AaCZ5bmgfOTFDyhhGL8xzaPwMYiWgePE8tt9E0B12DphIYyn4hkhmuIU+LqCIASYCsZunYy2x5ve5nLeomBLDXpq+ZnI5KFP2fZSMTCH2mSq7FCWBdG4UfTSFPh0hPvJPoLVOWLvEs9e2aPT63K+YhLKOXCoxNTnOSrlKLAiMJpPk1DuH/s9cXeE7qMRmgpFUgoIIZ9oW29Um40LMYjbJT37iEN/45jd5stHkGy2RCIkDqRF+ZOEgS5rIpVaDb9barPV6dJ0en5S7jNbrXPFt6irsOBY7jkymWyEtwMO1M8SIyENLMHEIcjOgGFRf3oGuT+ngGIy8vvR1t79Lw2kgCRIzmZk3/IyV0VGSjzxC78mn8G4Mogn6wQMI8ns4FVgDbwSJN68QCdseYddDkAT0ucybLvtmlMuvnLRHR5HfwXa32wNPTiadYX5ynq+sfgUY9BKZy8692Utv4+R6iyCKMFUJRRIpvUcREoZ9XG8QYVO1Ep5bpVL+MqOjP4mqvrEv5mYUxDRnkOU37v2QSR+m2zlLGNmvEyv3RMjt3DKlZj5AU2rvlcqYxPs3s+deOuYeH3qCWo367/wO3o11pFQKv1wmDkNETUVbXEJMJFCFDUJR5LzksiaOMxon2Df5efrpkwxrX8YGnvZkemqFlKYQZwLk4nfpb60y87KG55nUMzFXH55hcnYK7bwDpcu4kx6bIya+IOB5JrW4REfuDHLUsULRHQVtmuuRxoYi4RExJMc8dHWLklDEMKbQR2PUbBfl/k9DssSNqM+3W/C0MkpBiBjPOBhmAa+YIp/P88SpC3iex57SnSsCru9W+ZNWnz4i+0pFfmIox3dOXGa02qDbrGIYKt35GZ7uOTyjJBGrO0QIzOgi//vUGJIg8JVGhwu9GLQ0UWwwkx3hwFAO9XSTTNAjN32Na94Nyl6SMNb5uB7TSR7A1YeZfPDvwc1GWlFMrR8Cwhte8M7XB+bEhezCbTNS7oR++DB+uYy7cg1BljAOvP2KkDvyNiMh/tagnFUZNhHeZSts13VpNAaphZF3OGjtlgjJZJhKTTGZmmSju8Gh0qG3HQbvewFXdrr0vZCRjEFKlzHV93Ya7fdvDIS+VmJ05CcoV/54IEQq/5PR0Z9EUV4v2KLIo9e9BEA69eZeFlFUGRv7aeLYf9267omQ27llSs1+MH6Qrtel5/cQBIER8/0TIe4rIkQzP3yX/A/fFt3jAyeo16n99m/jXLoMYUjYbKLt2YM6Pk76c58FxcS9uoV86b9zJYw5EQ2BK5BvJXlBPcey/13yVsRG36TlGsRqQHvEIkhdYry2yeh1F8GboZtIs3FohPFxidjxSW6EJEcCGmmNS8oww90mySgklTAY8SDrG4w0c6R7IziCQSXUsELwFZGPbm0w5kqo2gTaaAHZ3ESfM+kkizy9+lWud65T78gk7TyjSshYVmE9ZYIArudxpdogiCP82i69Xo9kMnnr79HyfP5/V29gITCRTfPJTIYnzpRZvbFNrt9jv+ASZ9JUx6Y42bFpihKG32aPUuezQ0v0wog/2W3SCUIEBI5nErwkWHhxTEkQ2W57ICoYhYBFL8Wx7DHy+Y/QLG+xs2ZjprO3mQRbto8fxiiSQNZ4fdTGDd1b5sr9xTuH5V+LIAgkP/UpBEVBGRt7y+Zkb37wuOC8MjHzTTwhcRDh7wxKCZXx5Bsu91ZUKhXiOCaTydzWcv3t0HrlgpvNDjq4fnbms2z1tphJz7ztdZzdbBNGMYby/YmCAPRf6d9gGtNIksboyI+xXf4jfK9BufJlxkZ/8lakIwgsPK+K1b9GFLkoSuZWD5A3Q5Zf/7eKXJfIGnwm4r3y3NtMqeYHFAm5mYopGsW3NGO/F+5FQu7xocJxytRq3yKRWCARzFH/P/6PQbOqOMYHFEFAnRgn/zM/Q4zI1T/+DuG1P0CSd3g57nLDTTO1m2UnIZGRt8kma8QRrFn7kKUY2YgwRJ2l5hVGtn0sb5xGdhlV19mzOIMYPYN+qUMqaCArDkpynM8Go3wuskgLMeLy41yvaginr0OzT8uTiYSYRGhxVTGQYo+xxjkSyU8g5YpoehV9eIfTyT08f/n3CeNBnXxRWiIIPXKChTfmEVo67VaLdhCypRu0NYNvo/DSi6eZHxlmcWyUlCzzx2sbNFwfIYQhR+drL2+zTUCAz32yzUQpw9DkNNrsBE/stiiFPuPCdUS5j6SO8z/KDbw4IqfIfL6YwZBEnm33kAUBvRdAHKMlRPxgUDKZSAw8HP1XhqoZ6dvvVm8OrSsmtTuW111uXCaIAgp6gWHz7RkaRVUl9RYTqN8WN02pWnLgVXkD/IpFHMZICQXpXVYdxHF8WyrmneC6Lv1+H0EQbnVKVSWV2cxbz4e5SRjFnNkcRFOKSY227VNKvjcREscRdn/QaMw0B9siSQajIz9GufxH+H6b7fIfoSg5PK9KGPRve30qffBdexfC+iCNFmo64ptMCv6bwmtNqXrigxnw9k5Kc98tYRAReK+U6Bp3Z7bRm3FPhPwNIwz77Ox+hTCwsJvr1P74N1FWI8REEmtqiq16jWLPIhFGhL7Ppb/4HhunvsZwdJ625vBSYpJCN4sqZtmeWOZg7qsEkUo7THIqJeNJdYa8cR5vraDVQlrRENfz9xHJQ2RyXQrRM6jlKomNHnK+jiaGzPt9HtU76GYab/whTtkjpDb+AMO+gNVR6Lt70BIaqlpCFYewgh6l5BKKmUZNyCTGylwTLJ6xyyAITKQmeHT8Uf7s6TrNzmVKqsi5bg53t4IkSbS8kGYqS1oScVJpmrbNjXKVp+sdsvk8V7dqdLsB+wSdDgGhCE01QhzK8NJOh4IKw3MLFE2d6fECv39yh2bYpSbkeKqrEAsRU7rGF4ey6JLIhd6gVfqwqmDVB4LCyDWIIh9ZTqKqg6oMu/uKCEndXvJ5U4Tc6a47juNbqZh9hX0f/GCqt5mK8V6ZSqqMJ9/1NrZaLWzbRpZlSqXSO3rtzVRMIpF41yPMr1V79NyAhDaIggAM3aGV/DvBdStEkYso6Wjaq+F4WU4yOvoTbJf/iMDvEPivRJsEAUXJoqoldG2Y1FukYt6M4KYISb37yNQPEq+aUtUPzpTae/9NqTejIJIifmATgd8J90TI3yDiOGJ392uEgQV2jPeHT8OORZzOMvYP/znrL5/mamjQsTdZf/E8ndV/T8WPWfRWaCRsrrsZIncYj0NcGU8ype+ix9cJpJBz/hyC1EYOYz5feZliM8QLE3xl+hhyOM+QVacYNsisrsFOCF6AKTn4oYJuzRL001R3Ntk5fQGz8z2UXgWpV0X2MiS1Kqo5z04/ItJ9SrJAQp1AziRJ5Dbw5R4vGjoIAp+c+iTLuWUcP2LtxgW8AOJ0yMlLu8yZHiMjI6zmhpHqbaYI+dkDy6zu7HJ5c4u22+fUpT6BGzLtRIxPZzkymaNQMqldXaXZdempBn+ZSpFP5si/MiStFtXZCrK0lWkWBYG9CYPPlzJIr5zItl/pDzKiKXRqg4uJbA7Gdpvm3K0Tnt0ZXCjNv9I0qtobdGi9kwgpW2WaThNZlFnKv4cKl3fL2yjPDbseYdtDEAWU0XeWQnktN6MgQ0ND78iQCrf7Qd4tpzZaAOwbTd+aGVNKvrfy3JtVMaYx/boSW1lOMTryE3S7Z5HlNKpaRFULiOL3J1VwS4Qk74kQeK0p9YOJCrmhS8MZ+Jve18oY+8NbGQP3RMgPNL7rcPZb30QURfLjE4hmBTfeACdE+c8raC0DLxMg/q39tMau870nAjbDDLWiwtK5J5HLWzA6Rjzs0U9o7NSHyLeyrCUcNsRRHvX/DFH32BFHcMQxIrfNFzfKFJomkijxzNRxaskSyzs2+3yNqajHZsUkciCd30QKQrq1NMUdmaZ9CcfqIspJtNjGCLuEkUKsqqSGIZyep9XTcQWTSbGDpKVRkj5atsHVyKFlDoyGe/KDdtQbdYt2o4dBTDkICQMH19R48OGH+cMLg/D3g1LEnqTBnuQ0nxwf5okXztGs1ZFFgR96YIFH90+jyRKnOxZ23ybRaZCRRLxsjidbFqu2zyezJiclhX6QZTaZ4aFMko/mbr/bv9mkrCRI2F1v0KlTeVWEwCCicSsS8gbpmDuJkAv1wSyQxeziWxpS3xfsQZ8JjDeu4vBeMaTKJQPxXY66932farUKvHNDKrwqQrLv0oDpBiHbrUFEayxrcOJ6E00RSb/HE3u/fx0Aw5y54/OKkiaff+Q9vccbcTMdE9wTIcAHb0qtWBViYjJaBlN5D76st+DD7AeBeyLkB5pOtYrTG1zY2vXr9HqXkTWZ4V0ds9JCyeQZ/sf/nFbiHFdvXETNVzG2ZpkZTqGvaqjtDoLXIJHroyWzSN5h9HadYlTGMkxGzG1kAYLsT9Lf7vCFrQ3Guh6mXORC8QBnsiOkOy4Zq4puOVTMChEiup5Aygr4SopufIg4GsJtb6AUdVKFPHnTJbpRodUvImT2kJ3JsSsmaSVmoNWkqNlIRoghtnDlFifNBAgCD40+dGvfz13eptv1GRJDVDMmtFWEVIktSaXphahRxAOpV+9iNU2jo5UolUQOjSb45KHZW0Ki3LXwXJdip8UnMzrG7ATPOBFbrsf/udVjUzbIC/CFkRE+mr+9VDKIYna9gQhJWAE2oKfagI0oqhjGoEma7zoEngsI6MlX12G5AZYbIghQSNx+crQD+x0ZUt8XbomQ7B2fjsMIvzIwP6rvwZC6u7tLFEUkEgnS77C9uO/79HoDIfRuIyHllkMcQ9ZUsP1Bfr2UfG+9JIKgi+fVQBAwX9NA7IMgjmOC2r1IyE0GptRXBtd9wKbU97M0Fz78IuRen94fYHxncOemJXWk5C6iJCJRwLpSpml1KOfTXL6yyaUnRS785QbyepW98YuMJdsU9ixgaAKKvUXkhXiOjiLuxVdDZDPgiPsSRaNJKjHE9tYED258jWHLRhQU1vQF1vo2o5uXGN9ew+jX6bOBF4Qg6mRKHqKs0x9a5P4f/adI83nUSZPSpMzw4giSu0vgCjSlPbRm/g5GLoVd72Ht1BDwySkxhuGhmBZrUZ9WosBcdo4hc4g4jtne3uapF1eIohgj4fHRpTHMhEk71vnGToswChjzHYbSr558N5s2Ox2XTCrFp4/O33Zx2Wp38PsWWRFywyM8MFziH4wVmDY0ul4XIY44brp8tPD6jptV3yeMYwxRRO4NTgZKcnDyMc1ZBGEQGbiZitETCaTXpBpuDq3Lmerr5pNcblwmiiNKZukddfv8vhHH4LQGPxt3rq7wd21iP0I0ZKT8u09dvNaQ+k4v/J1OhziOMQwD7V0aMLdeEwXZfZPI1DvhZhRE04aRpDc29b4fRN0usechiBLhO6wy+kFkYEqNPlBT6gfhB4FX0zH3RMg9PnB81yGOI0JplbEDeQ585kEOf+ynSNoekighjY3hhTGr9ZBOfww5FEmoEbKyi7RcJprtIpgNjLKFGEQowgVqEzqiHjIabOPbSbbrafac+78oWA0CV2RNmqEeRLTFGEQBXZBJkSU95JAryBT2zxGLVaRYYjj+BPsm9rFYEBmTWiQyQ2DVcCodukKJ3tAjyMPTiAd/FLmXouu6SHTIJDwUp4un1TmTSCEIIg+OPIjrupw9e5aXz16k3YsRRfjIg0OYqkQuodIzUpyqW4hByN7+/5+9/w6y7Lru+9HPyefm2Lmne3IABhkgAIIkSJGgJFMkTYkWLVfRfrb0XCrqlSXTVS7RkmxLdoklW4GSf5ZKqvf8WNKzKf4kWaIpQQTABIKIg0EYTA7d07n79s3h5LP3++N290xPACYBA5D4Tk11970n7H3OPmevvdZ3fVcPPXduRX3gbD82u38sd5Huw1KnS+h0KRoqQ9t3ApAzdP7RUIFbjQrbnRPcU7i0EbDkrdWLsU38Xv9lIPX1QmLnMjPcN8iMuXDCO5+QemvpJnlBgh7EUV823r60h2FdG8QcTV2z16DT6dDpdFBV9arqxKzjekMxcM4IGcsnNu7JYOY6+SAbqblbr+s414J1L4hWyG/o0fwwY50P8laRUiMRbRSfe7ONkOBtzgl5d/S9w/Bss8t36/2V3Rsh8DxcdwapdlE1m5HRj5MJJHlVZ3BwmLv/6c+ysuMDhLd9GEZvZyy7jx23PMBIYQ9uJ+bIboOUaZCqK+hBj8TgIcZ3LlAcb1K26nS6MakzC2RX5/E7cCQzhKLl6doWc2MjOON7yeZ3kUxYZEYEyVwSYdXwbA+lU2Iiexfe4VWyS8+iE4IC7rJD00vT08eRW+9lcn+J3nKeUCvhK4KMMU8paKIhOSOXWY3zDPqDLJ1Z4sCBA9RqNc4uR6gKFBJwx/7deJ7HaD7Jsm2z4voUPZfRyENbc+uvtD1mag6qonD3xOYVfRzHrLRayDhmKJGgNLa5yFvkzWBLj4nMpbUaltZCMcOmge9ECFooWgdFUUmexwNwOv2J8nKZMeULUkHnu/O0/BamZrIrv+sNx8KbgnUviJUB9WKuR9wLiRoeigLG6LW7/Ne9IOVyGdO8eld5e83Au9owzjqiWLDS6pODR3P263J0rhRCRHhuvwrw+cboW4W41icUa6XXV7n9YcF6ZsxbRUqtulViGWPrNnkr/6aea6OC7tvUCHl7tupdXBKBEHy/0S+ZPmga3JJ+fReu012m210gqw4yOPCj6HqG7pFvIqXEGCjz/IrPYtPDMg32Gi2EalOI76U5tURd7qQ+kcMcP4V2vIF3OknLMsl3HHKtHkWrhYjBP2sQRTqHxgaoZYbo5W9nxoaO7rHNCdGDNGZ6HqkoaPYAijaNUCEevZWslSF85RnUro2dFPhqkaWzNVQ9hz90L3veN0EyFlSmWzSMJJ1kjUklRnHb1OIqL+kJAj8kVU5trCoymQxtt4GmKkyMKLi9/gNYHCzjdjW8ICLd6TAQBqiZPvfixbN9XsOe4TS55GZX7HKrjeu6qIrC1vEtqOcVS6t5NbphF03RLruaWVrPjDF16r0Qoc71Xb6JLajquRfeZT0h3UtPeOtekN2F3W+qyNHrwm32f9r5S34drqXl6qUE6jUWzorjmEqlf2+vhZAqpaTT6T8zmczlpc1fDysdn0hIkqaGokAQCXRVoZi6du6A7y8iRIimJzHNq0s3vhFYz4zRSiVYM/J+mLFOSk2+RUbI+fogb6bnRQq5Ubzu7eoJeXu26l1cEp1IbPz+vXqHXUkb4xLiVetoVGfp9rq0uiPYdn+l7p86BUB3cIwDM/3J98N7Bzj7chshdKKuQ7tb5dT4CvnhMczVFv6rXYK2QTIE3UqRV3z0rRD4Gi0ty/HJHby2bRI3M0jJMXGCFkm3RrY3TDJSyBZWUHQVtxzgV6vQSbPjkQ9i1w7gNhfxw3EivcjUSyUyyiyqZTDxk58iaWv0DqwS+TGzhkLTSpDzdZQ4pqZ0aaaGmShNsG1sG4lEgmQyidCTVJ74DiiSe/aPbKhkLiYzDKoq8ys9IjdgUFNQLYtGL+BUpT9J3TN5cYbHTK1O5LlkVRgYH9/03XynH1bJq3l09eJHyY0FjbD/AiijUo0EQp9DN1RSF5RdP5eee84ICWNBvdd/OZ5vhDihw3Srn9p5S+kWbho2+CD5i76SQhIuXb9CarVaJQxDbNumcA2qno7jEEURmqZdtcLqOs7Piql2+/ejlLbQXufZe+N2nQX6oZi3XNuFd42Q83E+KTWVf2tJqW92KCb0Y6SQ/fR46+2nEQLvGiHvKHTjeOP3ThxzoNXjvYXLv+DbjRUAYplieXmZoWQSd2mFXhBzWOu7Ye+cyDNuhJwOQgiTVOvzLGRa9CwDfy4gXIkRhQTdhk6cMPGzBcxsi14hy3x+gheGP0SvkCBOG2xzNbYsnKTTPUYvZTPEPkpqlbQZ4pkWi9Fp8kFE0h9lzD2BEswgrQpOvJvK6jZsp4Fu3kliYAJ5IqDHCjKWBIbGlCoIow5pLU+k+UzttsgOpvn4vo9vSm/7u28fwoskliW4c/8tvPrSq0TAWTTSSZ18GCHDaGNlfnCmgZSwfSB1Sff62UoFEYYUDJX88OYXxny3b4QU1Uunp66n5hYMHbwYiYNq1lCU3EZqLkAUBARrJOLzwzG1boCUkDQ1Uuelth6rH0NKyXBqmHLi9UXC3lS8jickqroIP0a1NPTytZMu10Mxw8PDqNfAXVj3gqTT6WvaH84ZIWOFG0lK7RuRl0vNfTMho4i40QRAL14+tfqHBeukVFV/a0ipUsq3LDNmg5Rq6yjXYTS/mbjpnJA//MM/ZNu2bdi2zT333MNTTz112W3/9//+3zzyyCMMDAyQzWZ58MEHeeyxxy7a7q/+6q+45ZZbsCyLW265hb/+679+M7vwlqET9Y0Qa+1l+kKrSzeKL7u90+17OkI1yxMvn+brf/8CZ+dWWRU67WyR4ZzNB3YN0FpagtgkcB1qjTaH4gXiKEmqaUEsCQcT/O0HPsCB972H1a13UxmT+KbJgrEVKzdMLjjLUPQ872+12LJ8Fku0SVklxsIsRnKGKBvi2i5+r4azZDOR0FF6K9CroGR6tKJVWj0Xy6yQzEiM0e3IUGxkVTQSGvOdHrbiklM1mtkCraLN7QO3bzJA/Cjm+Mm+m3Ni2MJQDTzPYwYNqRsYqsK4Lsl7PnO+StePOLrUD4Pcu/Xil3EURcxV+toUo4U8hnlu4olFzGK3r/VxOSNkPRQzYhn4vQihzqMbKpY1hK6fMx7X9UFMO4F+HufhfO7B+avlE/UTwE0kpK7jdTwh4dKaQupI6ppffr7v02g0+sW9riEUA9fPB5FSXoaUeu1GSBg2CcMmKCoJ+43rvtxoRPU6SIliWyjvZsZsqpz7VnilDq4cxIs8DNVgIPHmhuLOpee+Pb0gcJONkK9+9av80i/9Er/yK7/Cyy+/zPvf/35+/Md/nNnZ2Utu/73vfY9HHnmERx99lIMHD/KhD32Ij3/847z88ssb2zz77LN85jOf4bOf/Syvvvoqn/3sZ/npn/5pnn/++beqW28aOrEgrlUpL8+TW1nEW5jj744cZ35+nqWlJTzP29jW6XXx/S4tX/L0ap6XFl3qx46j+x5GPsfdd+3kJ+8eQ1MVarPLdF2NXrfDmfQqaj4LlmQwFRHZkraRppMxEHKIES/AFi6K1PDEGDYBunmatlLBrddYkT1cPcKKs3jhCmpqijDVJTZSyAWV7FIPabdYciq020tUl1zqcQ6dMxQyL2Pe0abyYJIz2yscGjzNd1IHeXb6ELXAISMc0Nq0zADDMLlz4M5N1+fobJ1uO0BTJbfvGaHb7SKBGd1G1VQGLIOiIcl5LvOhxvdOrhILyVg+wVj+4tV6q9Wi4TioqsrWCybBZWeZSEQk9AQp5dIv8iW/7+IdMQ28XohQltBN7SIi4mVFyi6hlOpGLk2/CcBk9q3VlrgIl/GESCmJGv0XuzF47SJM69oeyWSSROLavCnXa4RUuwF+KDB1lYG0dUNIqeuhGNseQbsJAnPrImV6qXxTQkFvN7yVpNQT9RO8sPwCAA+OPoh2CUL3jcQ5tdSbxBu7AtzUcMzv/u7v8rM/+7P83M/9HABf+tKXeOyxx/ijP/ojvvjFL160/Ze+9KVNf//mb/4mX/va1/j617/OXXfdtbHNI488whe+8AUAvvCFL/Dkk0/ypS99ia985StvbofeZDQ9n3juLKFtMqxrrHZdTlcgtZokpanous5dd91FOp2msjRFKGJiRSOV30qqW2eydpbhjElmzySD+7cCCstTLaYP1XA6qyi6pL4lwJwsUFeSVE+pjAiNVcPCjiW3OClUXsKQPog0JHUM8wxDE7djVVdR2y6eHtGxIecnwFpAH1pEC0uMhAmGz/QruC6kezRrVQaXBU5cYqkNtxoHmLVCprQu84vf2eizf0bS8IYIlZCy1DCMkG7a4L2j92Lr51IkpZQcPXyGRihJJiQ7t2+n12tRQcUzLAZUlaSiYsYRY8SEiTQnlvuu+nu3XpprUF1dpR3F6EmbLRcYIet8kPH0OL7iX7SvlPKcJ8Q26HTbCHUJ3dAuqnrqrPFBEhdMlOv8g/MzY9YJbQW7sKn/bzniCPz+9bvQEyJ6ITIUKJqCmrn2GHtvrcLrtXI54jjeOMa1klLXQzEjORs3jOn6EYpycbbS1WAjNfcmZMXAufRcvfxuZgxwnkjZm2uEzHXm+PbctwG4c/BO9pf3v6nng3eGJ+SmGSFBEHDw4EF++Zd/edPnH/3oR3nmmWeu6BhCCDqdDsXz4prPPvss//pf/+tN2/3oj/7oRQbM+fB9H98/N5Gsr57CMCQMwytqyxth/TjXc7xqvY4UkoRpsG9iC616hznHZV5TuE2TeJ7HK6+8wp133snK0iliIcFIctvWIQbnFjH9DpGI0cbGaNUdZg/XcasuTrtCHHZpbhfMDRRY6QaU7P2MVKcwwoBqKocubMbcGmFiCk2NkVoaJ+Vj6Q6mNshOdTuWO0dsKFjJIoMdSI6/jKFL8p1BiqcCpD1AtDWJl0mxZWqWKLZZVXaT4yim1qJdHqRV2MqAPUDWyHL2rMBqOYRGlpTts83MMpkb5Z59D2Fk05uu5WzdobtYx5dQLtoMZUymKy1Oir5xtsc2ONzziD2P3XrMK3YCIWJKKZPxnHnJ+zJ/+hSOqpGyEwxkNp9vpjlDHMcM2UPMMnvR/s0ophf2U4XzCix1FhDSRzMKqGpx0/bdRp04FhiJ5KbPqx0XIWIyprLx+UJ7gTiOGbAGbtjYvFJsGsNhG1XEoJkIDDivLWHNQYgYLWsRxRFcPmL4umi1WgghsG37mvrabreJogjDMNA07YqPcX4/Z6odhIgZTBssNXoIEVNImigyJgyvvmNCBPR6s0gZY+jjb/k9BPArK8QiRuZyN+S99E7BpfoqhaTTcBFirbL1m3Qdqm6VR6ceJYojduV3cW/53jftXOf30+36xEKgGm/tPb6ac900I6RarfZf4heIDw0NDbG8vHxFx/id3/kder0eP/3TP73x2fLy8lUf84tf/CK//uu/ftHnjz/+OMnkjdX0f+KJJ65530NuRNxps+S0sbodDBTOmlmmFJB+B2N1hSiKOHHiBIp3AtcP6AiVE6+9grZ4lPTqKo4QzB05i3HqGUJFwYgjeq0Z4sjh5VTETDNgTOzhfUuCtNdAyoCaZSMijWZ7mnS2jpCSum/ieh6teBW302JiIQ+9Br1MRDYYYXjoNIZRR+vl4VCOxbCKltCwDEifcNDdJKE+SGY1ZkA2kLkiSriDzMJE35hqLHOoaSB9k0iPiewu2dinsiI4fOApwkObdVKO1CK0aowqFHzP54nHvsHZepMj6RIJx+Ps4jTHzDSZuVmCmdOc1QZpthwSRcHf1w5fdK3jOGbq+FG6A+NIx+X7jz+2EbsMZcjT/tNIKRmcG8RW7Ivu64JqcMpIkhcxj732Iv7KDGa6RjtQOT39jU3bNk8cJvZ9VmIwTvRl2EMBhxb6Z3zeOcm6WOpB/yBN0UQ3dHqHetc8lq4HTzzxBClvmfHGKXwjz9nW32/6Plc3SPZ0utmQznJ0zedZz4ypVqscPnzxPXoj9Ho92u02lmXRaDSuev/HH3+C7y4peLFCoSl4IYBTLZWRpOTR+tW3R1FqaPpxVKWDlAmOHnkWeOvDIYWnn0YNAlqFAtHZs8D1vZfeaTi/r7Gv0J01UFRYkUd4M6JTnvR40X8RX/oU1AJj5hh/f/jv33jH68QTTzxBd8YgDhQWeyH64TfWlrpRcBznire96dkxF8YkpZRXFKf8yle+wn/8j/+Rr33tawwOblarvNpjfuELX+Dzn//8xt/tdpstW7bw0Y9+9JpjyRciDEOeeOIJHnnkkWsuJX7yu0/jRx0+NByyb884lPcw3A15vuWgGhqfzic49OqruK7L0vQMmm6QyZS5b3uSbbUuy4pPmDTRfcjbLrapsdRZQkXgZTVSmTw7I8k/ibeQzm6lGzxJJEN6domUliBOtkhqMUkjw3JiGCuRJJstMZEZZnAlomIsYpRMtpV1pLqCrsWUTt6LpYaU85LcAztw9CLtuWW0jEK6uJ/xVIOUzGPsnmSp/ACunyEMQ+ZkTEkTuD2bWVeQwmIgaTIxsYXbP3wHirb5frb/9lnOVJpkEgof/dB93L+tyJeefoGSVPnA9q3syaVpVBrkK8vs3r2LXT/z46x6kr3Dm4vNeZ5HFEU4vR4LC3Ok02nu3r+fn9h9jn8x1ZpiaWaJvJXn49s/fsn7+p1Gh07b5a5MgoeSCV763v9AaiVuve8TZLPn3LAijvlWs0qz53LrXXezddt2dF1nue0x8+I8KUvnEw9tBdbIsEcXGRAD/NTun6JgX33K6vXg/DFsVl5DObOKLO/mllv+wabtnOeWEU6IfXv5mjNjpJQ8/fTTCCG47777rokTcvz4cSqVCpOTk0xOXjl/Zr2f97//g5x5cRFVUfjHH9jGN49VkJUu791R4t7JK7/2Ydig0Xgax20Cw2jqVkqlj9yUcIxwHBpnz6IoCoVPf5oIrvu99E7Bpd7B1fkuZ60amaLFngdufKaKH/t87czXmPAmKNpFPrnjk296ocnz+3n4O8vEkeDW94+QuI7Q6NViPZpwJbhpRki5XEbTtIs8FJVK5Q2lmb/61a/ysz/7s/zFX/wFH/nIRzZ9Nzw8fNXHtCzrkjUlDMO44Q/mtR4zjAVBYwUl7DEadzBOPw7T3+a95b0c1XbRVnOclhp37trCU09+G6/bxI8M2k2XmUMvoB0+idZzqVg5ljWFZLDCDkNSbU+hCJ9mLkINfPYxzNbiOK9UY0q0EZpPZAxAEBBaHZJqQFbN0TSyxKZCyjTQhArtNvrQEuNbfJKRjYwk1twg8akGXjpCHRvCy+9mqVokb65iZpK0ah28qEGUUfGrTeYSFlKJsW2byDYZzyVxlzzOuk0yEaz0TMa0NIP25ofJCSLCWpt6rDCQT7NtMEvd85hDQ1VV3j9U4pjjo4QRw3GEkUpRGixwYYZ+t9vl5ZdfJo5jtDiiq2qYls1osbDpnq14K2iaxmR+cuPzC+9rNZKomsp4KkHoBKBV0Q2NbHb7pu2mpqeodnuoqsbySoV6o8nk5CQt0qiqRiltb2xf69WQiiRlpRhID9w0UqFhGOhRp6+SmirBef0RQQyeQFU17HIKxbi2WPQ6l8MwDDKZzDX11VkjFRcKhWt65lZ7MaqqMZKzSdoWdSdCVTVGC6krOl4c+zSbL9Buv4KUAk0zyGZvo5B/AE27OXyeoN3ul2zI5TCTSZQ1t/mb8a57u+L8vsa+RFNV0vnEdfXfCR1mO7M4oYMTORs/W36LXtgja2f5xK5PkDbfumKBChoI0FSVVDaBpr91eShXcy1vmhFimib33HMPTzzxBJ/61Kc2Pn/iiSf45Cc/edn9vvKVr/Av/sW/4Ctf+Qof+9jHLvr+wQcf5IknntjEC3n88cd573vfe2M7cIPQckMWGi67h9Lo2uUHyUp1GXp1NFWhOLIL3Co4dcyVw7yPWR5TtvDMWcEucYpS6DArAkKS4MSw0qBmZvHGUzSSRTqWTqz6HGt3MAnwjR4LGYeKGXFvJElpJ1jqpSiqAnSFIE6iBh30ZIukGpOKVWpGikiLsFWdYmcRa+goGaOKatioTgKWs6SOdZBxRE9JsDT4EcLVMoP1r9GVDdpdm0rHYUCrkzJM3OQYpYEhRkZGCLQkLzjzqEKStkwGbZUxAaqicLARMn1kmVvHcti6im1oTFeWCLwQoeikc0WGszZ/NzOPALZYBmMJi+82usjA7yul5i72bgVBwGuvvUa8psVy8vhxOppJOpenZG5+oOY6fbnt8cz4RccBiKVkZV2u3TLoLJ8CJKZVxDDOZcCsrKxw/NgxAErFAolEAtd1OXXqFMs9QRxnyI+ea+s6KXU4OXzzsxrWM2MuIKXGa+mOWtq4ZgMENpNSr6WvYRhuuISvmZTaOqcP4kcxDad/Ty9VxyeOHYKgShBWCYMaflAlDOpI2R9PyeRWisX3YZo3lwwaVfty7e+SUvuIgr4ApG5e+1htek3++vRf40buJb83NZOPbf8YGfPaxuG1Yp2UqpvaW2qAXC1uajjm85//PJ/97Ge59957efDBB/mTP/kTZmdn+fmf/3mgHyZZWFjgT//0T4G+AfJP/+k/5fd///d54IEHNjweiURio0T3L/7iL/KBD3yA3/qt3+KTn/wkX/va1/jmN7/J97///ZvTyfPQuyAj2gtj/uLFOTpexMEZkx/bP3LZ1L/Kie8DgkQqhbr/U/2iYe1FWH6NvQvHeOaYQy+y+RtlJ5mwgRnPowgDTdjUYhU3ncNUAwzdxtZMRODQ9XuYocd8UaejqtiOi9b2ONRykF6T0AyIRZIobDJqnWXAqJI0wAltHFXF0hYZj+fI+G1kroqmBHRqu9FX9pJbOI5W8wgLCSp33UbbijEarzAczKNnLGoNGwuF8UGdTCHL6N0fwxq7DYBnzvRflFlDoyEEaCF7bMm4rXPC0jiy2ObI4jl338mlaWRLI2XojA9kiRV4udWfxO7JJhBSUglCpB8wGAVo2c0vgziOOXz4MJ7nkUj0V0Rer0M9P0QxnSFvnHtM2kGblt9CURTG0mMguAirQUQkJbaqUtA1VjozACTsc3VnKpUKx44dI/A8cgmLndu2sePe97C4uMjMzAydlTphr0En4ePtyGPbNsvOmhHyJgscXRHcNY7FBem58Vq6o3admQbXmxmzLlKWSCSuqd4MwGJzrV7Mhj6IJGVKlHiJVrtOGNQIgjphWCOOvUsewzALlIrvv2mZMBci3lBKvYkid28jROG6EXJtk3Qv7PH1qa/jRi5ZM8tIaoSEkSCpJ0kaSZJ6knKifFMy2YK3efXcddzU1n3mM5+hVqvxG7/xGywtLbF//34effTRjfjt0tLSJs2QP/7jPyaKIn7hF36BX/iFX9j4/J/9s3/Gl7/8ZQDe+9738ud//uf86q/+Kr/2a7/Gjh07+OpXv8r999//lvbtfEgpeabZ4ztmhntdn91rrqrvHK/QWdP1r3YD/vyFWR7aVeauLfnNq7/6NLWVOcDGKE1Sbzb7GUG5MciNsarsZmjqKU6oSerGMHrQRvdjtNBHQUWECmYQkKu3MQyFZVWjbSrEKjiWyXK2Q6QqbHMzxMYWXqqmGEqtYChtVr0SW0cOM2zOUJJVcnHMUdMktB3u5TmykUSNFLpdk4owiSq7KFfypGd9pGEiJ3di3bGTLQmb4coxMsEAUVjiNidFqmiRG4tQNAOG925092y1v4JVUfBigaUH5GONreUk43eO81ylTdeP8EKBF0a0u10ywsI2bXaN5Xit49L1fTJI9mbT1MK+UaAHPrk4Qj2P5yOl5OTJk7RaLXRd57bbbmNlYR41jvFMm47rkRLnyJXrqblDySEszSIUF7PAF9f1QSwDRVFw3b4Rkk5v7d/rapWjR48ipSRjm9hKimQuj6qqjI+PMzw8zJHmi+AsQejw2muv9TOeen0F3JtuhEh5nlDZBQX/Wm8PI+R69UH8GBpO0A/HZG1enTlBu3OcTLrJ0poQ2yYoCoaewzTLmGZp7WcZXc/dfK/VeXg3PXczoqDvqTKuwRPixz5/e+Zv6QQdclaOT+381CbxxJuN9cJ1b9eaMeu46a373Oc+x+c+97lLfrduWKzju9/97hUd89Of/jSf/vSnr7NlNxbdOEYq8HfVNgXbolZ3Ob7cQVUUfuKOEQ4vtJha7fHkiVXOVnt89NZh0pbe12M49TgNH6SZpumEvHroEA+9970bK7zVxQpJ02R8wmHa6mI3qqTdEBm7GF6Gsp7jznqAG6ep53IkgY6URKZKO2nhGgF6wqBgTOAsZAhMg4TaIae6zNgWOb1BUmljRJCODVYTeXJqDRsXESXx6luZO93mWBJucQbRO00SfherPMboJz/JbQ9uR22eBTdGhFkap0xURSW1s4ji1qG4HdaKsPX8iJV2f1UpQokbCYp6QDLWMIwUiaEkquHzYKbM3nSCRnsad8Vjq29zz+5xdkzk+f8sVAmDkFuIyGQyzK3pdZRdBwU2qucCzM3Nsby8jKIo3HrrraRSKZamp0hpCqQzCCmYP3GcbXffhWEYm/RBLofzlVLDsE3gNwCFTG6SWq3GkSNHkFIyNDSE7/dwA5fkeW3SNI0gUcIaSZO163S7XV567SW6ShdVVRlIvvUFzzYh7PXHpaKAdZ5BJyTxWiEwLf/mGiFh2EDTUqjqpb0c11u0rhkAKRhK1mjWXuHEXJs4siilYnQji2mUMM0ShlFc+1lAVd/enAopBHGjDoD+bvVc4JwRohlX5wkJRcijU49S82ok9SQ/sf0n3lYGCLBRuM5M3vRp/nVxTa379Kc/zb333nuRxsd//a//lRdeeIG/+Iu/uCGN+0GBoih8uJjheyIiEJI/n60iZvurqfdsK7JjIM32copD8y2eOrXKTM3h//fcDPdtLeDPvUp9JuRI3aKq6dR7go4ZsG9fk+GhQaIwprHSF7u6bXCO1vIxCvYx2mGAiCysIMDWJL7TwE7vZnT3e8iGbWJRY6lg4VRfRRcx5dIgmWwZvzJCqPok7TblxDBGJkCqIEKNhCdJeBZ+ZoSidoZ2XKBT34p6uMQcLZJekrG6g92pYyiQuushUluHUWUMJ/vy+l47iRAWxugoutpflVHevXGtztb6k89AxmR1tkbX71BS22io9PB48cwRDnoZXl3N8GOju0g2TpCMNMp2grHBDCcdn6YfoschE8SkUimWW33PyoDTn5i0tYmpWq0yNTUFwM6dOykWi0gpWZ2bIdANBoaHCSVIp8fhw4e5/fbbN+rFXI4PAueMkFHLxHFPEoUCVQ4QK5Kjhw8jhGBgYIC9e/bw/LFXAUhkznFFOn5EGEt00+Leu+7g0KFXmVuZI1ACxreNY9zsyc7rjzesDGjnXiFxJ+gXyzJUWsHLdOtHsK0REokJEokt6PqVGQRxHOO6/fj6+UaIlIJe7zTt9it43hKGkWN4+CcxjM3eDinldXtCOlGLgvIthowWnpem7haw7RFu23kXE0PvzAk8brWQUYxi6Ki53Bvv8EOA9XDM1XhChBQ8cfYJlnpLmJrJT+z4CXLW2+96BhtqqT+ARsiTTz7Jf/gP/+Giz3/sx36M3/7t377uRv0gQlMU7g0dqprKiydq4EZ8eKzIe7b1hdYUReGOLXnGCwm+cWSZStvne0fmYPEscWDQVW18DHRFwwkFR+drDA8N0lh2CIM2QpsnjF9iTAhC2cGPbOLIwJIqagCR5qGbNRQDUnqeLTtGmVqcpme4GCIkVnPM9HKUrQKav0RGrxO1HIKJYXTNJ+raFOIIJ4RAWSYZt4hJ0zkeo3dWSRk9ts+nySg+iagDA1sxb70bvWDB2afAbRILnd5yfwJN3b0P5ezfgKJCaefGdZpa7RGENYJwAa+VxA8CsqaPqSuIREQt7sdWo6jD3868iNlcYigqkU9lUZM6B1o9giBgBzEp20bXdRbbHYTrkazXaMcxUgjE8jInT55ESsnY2BjjaxVyW40GTrOOZyYplAcomAbm4jTNZpMnn3uSZr2Jpmk0zAZdvYuUkiAINtrvnFc5d9gyqNemkUKiMcpKdQkhBMVikVtuuQW/10UKgarpWOdNto21yrm5hEE+n2Pfvn1MPztN2AtJXocM+g3DZeTa1/kgItmj2XwOpKQbtul2+7VuDLNIMjGBZQ2jqiaKYqCoOqpioCgGqmqiqha9Xg8pJaZpYlkWcezR6Rym3T5EFHU2zheGLZaW/pKRkU9hGOfCQr7vEwQBiqKQTl99NkKj8TQZ+zkspUjGzpNI3QbmIAnFZDj/9ptsrhTxGilVK5XeViGimwUp5YYn5Eo5IVJKvjP3Hc62z6IpGv9g2z+4uUUkXweB1++baf8AGiHdbveSZC/DMK4qP/iHDSaSHYHCk90AqYA5nOTC2l6ltMU/vm+CA9M1ll/7DplMj1BLEcR5dDuBHag0m4Ij801+5B6ozleIYxcrv4KqFNFiD19IAmyc2GJYgtnREIaNzHuAg2JmqY8P4E29CCgogSComQxmhlFUj0wyIqMGBGKFrraFrtAp0SGrpJg3i1hqFbXboLKsYqzqZFsexaBHSeZQbJVUoUy0bS9awkCJqjB3AAC3XQbZw9y6FUNbGyf5CTAS/dVr9xSHpw/hBi4DaVBIo6iQlxmySYvy5B0IxSQXCUaZ4XBjgUN+nknT4AHNYd6IqAQSEYXsICKdznPi1CkWj5wgFoJGvYorBcnpaVgrAlgoFNi585wRNH/mFFJIZLGEYdsMJ23279/PoUOHWGwsEnUj0laaykoF6Kv2NhoNhOivqNbrxRQNHVuFbqfPadKNUWq1/iSwbds2VFU9VzPmghTU9SyMfLJvsA0MDCCLEnrgr/isrq4yMHBxSEaICCkjVNV6UycZ5TKF6+KWj5QRbfkySEkqvQtDz+O6s/hBhTCo0wrqb3BwhWZDpd2OyOYSLC1V8PxF5BovR9MSZLO3k0xup7L6DcKgweLSXzI8/Ckssz8ZrL+D0uk0mnZ1sf5eb4p68yB+DIrcwc7tn8CLkijKHClL64dI36GINmrGvDM9OTcaIpaIuC/gpV9hJteB5QOcqJ9AURQ+uvWjjKZH38wmXhcC5weYmLp//36++tWv8u///b/f9Pmf//mfc8stt9yQhv0goh3A1EyTPUkbt2wxHYe82Ha4L7c57q2pCg+kliF3GlSdVxJ3YSw20NJJtkchLzX7YYtOL6C2XEUSkymHKMoEUdQlpZ4gDoFIQY3ACACjjKrbRFoVZzLPU40A362jCpVkmEKLdD44MM7zjTMkUg65ZkBPB09o+IqCITz0jsfsQJZAMZCuBkegvNLFCgPK3YhobAxVzZIeHKCXSaLlDZST3wApCKIs7nwPFIXUgw/A7KMAyPIunN5pGo3nma01cYMsSVPBsrZjmgmkv0QmVsmmCuilLXRqdVQNfmri/QyIr3J4yaJm5njKdNAaz9O2kgy263idFTq2zexUgOvbaFJgegsohkYkjqIAtm0wMDBKs+n04/pmiaXpvmKpOTyODxQMjUIhy3ve8x6+fvTrWGmLXeVd7MjuII5j5ufnEUJQrVYZGxs7LxRj4AcVAt8BTCJhI0SPZDK5wVNYrxljZ7L9qqqoaFqChrNmyKT6hn4QBzgpB6NgkDbSHDt2DMuyyGazSBnjODP0eidxnCmECFFVC93IYhh5DD2Hrmex7dEblx66Ho45zxMipSRu+rjuLNFQE93IMlD+MKpqAe8ljj1cbw7XnSUMGkgZImSIFFH/dxH201mlxHE84jhC1yJct88PMq0Bctk7SaV2o6r919boyKdZWv4bAn+VpaW/Ynj4k9jW8DXzQaKoR7X6Tbp+RNXZxtjw+ymmS7wy1wRgKHsTa/XcAGyQUt81QoBzoRhFVVD1NzbaF7uLHFw5CMAHxz/IttzbI+PpUpASQj9GVdW3dd0YuEYj5Nd+7df4qZ/6Kc6cOcOP/MiPAPCtb32Lr3zlK+/yQS6DKBYcqisMZyV3j+YY25rjO40OT9Y7FA2NHcnzXnBxCFP9Im5i8r20ZmMCKQl1k0E1JGcptPyY519bRAvaaKaHqUichoGuCwwhUUOBGYZYQQJFhPhqAVfP4BsKpxPP0pkaQxM9dFTGMgVKA5JK5TCRtMlZLRJ6xKpmsNwtkEtXyeEghE2ciUC3CVcKDK1WsIRJKujRKBQoJAvo9hDJVJK2paAHU9BbJvYi2lMhoJO85270jA3tRaKow2p0BHelCcBiO4udGOX2yV0sdQSBbJJRAjRUUqk0tbXRmtE0DNGlHNTYEQwQqRkqlocgQIl7jPYWiKOAbsejE+gIK8FAXmPPqSpKLo22Yz2v1sf3p/H9aaDvvpw/PYUUKlEepAjJ6/2TGpZBQ29g5A1u33E7pUT/RR7HMUeOHGFpaYmxsTEW140Q28R1ThIFAlUM04vaaEZfTG/dS+G2W0gEsXGYubmDG7f/1EyeVidB2IXlZZuVwMX15skM5ijEKq1Wh5deeordu3WCYBohNhfQE8In8FcJ/NVNn6dSO8jn34NlbVYYvmpcwhMivRi/W8UPKpAKGSh/Ys0A6UPTbNKpXaRTuy57WCEihPBoNF4hk6kzOjpEeSCFoRew7dGLvDualmRk+CdZXvkavrfM8tL/ZmjoE9fEB5FSUq1+izh26YVZKr0R7s31n8lK++Jqxu9ExLX1cMzbM3zwVuNcKEZ7Q89hEAd8e/bbSCR7invYV9r3VjTxmiEjkAaomoJh/QAaIZ/4xCf4m7/5G37zN3+Tv/zLvySRSHD77bfzzW9+k4cffvhGt/EHAs9O1emECttMjUduGSJhaNSjmFc7Dn9bafH/GNPJretRLLwEfhfsHL3CrbhnXgJNI1YVLAETGY3X/IiDJ1e5W+uQyDWha9CtehhZAxlKZBCTDCRJqSBkiBdGdBLb6BZWsfw2Q+I4HTJYGkzsXsG2BFNTW0G12aavIIWgLdP0RIJCHFEIPPzBIjJXROtp5F5eQQqNYuhTTypgFkjkh7GFipZIocgmevMQkoDOjIoUOubWrSQfeIBo/hn87ikcPcAVQyiqTi57F92lARK2ZOtAnpOLy3hRRIEISzewCgXmor57cdAy6HaPUenqjMkEt4YJjtk5wvwwuxMKubpCnBIoioKwYuzhcbaFDunMCub4NtKjDwMKQgSEYZ0g7Gs+nHn1OCKKsVIaFW2VdqtNbOj0tD3UY5NYxqSMFEX7XMHEdSXeVqtFt9dj+TxPiNuZJQpj4nAAV3RJY21S7nU6DWLzMEJLgVJAoU++bLoSEfsktDaOEzHTXMLzFhnSHPKFw6yu+rTbkpkZnaEhA01PkU7tIpXajWmWiKI2YdgmilqEYZMwbOB68/R6Z+j1zpBMbiOfvw/bvlAz9sqwEY45zxMS1Fs4zjQkQ3KFu0gkxq76uKqqo6ppfF9F1zOUy3vJZl6fg6FpNiPDn2Jl5eu47jxLS39NtTqMrpeuyhPS6byG40yjKCqV4AEk84zl14yQTt/IG8y8cz0hwveJ230P0bvpuX1sGCFXkBnz9MLTtIM2GTPD+8fe/2Y37bohQgWMfijm7c7/ueZg0cc+9rFLKpa+i4shpUTIfuzxI3sHSZr9y/7hUpZlP2QlCJl2A+40dIh8mH22v+PWh2h3ewRCoCYsMtEKyBX2jZosdRu4joaTbZBOn8LzNYRMYwqFXgD4MVYsSKoSVY3RIkHZtti74z3UjnwbkZ1mxd2L0bWRkYqdmKATFDHMBCVnniDwWQ5vI2l0yUQ9MmFM3Q7pRhbaqwrCi8iGIYquoqgKvcFJlCgmoemomSS28xKq4uCebRAGO9CKBVIfeZhG4xmiE/9fjKBKWN5BOr2PdnuceidLw3FQFYVM1kQ6EWHkMoSCbagY+SzVoG+ElA1twwhJK0W2Gwa3J9JMl3Ps0SXHtAV83yGRSOCZArO8hdG5KQw9S6I8iW2fH8fta9KEQUBz/v/CskbYc+9eTmkFiHoYwTQrK6d5rbWK4/psG3zPpntr2/aG5P+JuXl8K4upqBS0mFl/iTgU9HpJ9GxMoVDAtvsTWRwHdNynkFoV0x5keOgTJBITBJGHfuoUGTNk55Yclubidr+FaUWMZ7eRSBYYGWkwM+PR7Q5w++0fJJkcR1HOvUjXNSrORxDUaDZfpNs7geNM4zjTJBITpDP7MI3CWorpG4t6KTLuG8iquuEJkVLSmHsRKUL0vE2h8OAbPxSXQRiGGxWtr1QjRFVNhoY+SaXyKLXaGTqdMxjGPFFcRIhb3zB1Ngwb1OpPAVAsPkRtpk9mHchYRLGg1u2Hxwaz71xPyLpImZpOo9rvXGPqRuJK1VKnW9Mcqx9DQeFHJn4EU3vrarBcK0TUNzze7nwQuEYj5MCBAwghLhIAe/7559E0jXvvvfeGNO4HBYqi8PDuAVaOCbaVz71YNUVhMmGxEoRU1zIqWDgIoUuYSOLYESvT30DhDCNGRCxiQJBOlBhLVugS45kBaKv4KCh2jClHqHs2quuhCY2UkkaREaGqoyUkI0mDarhMaIKlBRRVhfGTXaIduwh8G1suQXWZyIVlOUnGXCDrd1BxaTNMrxKTnJZEWoytRfhpm9lihnFlGOn1SBRyaGoXXT1NMOvjONtREjb2Rx9gcfUviPwG+W4N3chS2vP/xNfGOHLkICvtWYQ+wthQkZYQ4MbEsU9GaCRNCz1nUQn6bvE8TcKwxWqvyIDMkrENSimLiWKGlZUVpJR4noeRSOAWSmiKwsgaCVTNXNpFf/LlgwSui53KMHnfx0mvNFGEy2i+TK93nEXnOH7Qw3ReY26uQyq1i3R6N4pS2Ki0PL2wiNyaZjhp4XuLSBkT+Uk6rk+hfM4LIoTPwtxfEbOKgs7Ylk+TTPaNobanoqg2KStJOb8DgI7yPKnkdm6d+EcMJAcYHRG47nP4vk+nY5JKvfFKzjRLDA7+KIXwPTSbB+h0T+C6s7juOTFAXU9jrBkkupFF1zLoegZdT6Np/XFrxA4g+7oua7oI3d4J/GoVRTEpTNy/wdm4FnS7/dR1ey2z6UqhqjpDQx+j3XkSVX0Zywqp156k1XyBXO5ustnbNoWH1iFlTKXyGFJEJBJbsJK30/NPAVBIGFS7AUJKEqZG5h1NSl3TB3nXC7KBc0bI5Z8fJ3T47tx3Abhj4I6+SvI7ADJcM0Le5pkxcI1GyC/8wi/wb//tv73ICFlYWOC3fuu3eP75529I437QkL7Egqy85hWpBiGEHsw+h5SS5axH2Pg+3e48Ah+0NKowMYwC5dKtaK8dZ7XtIPWQnWqIK1aAiDjq0q6B4sRoUsM004R+lShZRC0l6Uz/GV3Nw3UTqJGOhiTMhDRWHicZfoihxDH0oIffSaCWPJJaj4zoISyfZgitWoZSMEN9QGKsCjpKTLVc5JalDAiNlKmgxbNozhxOsBVpp7E/fCcV95uI2CPh+KSTuzByO1AK+6gvLQHQdAKieJGtt4yz0vZQhCSOA1JSJWUnUDIG1dW+O9kOTtMNVHxKJGKFlKWjpvrXsdfr4XkeUko6EtRSmQHTwO60iOAiyXaAOIo4+VI/g2f7HXfTXZPXL9lZyqXtpHP3EK5UMKkykiwRRR1arZdotV5CVdMkkzVULUOzpyBbTUYLWVx3BhFJAq9MGPuYVoqBgQHi2Gdl5Wt021MgdZLGQ6RS5yq8NtdJqUkTRVGouTWCOMBQjQ0eiqqqjI6OMj09zfz8PENDQ1fscjWMAgMDHyWfv592+1V8v0IYNYgjhyjqEkVdXHfu4h0VFUWxsZWD9HoOSmaAoPE0mmrTrB0EN49tj5EYuLYQzzquRylVUTSkGCOblQwMCHRjnihsU68/TbP5IonEOJY1jGWNYFmDqKpBo/kCvr+CqloMDDxCbS2jwNIklqExVe+3ZzDz5mYcvdmI1vgg75JSz+F8TsilIKXke/Pfw41cinaR94y855LbvR2xLvL8dtcIgWs0Qo4ePcrdd9990ed33XUXR48eve5G/TChbKwbIRFy7gWUyCdKpfGNmDiIiaKdtKMEM+n95Jo9pK/jLG5DzCks+jXaisdO00dRakRhiKZ4eC0FNZIYioZl6IQywk+kyGTbOI2DtFXJmeYQI40yBdPEQ8XPOUwkvk3Bi1CFjqKpGIUVbL1O0WoQxhqNnk1UkxjJZRIiQiY1urpKIiyQIo2uqpiKg6FMY9SrhKMPYdw/SVV9HhnH2PYIgz3QjDMbAmWO4yCkpOWGCBmQkQ5nmmtkUBGgopFKpWjqCqGU6Eh09ySVro5lDlAONDRVQV1LZ+12u7Tb7X4oJl9C0XS2WAZxa80Tcgmy4vSR13A6HXTL4pZ738PRtbBPQe+/nGpeHd3IU0htYe/2n8F1z9LtncRxpgmjFro+ja6D342xFmcpT74PxzlLGER0eyaK7pHJxDjOUTqdI/h+hSiQ6MGdpIubS8yfS8/tu3zX68UMJgdRzwu5jI6O9mvMdDq0Wi3y+fxVjTvDyFEqfWDj7zj2CMPGxv8o6pz7H/dACqK4gxXXCKVPJEx6zTUybcfE1NIk81tQr3PltW6EXIu+B/SVUhVFZWjoNgYGfoRu9yTN1gHCoLHBiQFAUTHNEkHQn5zL5Q+h6xnqvf44WReZrLTf+XwQOL9mzLtGyDreqG7MycZJplpTqIrKRyY/gn4dHr63GhvhmLe5WipcoxFiWRYrKyts37590+dLS0tX5UJ9F309CQUFN/RxFl8iBXQHtlKdeRWnmya2dhKYOgEJDL9FoxIhVuuoEZT1Hj0RcLKeYHtOQzNA10LoRShSwzDTqHEbhYheUqPgfJtQBMw6KZwowUDPRlfL+LmtKNqLGIpLTllA8QPinEcxO4+pdzBkiBfbzHR3ors9aoog57iEMqab0Ci5RXQjSVKRSK+DnP8eQmrEe7M4pSmQkmRyG4PlR1BP//d+x9eNkHaDdrOBVBRMTaG2OENNGSGMI1JSgKKRHSiyskZKzdAA6VNzSuh6ltLaIkZN9Y2QRqOB67rk83lW8n0C6RYV5FrJcu0CsqIQMcdf7HvuJm65DTuRoO70J6LCmoG46vSzTAYSA6iqTiq1k1RqJ0IEtNunOHGiS75kE881UdrLeIv/Byd8jcCNafkdFE1HVZeoVvuN1TQbS+6jK1ZJZDcTL+trQmWFNaNquXvponWmaTI0NMTS0hILCwtXbYRcCE2z0bSRS5JVpRTEcQ/Pa1L1F0mWQqLyXvTcrcSxS9wAO7UVLZ+4rjbA9XlC4jjeCOdks1kURSOT2Uc6vQfPW8L3l/D9ZTx/mTjqbWQPpdN7Saf3AGykR6fXjZA1UurQO5gPIsOQaPVdT8iFeL26MZ2gw1MLfZ7QfcP3vW0FyS4HuWaE/MB6Qh555BG+8IUv8LWvfW2jem2z2eTf/bt/xyOPPHJDG/iDgsBzcRbnCJ0eRi6/8bmhKuQNjUZ9gWoMqfQgC3UHp92mVTdRMz7xWJYojAhrLi8ph8h5w4zkymwzWhzXsiyHafYmWlgpMLUMimOCVLDtMsKpESsB2sg8Ua9OV6jMu1vJuSo5ERGVezSTkrD+EGlOYbsdED6hbhPqFkbsk1+CVXcbLWsX2eg1eopGzo3oaQLX9tnuhqjSwdKT4C6DViUsZIm2tdGkTiaxnXLyXpSZ56AxA0g48x1wqjhnuzSbBrqWZ8CM6FVdel6ACCR5VExDwS7lWPX7Rkg6nAUdmuEYioDcmtqbltQJw5BKpS8ilh8c4jW1b+CN+B4eoKZSKBcYyQsnT9Cu19AMg1vu64cXm2v8nMKagFHV7b/A18Mh61BVk1RqN3F0B/bYh/Bmv4PVXqLTqJFKSXrdDCJWSSYtyuURdCONrmfIZe/gxNSLACQvMEKaF2iErHtCRlIXGwfj4+MsLS2xurqK67okEtdvBFwKitLPVrEsGyMyMM08ifJ7oHQPAL2FCpHqol9nvRgp5XUZId1ud5PS6vntTyTGNjJ2pJTEcRfPWyKOe2Qyt25s2+j1jdWUIYmFpNp953tC/DNnkGGIlsu+6wk5D69XN+bF5RcJ4oDh1DB3Dd71VjftuiCl7GfH8ANMTP2d3/kdPvCBDzA5Ocldd/Vv0CuvvMLQ0BB/9md/dkMb+IOC03/0h5QOHGB5eITtn/qpTd+VlYhGZ5EqFvncgzTO/DVue5n6SgrqMwTbttBreeA5OIke5cBiRVlgaGAJu5PHC2Ia3gBjuRX8aBUtzKIqSXJmCdlbIUxVsQo+kQ/V7hBCzzAomyS2T+Hk76TuqAj2YDn3kRR/hWWu4GW30VGWSHkOuTnBi6P7MEZLlJe6BH6EgYqr6nQTOtl2FpSYlNXDtGagrKIk2ihLL5KXAxSkg6Icgeop6C5DZgRac8RS4oSSRmyjGhq35dpM19uozRWcOM2YUiRrZdCzJqthQBy7pOMlAkWlFw+QCAUZ20Y1NRRDo1Gp0ev10HUdbXgUfMGQpWP2mnhczAeRQnDswHNICSO79pJb8yY0wv7LKa9vNkIGEpcvHLcUCOTQLuzQxHUthoZ1lmfKaCLP1vGdjI/fsWn7c2qpmyv6nh+OcUKHlt8XBhtKDXEh0uk0hUKBRqPB4uIiO3bseN0xeCNgRD0gtZGeuy5SBtdfOdf3faIoQlGUDbLv1WBdHyRzgQLthVAUBV3PkE5fzA9a94Sk9L5XKhYSy1DJvgNe5peDd+w4ANbeve9oXsuNxuXqxkgpmV1TOr5v6L5NYdB3AqJAsJaMiWm/vTVC4BqNkLGxMQ4dOsT//J//k1dffZVEIsE//+f/nJ/5mZ/BMN7elSRvFgpbJlg5cIDamdNMRhHaeSvycv0kp6Rg1RxGmfWIog6qquMHCYTfxjlxnJ49hBr0yEcBstslSjq8qk6R0MboyYCzvWEmtAZ+10UzYzQjIpU5S9BqowwuoesKbn2EY9Y8ZGYZMgN0HcxkmVZ7GNm1mdR0UtkUCTNDW9eIpSTl+WixwnJigqCcIh32CPHRVIlvmwi/hBFNgmmQSobYA13w6qRcndx8kxQxsNivEQOQKMLOD8Pwbbik8IJT+DgkR3axb0+HMwe/gVaV9HydrCoY8qpoZ79GJbGLQDoUEz7taBJFMSlrYGgq6lrcc2ZmBikl2WyWVd0E32PCtoiX+4TWCzNjVs5OUVtZQdV19t3bJ53FUtKK+kZIwdAJRUjDb/Tv0+u4ZJf9ECWbp5Cs4HaatJo6nbYNKIyOb/ZihL5H6PczfRLncVTcMMYLYxSlL9k+110AoGgXsbRLT/Dj4+MbRsjk5OSbGw6VEiPueypI9Gu1iF6IjASKrqBeinl9FVj3giSTSVT16l/811u0Tkq54YlK6Zv1Qd6pk3fcahHOz4OiYO97ewtsvdW4XHZMw2/QC3toisZwevhSu76tsVE919JQtbe/AXXNb6xUKsX73vc+JiYmNgp4/f3f/z3QFzN7F5uRG59A1TTiXo/K2TOM7OzHoPHalGtHgAGW29vIilmk8FDVARQtjfQDxPEqxUSDwsoJKpNFZCAYKDapqJKKchJXDHKiOcitzgJJxwNDIk0NXVQI0nOI4ZAQWI5sWiUPlJikNEjIMer27XhzFfJhQDqbZmhUoVuNaOsBduxi9mJ6egonO4zWa+INWpgLIaEfEOWSbPcm0LQCdjaLscsi7P0Vhkgh4gx28U4wbVDNftl36E9et38GVA2nUqETSFTdYqiQoG4dxdySJJi2MLBAVynaLm5vkXZPx6dCUTvAQvRj0F5gWLMgsFELKeKOxsLcDNCfmF9cEw2bsE3EmtfhfE+IlJJjLzzXr2i7bQcD66JjUYxEYigKaU2l4lSRUpLQE6SMS4cIJLAUhCiKwtbhAvNNn8VFiAMLy0hQLOc3be+uTZZWMoWmn5u4170gGdvA0FSWe5fmg5yPUqlEIpHAdV1WVlYYG3sTUwhDB1VGSKkglBSy5RMu9w0HLWuhXFgI6SpxPaEYuH4jZL16saooJHRY3QjFvHP5IOteEHPL+EV8qB92hBtiZZu9BXOdfnbYaHr05lesvgYE7lrhuneI9+6aWjk1NcWnPvUpXnvtNRRFQUq5aaUQx/ENa+APCtR0Cj2ZRgkCFl87yHDCRekuQ+MsZemi+Dk6VRVRWkSKmMZqCc3IICMTYzVgUDocKd/KqXwBQyr8XLSEnxxkqtmlRxohVRbrSSadAC1pErYG0dsNYs1DFBI4te0sRxZ+mEPzPNrzI9y5806+t+pAEJFSXCZ3VZC9Ol4Y4SQdknGXRFewZAwhUza2N0+o+SSCkEAReErEjng7im6QziZwzVVsI4HCXmbd2xm6+9NoVhJUo68roRlgZUHtP/SO49D1I6SmokfP4XlV3DhBy9hCMejgJ1WMO97LfHqZYGaGZK/DvJ/kZHUBL1qmqigckBrGkot2xKfXEn15cCug1emA5xMKh5Ozs1hRxIhpkVwbq9X5WVaXFlA1jb33vGdj/K5XwM0bfaXB9VBMOVG+7Gq4p6h4scTUVSYHVBZOgJQJpFTJJovYyc0vso1QzAV8kMZ5pFQpJbPtvkv4UnyQdSiKwvj4OKdOnWJ+fp7R0YvlzS+FKIpYWloim81u8LpeD8IJ8V5exGjvozu3DeX7y5u+166TDwLnNEKuxQjxfR/P81AU5aprxqzj/OrFqnteZsw7lJQqhcA7fgwAa++7XpDzIYRERJf2hKwbIVsyW97ydt0IBO564bq3fygGrtEI+cVf/EW2bdvGN7/5TbZv387zzz9PvV7n3/ybf8Nv//Zv3+g2/kBA7ZylQJW42sI71aIaH2WglMJHRREWRq1ELEJ8sYzXi/G8DNlyiuaUIDQSnBnQaOcTqKqBKhyORSa3RrfT672GbtVZdm3m63nGFImeDtDVFKJbJTZtDHcn4ZkHqQ0eoeuUGK+FpH042/BpDDsUhEcmvYgIZun1TlPvSsJcTDLqke6EHE1txZcRmeWzuF6V4QA6hk5YzpFqDKPoBmaqSxx10HSfRPYWGupuKO2C88Jz64RA310lCFZZXDzJarOJY1gUrBhVz7HEPfhRkyweui54sTnDYi0ibLpkSNJWb6XuB0ghqCsKbSkwAoEWQ9OT2LrLweefItSyZBIpFkqDuI0GMvBZmpsl6Xvk83kWXz1IGEbkt0wytuXcy6YZrodiNvNBXi8U01D62w6ZBppSJZNR6XXSKCiUS+WLPATrheuSF4SH1vkIhaRJ1a1S9+poisbW3NbXHVvDw8NMT0/jOA71ep3SG5APa7UaJ0+e7Au6GQYPPvjgG1ab9c+2iVY6KHECqSZQFVAsDdXWUVMG5vj1r7KvJz13vWhdMpm85pDwuieqkDQQNah2A0C5qaTUuN3Gfe01EnfcgXaV1yWcn0d0uiiWhbX97Vts7WZgnZSKomwipkYiYrG7CMB4ZvxmNO26sWGEvAOEyuAajZBnn32Wb3/72wwMDKCqKpqm8b73vY8vfvGL/Kt/9a94+eWXb3Q73/FQoxaacHFyJU6lh3glHMbO76dGiupSTEvGTHYX8Ow2wlNR1RCrOYeIU7yyaxteJiCh1RhzTrJs5Hg1MUR6ySetqgi7yVwwylI3RWipKKbEVlv4Rp3Y1hly8nh6HSfVxY80sh0Dy1eYG9yCmdVJ1UBVdHK2iSINHNXBi3qUIh/bCZga24pbqzJQm0HVA3TLgEIOwxxEEQlISLRUHYUeqfRWVD1JpG5+cUspWFj8v/G95XNeh6aPG5hga0yUBzDLH6Z3dJEJD/LWIKmiB7pC13eJbSikTOLuMGrOQ1dVBqUGEozRFBExncV51Milo6mAYCiuMtKYxa1X6UiNuJfCX1hhYTqkcmoKRdXYtf9jmybg+npmzBq3YtU9l557OTRVHQMYsQw8d4FyWafbSpKys6SzF6/qL+sJWZ8EUybH668BsD2//bJ8kHXous7IyAhzc3PMzs6SyWQwzYulpcMw5PTp0ywvL2/6bGVlhdHRy5ckl0ISrToQeUTJWVL7t2HcNXHd4ZfzIYTAcRzg2jwh1xKKman1eGm2wft3DVBOWxuekHzSZCGCSAhs09hIl36rIYKA1v/5OnGjQbRSIfepf3hV3JQNQuruXSjvcvU2YYMPYqibrulyb5lIRCT1JCX7nZdJFHgRtcW+MW9fJ0frrcI1GSFxHG+sVsrlMouLi+zZs4fJyUlOnDhxQxv4g4InSvt58q5PkC4P0yoUEFIwoA3iTy3QrEpawsAoVcjgUXRCep0aNQwObh2mkwixgb1+E7vewE3puEmLaSVL1gxI6iq2rkIIvSCJasfkczWCeoSfTJBseMSDDWJTYvsGhqKSSZWp3fUAA26b7MIxDCvJIB08cyd+egZVhhBohJpOLdJJ+g6WHWBZNjIp6BVTjKbfi7BMtFQL3RYk00lMs0hs56F97sF22i3mjj3L9NHn0G2D3e+9HSsxgBfVMUxJYfg2dk7exmtdF3WxS0HCYLbIPY9sR7N0jswdRPQkyW5AzdNQ7Sy7duzirkZILGOsewZZra4SRRH5fJ7DI9sw/CYPBscYr56k1lkEFAoDeTqxypm5Fm3Rw7ZttjafhlYZcv1VTzM65wkRUlBz+yJPb+QJGQSGjIigVSOb1dgzeS+tBbBTF78I3DVPSOKCCXOdFJm1FQ4unwRgb2HvFY2vsbEx5ufnaTabPPPMM2QyGUqlEsVikUwmQ7Va5eTJkwRBsBHC0XWd6elpFhYWGBkZuewEFzd9RCBQ8BBmDTWfu6EGCIDruggh0DRto77O1eBajJDnpmosNj2aziI/856JTRotx/q/MnCTlFKllHS/+U3iRp8UHS4s4J88ib1nzxXtLzyPYKovzGbvu+VNa+c7FZdTSz0/FPNOIyNLKTn7WpUoEGimpDh6bdyqtxrXRJ3dv38/hw4dAuD+++/nv/yX/8LTTz/Nb/zGb1wkYPZG+MM//EO2bduGbdvcc889PPXUU5fddmlpiX/yT/4Je/bsQVVVfumXfumibb785S+jKMpF/z3Pu6p23Wh0SNGTBngB29NJbg173D1zggdfXuXB0w7bA0EuUcW1Ba/ldzKVKzObL9MtlLCk5LZKjYwWIzTY6lZIEdEyM7QtA02RTNigCkG3k0IoBtlUBxSoWyUOmRatcpNQicn3cuhagtT+bThZHS3WSWgqqmyA1yYSGnFmBEtGSE9nxcjjGSF5Oph7i2RcCFSFbtqm4AyA5WKlXQwjRSrT9xbIRB4pBLW5GQ5/95u88tjfMnf8ReJQIP0stnyIbOZhfFFA1RKMDZRQFIVVL6S86qMB2R15ssUchqWy4jbo9QTNVZ2GG2EPTPDg+CAZK02pWGJ4ZJhEIkEulyMxOIxrmhjZIUbv/gzxrp+E4nbUsX3oex+hcOuHMQtbGZnYzj17RzCjNrz8P2HmWZByEyek4TWIZYypmeSsS/MmAiFor4VjSvRDN4ZZRJdZVFW7yAiJoxDf6a9Uzk/PFULSXPOEtONl/NgnZaQYy1wZ0TSRSLBv3z4ymQxSStrtNtPT0xw8eJCnn36aw4cPEwQByWSSu+66i507dzI2NoamaXS7XZrN5mWPHVb6Hgo90QZFIs+rnnujcD4p9Wpf/kKIjXDMlfJBvDBmqdV/JzSdkMeOLFPv9TkghaRBO+i34WaRUt2XXsI/MwWairW7L+zX+/7TiLXifm8E/9QpZBSjl0vog5f34v2w4nKZMetGyDsxFFOd69JcdlBVhcRwhKq9M4yoa/KE/Oqv/urGS+M//+f/zE/8xE/w/ve/n1KpxFe/+tUrPs5Xv/pVfumXfok//MM/5KGHHuKP//iP+fEf/3GOHj3KxMTERdv7vs/AwAC/8iu/wu/93u9d9rjZbPYij8y1rK5uJMb8Lh8+9ioTqQTdYoLW/FmilTa9zm2k0jY/ftc4Z4wYfzmmYm8hsDxiw2ZgcpLiyQrDuoFbbFOJF8h7PvutLTwpJN3kKNvjGdQgpiI0ml6GtNLDSjgIoeEpJXwtwYtmHSksck4GTfi0xvvXtyxNdEXBjFbxY+jZozi9l0kJD7OrcDoxDqpCuVCnmD6J2e6yGmto2gBq2EPqJomEJJXahSIP43RaNNwqzeN1TvldtLUUMSsXYKlpRLfE8pmTqOksXS9C0S1Gcn2RrcbpOqoviHSVrXf3s1XmmsfxfEG7pdBoxZjFcT5y+wRFoeLSV0oVQmyIlHWTaZAwapnoqoIvLMiOoY2OwMT9eL0uXU7TS2dYfOAjDFSfQ1s9BlPfJWjM0k4/CJpB0dCYb62JlNmly06MlSBCKpDWVfSwH+ZI2GM010SvrNTmR2w9M8awbAzr3JhseyGxkOiqwnyv7wXZU9xzVRoFQ0NDDA0N4fs+tVqNer1OvV4nDPuZOxMTE0xOTm6EnwzDYGhoiMXFRRYWFigUChcdU0pJtGaEGGbfK8SbbIS8EYSQHDhbZzSfYEsxieM4RFGEpmlXHMqZqztICSlLwwsFp1a6LLc9xvIJCkmTVghlbo5IWTA3R+/Z5wBIf+Bh7L17iFZXiRsNnOeeI/3ww294DO/oOiH1XW2QSyEK1z0h554vJ3Q2OGDvNFKq1wuZOdJ/Pkd351g+Lm9yi64c12SE/OiP/ujG79u3b+fo0aPU63UKhcJVDfjf/d3f5Wd/9mf5uZ/7OQC+9KUv8dhjj/FHf/RHfPGLX7xo+61bt/L7v//7APyP//E/LntcRVEYHn575Xc/eMftPGVbJBMJfBQwE9RWQmKlRWlLka17PWaOOiiuyl31LvMdBdswGA41DqRUrKbOktdlxawRRAp32yqO4xOrWaIgTdqto/tDtLw02w0HqQTESpaiG7JghizgkcIg72VRlAZLg/1JfiRSaasKRtzEDU0aVpqe1yMhfKyuzpnEBKqVZGzYIWxHCF8SAbl4O6FvgOERdzVOnjxITn2eFBWqyRQiijATCUZ27CYzbNJoV5GxTuXVPN16jeryEl0/QjUzjORsRBAhjjUBcLImxUICKSVT9RPUGgahY6InM9yxeyv7x3K4J/pVQdWkQaPRwPd9DMNg1U6AGzCR6HMi4s66Rkh/hVybm6UeRpy00sSu5GTx/Xwiv5Xk1BPUGgvI1sskh3aT0kauiJS6tFZnZsQ08Ly+rodljeKveTUu9IQ4G6GYS/NBkomYuW5/NbancGWu9wthWRajo6OMjo4ihKDdbmNZ1iUVVcfGxlhcXKRarV5SdTVu+Qg/RtFAY90IeeNsmqvF1Rghx5bbPHOmRsrS+Ln3bd8kUnal+iJna33DavdQhlLK4muvLjBXdyilTGxDpR2sGSFvcWZM3G7TeewxkBL7ln3Yt96CoiikH/4Arb/5Gu5rh7H27cMYHLzsMaJqlahSAVW54vDNDxvOcULOhWPmu/NA/3lPGlcvlnezIIVk+tVVRCTIlGyGtmbh+M1u1ZXjhtFni8XiVW0fBAEHDx7kl3/5lzd9/tGPfpRnnnnmutrS7XaZnJwkjmPuvPNO/tN/+k8byq6Xgu/7+Oe5OddfamEYEq7VHLlexHGMnkpRKpUZ37WL43WFGoJY+shCh85KBcXt4XtZZD1iONTYInTk6Ta3xoJsKGkGDWQYYPagPXeCO7QFKsUUc+Y4+4NltGALTmBjEhAj8AyTicUlVjSTUMtiBjaq1BFY1EwLIxZk3JgorqEq0NXzNP0GcdBFEwZhrNJR0oyn8oj8Hnqn5jFkEyeTZLh5B9JPgGjRiXootkYx20MzTDJb9pDRXW798I9hWRa12reJRUwms4/CaILV2bNMnTiJFwr0hEEhobF6sobX9ukqkuHRFFEU4bhzvDrbpdYrMSQNRia28r4dhf59aXsIESMshYWFBYQQFItFDro+IpaM6iphGBLU68QiRiaThGHIoVMnOd5xiUd3QiyYcTz+zBjmk/t+hpWT30b6PqWF54g6z7Gs9IgVQcEsXHYczDt9l35ZCXGdZSQSERYJwzaKAqouN+3bbTSIY4G51p51rLYchIhx4lmIIoZTw6S19A0Zf+sT+6WOZVkW2WyWZrPJ3Nwc27ZtzqLwFzsIEaPnBLIZIxSdEANu0HOxjna7jRACy7LesM+vzTUQIqbjxpyptAgaDYQQJC+4ppeDlJLp1X6/xnImk8UEwxmTQ1IwU+tydrVDLBUUJBlDuaZ7IMOQzt/+LWoqRfLhh1GtNzZmZBTR/tu/I+r10AcGsd77XqK1mknK8DD69m34p0/T+ta3yP7UT10+ZfzwYWIRY27dTmwYxK/T/vW+3aj33NsZ5/fVcwNiIVC0c8/n2cZZ4jhmJDHyjroey1MtmqsOmqaw5dY8UdwfMzezD1dz7puWw1OtVonjmKGhzXLUQ0NDm9j7V4u9e/fy5S9/mdtuu412u83v//7v89BDD/Hqq6+ya9euS+7zxS9+kV//9V+/6PPHH3/8muSjL4VuCFnV5MyZM7S/maA3pSCxiNVlFucryKMrBF4NOTNJEEpMBDIStBotYjUk03YpAKETo7oO1bkz3GIqdPJ3U7OzNEUHjxwJax69J4jMmFDTsb0qdU8QR9tIuRaBBp6e5czJaYpKxOnjPkX/GE0z5MDZJEFwBMXuEoVJ6mSIFAWnu8j3jnyL7fNVFF8SJe4gdFQ8v4sM57ESgxhKhkAJiQVMtQLMbJ5vfetbgMAwv4NCSBjmCXs2rdOnWBYmNauE5gm+++hjGEsJOm2NIyIktzzNo4+ewvNe5hVvC44GrhtiLB/h8ceOADC4ZKFFKqsNl/nWMlJKZpptXksV0KTkpSNtXgGyLxzAaDXpmiYnV6osnjgCioLVbLKj/RIvGilOKSovS0lWDOGHTYY6M5w6NcVJfQVP1Th7rMl0ah9C3ZxxIoEnzSwoCjMvPkZPP4mUCQ61nqO3YKAZkpVvHNm0T+fsGYJ2k8Wex7Gl1Y3PDzcUZrsQZZ4jZXXRDI1HTzx6Q8beG8HzPBqNBmfOnOHo0aPnJje5dp1jFS+zwKB7hlDP8cQ3v3lDzy+EYGVlBYBWq/W66cJOBE8unfN2/K+FU4yJClEUUa1WOX78jZeA3RBeWlZRFclrzkmOqlBvQrepEnbgD762BChUZk7zjW+cuqY+mYuLZI707330vafo3HkH4vXeJVKSOnoUe3ERYZi0hoYQjz++aRPF98lPT6OeOkW3XscfvwRvQQgKTz2FGgS0UynCR69sDD3xxBNX3Ld3Op544gncZZ2gozJXjzk0FSOl5Gn/aXzpk55JU9fqN7uZV4TYV+jNGUgJicGIpe8e3vjuZt7T9Uy3K8FNTyS+0Jq/UPjsavHAAw/wwAMPbPz90EMPcffdd/Pf/tt/4w/+4A8uuc8XvvAFPv/5z2/83W632bJlCx/96EevWX3xQjz+2gKHvn+EW7QCfmeQwJakdYGa7yJSdQopBaunsxoWEYaOpqiURodZziWpKj1uT+hovZAR92FUAbWxsxSHemwdnuG0tYcz6VsQp02yuTZqQyEcACOrY7UF7ZLJDj1mhDxSVQgSNqPZAj82MULSO4FW0akn86R23U/9xMv4aohoxMwmRkCVZPdZOEsRSQe6eo6EshtNUVASK6AqJCaHiIouGmAZCdydJi8fOcA/et8/QhGrOI0MqCZW8U4MzaSSllRPVknpNve8524eNrO85K3Qc9sk7QQf+uBOsiMR//ffnaRj5klmhvh/fWgPdw/274WMBb0nFwHJ4HawZ9Ok02nkzr2sNrpsS5j8xGAe4bo0Z2aQgwPMfOyTuKdOUSqVGB8Z4ad+7BEUReGTseDr1RYLXsjRnkdB17it/DBDjYNkTvw5eRHx0Qxo2hQyO3ZO+RVYFDrHPYvlaosP3p7DE7tIp/YinQeYOVwnN5Bg132b3eavPv4obqfN3vc9TH7onAiZ9/ICorpAlCoxnN3CZ/d99g1Tc28UpJQcOHAAz/PYtWsXIyP9dsXtAPfFFRRNJbUtC2fmeHXR5ZFHHrmh5RlqtRpHjhwhkUhw3333ve62z03V2ZWuk00YtN0QFRhXkxiqwv3337+pcN3l8PJsk+XTVSaKST5+Zz81WT2yQlhq0vFjigmdqakpHr7/Lj5yy7WFdTt/+3cbmUhSStR2m/SDD2JcQtE2qtZwn3+OIJVC2b2bzE98HGPLpYmR3vbt9J5+GlXTyX3wg6gXGDbB1BSd2VnUZJL8Zz+L8gbhqTAMeeKJJ274PX074vy+zrzaoFlx2XpbifKWNA2vwdzJOXRV5x/f8o/R1Zs+Nb4h4khw4tllHCskP5hgxz0DKIrytrin69GEK8FNu9LlchlN0y7yelQqlYu8I9cDVVW57777OHXq8isay7Iu+fIyDOOG3cTlpUVcKegFSdqrXapmknZBwbZylJQVypUeuEk8NYemKmiGRiKbxfYCOiPQm1BpftunFA2jKAYyJdGHjrDHXmRW7KEjkvi2yoDZgoqKO6CiDvVYUASRrrDFMRnzYUXqqFEK48VZ7ChNqnccPaHRSA/Qqc7hOxX0dATdkMVUGUNT2F5MUVmwSfkGPneg6DmyFsSyjW3kESYESo1O0GEWn6/PPkotqOGccLgjKbHjVVx9mGnvECYxWb3Cihvj4TO7fIDDToGpusUrRGzVFY65h6kePM6ppoI/ZLB1MMveso2u91VMYy9AVVUUXWG1sYyqqoyPj/N8JFA1lW3pvmCVNzXFaVY5pDZodBoY1WXGEiYfvGXfho5GzoCfGRvg8dUWL3Zd2n7ISZEhNbgH1bmfchzhewlOz6+iV86yr6yiqwpLWHyNMVTZZlfvNMr0STRLITW8hZbjoakqqay9afwIERO6Dpqmki2WN33X9gSNeJYhS2dncSdp++oFu64HW7Zs4cyZM6ysrLBlSz89Ma53UVUNYzCJIXvEmkqgJW/ocwF9PoiqqhSLxdc9rpSSE5Ueqqrxgd1D/RTbWotlobB7IHHFImcLbR9V1dg+mNk4X8cXJC2T9+7M8dJMfxU8kr824TPhusSLC2iqRu5T/5De088QVSr0/u7vSH/wgyRu7VftjVstes8/j3/yFEiJpuuk3/c+Eq8jLKbffTfR6dNEq1WCAwdI3HFHnwNSrRKtVolWV9FUjcQtt2BegUG2jht9T9/OMAwDGStoqoqdNDEMg6XmEpqmMZ4ZJ2G9OdWorxdRENOpe3TqHt26T6/lI4XEShjsuGsI09w8nd/Me3o1571pRohpmtxzzz088cQTfOpTn9r4/IknnuCTn/zkDTuPlJJXXnmF22677YYd81pw24COnxN03QSRrCCsFLqRwlAhY3g0PY+wlaOazzHY62tYiKyNemqJbW4VxVhly1mLhNtCGEkUrYQdCFI5k72tJQ7HI7SHFNIVl7hr0NZVEvkuc24SU2xjeGUPUauIQg4jspHNgCMvTHGnPIKa0VgyMrRmXmDE9sDX6JIiUGz22mkeym7jSccg1naiyUF0w2S8aNBxS4zld1Ea2YbIJFGaM0zjkTV1ukoXP/Jo+z00q8gx9UGayhCCiNtzBiFLJGOd7XMKnbTDS4qkEcN+XA63asyfqNPDRlgxnjjJ/zz2PSzNomAXGOzlKXVthK2y4C9jGRapQpq5igus1YsRgqeOf4Pvd16ii0L60S+xqzfE0OgIpZHNq1FNUXh/Ic3jtTYzXsBZ1+dUdYqEkOhikoNxAZkfhsjjNS3FwLYt/HVHwZOSETVm++zL+IqLEggSs4dZWWhCMIY1tgXibF+uHvA6HaQUaLqBeR4BNIgEbc+nEc6y1UhdsTbIjcTIyAhnz57dSNfN5/MbqbnGUBJW+4TaSLvx2gPr6cH5tSrGl8Nc3aXjRViGyo6BFC03ZHqxwpwnuHfHlXksw1gwX++Pk8lSvy/96sV9YZDbx/NkLI363Cl2DFxbX/3TZ0BI9IEBzPFxjJ/8FJ1vfQv/1Gm63/4Ocb0OQuAeOQJxnyBp7dpJ8v770S+RoXQ+FFUl/fDDNP/yr/COHd8QJNu0jW2R2L//mtr+w4L1ujHraqlvZ6n21qrL3LE6Tuvi9GwrabDtjvI7Rh31UripLf/85z/PZz/7We69914efPBB/uRP/oTZ2Vl+/ud/HuiHSRYWFvjTP/3TjX1eeeUVoE8+XV1d5ZVXXsE0TW65pS/I8+u//us88MAD7Nq1i3a7zR/8wR/wyiuv8N//+39/y/t3PqSUuCJBQoSkiSmkyiTGtmD5XTq0CCKfqbaJsCLw2xh+jeC7MxRWWqTtmHZSwfYMlLCHKQIM30As70MbPsbOsMqZwERJd/Hms7gudJQATVUI5D2U9O2YTYVeLAgtFTdpkzR6GL0ZfMWlF+SZrnrkMzGKYkNPsGwMklA1tqeStBqnMesaHttQ9SSpbEgo+5NSNlvCUA1SSZ3YK9Kixa7cBJnGCF3D4WivwW4rT7n4AENqvzKvVikxnJQMdBUm1ALHSgMcMV1Gg5Cd2TyH2zpW3MTNpBgbzFE2uygo+LHPcm+ZoNLG76apdjvM6KvoWZ1Xjy/wsj+Ergisxixnm1OIM4dROg7dXBbRm2e1WkXUp3nyS0cJJoeJdm6BcgFd1anHNr6fZERRqPc0FpeOk1iuQsJge1pSKBXotTUWeiGnjy3ijY8xaGvsSUleymWQxS1ogUfD0Vjp9gi8GcLTz7BcDVDzE2iFbXQdk6pbw87nONk4uTE2at2Imd4xnLiJFyvUvBo1r4aQAiHFZceUoigoKBtpvOs/FS4IcdJP11s/lpACiUTKzWl8HatDs9Kkc6TD+MgIyUqEVKEXVShXDqH3VpmWeczKQXRNv+j4UkoEAill/zPJpr/P/7kOEQtm52dBQtyLOTl/ElVRURUVTdFQFRWFvtbP86d9lnsRu4ZNjtYdQj1iubWC7/kc7wY05vu6Lhf26/zrtdqGM82QpKlwvFlBbam4oWSq6aOgcLLVAEMwUJjiUO0gSrMfToll3L9ur3Ps9XbbB55B79aJ9xYQywf6++7PoIoE+svHkd87u3afIB4dJLprH3IgjeIcRfT69yYW/fMJBLGMN+6zsvbPHhGYx2fAspDFHBTzUC6gFPOQyzLtnkQ4YtN15xJNj+KI0+Fpnl9+vu9pPG88XTiO1u/1+n0Wot+29fZeDuvXZv2Y6/241NgANq7j+ePgUu1Z33793pz//1L3KY5jjofHSS+kaVY1RAhObQHNgWcXnyUSEROZCVp+a1M/+5dOnntuLnUh19qnKzqaqqEpGpqqoSt9720kImIZE4uYSEb9+8uln21NWdtfajhnFdxFUNYkvfQkmDkFPQtGHkITDgdzKIvnrmscx0xH0zy//DyKqhDLeOP8QoqN52nTTxTuHb6XjPnWFzm8qUbIZz7zGWq1Gr/xG7/B0tIS+/fv59FHH2VychLoi5PNzs5u2uf8LJeDBw/yv/7X/2JycpKzZ88C/VXVv/yX/5Ll5WVyuRx33XUX3/ve93jPe97zlvXrUujN1NEdi3yzx/awgrjjxxncMYyonOBY06PnOAxN10jZrxEkVDpI5rGRoUrbzDKjWkTpGvnmIpaQ2F6WoDVBpz6NFSe4ddVlZsLBDTO4IbQiST6UhEkXs5igtDLHckKlURggn0qQixIMh1MoimDFnoRujG23EUoGp7mdttxDSZiUBzJUV08jKhMIoaEnJRlbIYxcDMPEsvuDVqXDa0GdMGGzEidZTu1nQHsKH8lZp8c/yYJdb/N4rUN1oU050khpGlOm4K8SOt04gTdiUwkMdH8ByzRIjY2SGNzH+4sZ7slatPwWTa+J260iEh5N1ydpJDHLJmdiGwmk6XGycQKvWSfbjdi3nObE4Bak0WA5DClIldDpohw7jXHsNJ1tAzRun2BGzVMNC5RVh4H2Co2ZRUIhOakELJbabNOX6Ngai8sKUoLmLqBPBjzfjqmLI+R7ksAYoJMrg54BzWFBXUXptaE3BwtPEy8LRMtAVYc5PdPd4JesNg1Od6bBqNH0FZ5ZvL7ssGuFQOB0HZSeQq9VZbCbpZP1WVxtcWftOFrocVIGtJcPvGGtmStF1I3wHA/VUHE7LnQus10ML5zNIQQUB7t8f6FvbIShSSfQObDaYNKeecPzTS/ZVByLISvgULXvEWl2dZa6KRKW4OXVDnEcMxVOoVW0q+6n5gRsmToCEuZSQ8TLrXNfjkIyzlJ+aZowk6CxfxxvMA3MwercVZ2HHRrq+ATC0tfGUQxUIayyppl3RYjjmJloBrNi3rB7+nZFHMcsRAskq0nU9iBIhUqrRqfRYrG7iKEazLRnAAXaBvR0SEeQCbkOmuI1QXZ1mM6At3ZPBl0YdVCM8wygy9AurnX83jZwGxl+yIwQgM997nN87nOfu+R3X/7yly/67HIrkXX83u/93usKmd0MSCkJWhksN0+ufRKpS7R8jrQC3fYxkvUV9KWQYq9NJ10m0A2W0wlOWlmK5WEspUhdP4KiuhRUn0Sgo7vzROkS3aWdkKsx7DbI+x3sXkRHy6P1xolyhwlTqwzdk8A64lBPFwhNyWjaYgsGxV6LSBE4tzQZfWEG26qhiYgoSOEZWVKOoD0bszADqZ6OGsYE6SZORxI12mSTZeqVeXLmMCJscsivIjM7ia1dqErI+3I202oBaQ3y3LG/ZG+wl/GWQmOuiy8kUSHD/87reGenGIgEVggHdch1F7hdqbLc2wpOl8HhIoZqUE6UKSfKdM0ULa1ONy8ZLW/n/vvu5/89v4rltDDcg2SNXai9FbbNCSwjz/Y7P83xY4/hGR6pRz7EHcoEwfEThGemEA2BOODw5D378dJ5BqtLFHtdBnSVui2Itu6laRickD6uraFu8RlYrjAuAjKtDIXxAqb+EkU7jZa+DaFvo55QIAHlu3ch/VXi1jyiNUe1UyGKI7JKDbMKlLZDdoxOK0TRjpK1k9wzdA9pM33OCyC5JLlwYwV5CY/DpbC+6lFRQWFj9XMhCXy5t4zbcSm28wwkiyQmJIXCEKPmqwg9QzGcZF9xH7quX/L4lzrP+d6MC8+5Or9KPVMnW84yNDy0yetw/v/pSkzRikgnFO4a7SuAilDQyqxyMrKx1CJ3D6bQVf2SxPb1a1NbcZBpwf1bDcaLGhLJGRGymgoZyqnsL+uEUYgz7bC/tB/TMC9amV8KG6vvwyfQk0NEAwVSW+7e6LOmaKiqijqkot6rgKIwfp4HYH2Vvb7yV1DQ1P4YUFE37vX5noP1fWIZI0Tfa7J+vS7lebiEY4M4ivGnfW4v346qqRd5zS6FjWuB2q8dttbe17vu67+fP04vNTbWz32+p2W9n5fC+jE2ri/9tl2qLVEUEZ+Nuat4D6upGAkMj45zrH6MVtBiPDHBvuhOeouC2JGgKCjtfsgmOaCRHNJJ5LXLatGs34vzvR7rnjldPech0VV94/pddAwhaZwNaM4HCF2gFAWZ3Qp6vn8/LuXBuHBsrI/f28q3YRrmZu+Mom2Mt/U2r4+lpH5ztFFuuhHywwBFURiZKOK/NIXpNQjTZWzPhWeeweN5VBkRdSzi/DDO2CQdQyDsiF4Uka+cRAYp7FyVRuIUojSJW61hrh5HRDuJ3QI9U0HJrXL7yjRRlKCVLxMG2wjUQwTFOSw/Yq5YIooV9MinZCqMdV/CUUOW1Tz22RVSyZhYdVEiBz97hlV9jHylhkdEGDoIKcnIFVqpAWQ4i5A2pmHg+S16s02me8/TNQI0M08mOUnAM+xJ6OzK3M63KpLp6jTEMe9r3sXTnkNLERxUethHj7Gl10WPbQxNI7AEhu5wRqhonWn8xSaV6ofpSoU4kogoJjnTwXU7dAYl27YPcNYNmHdbTLdO8h6zSSFR4ra5kE7zDO1tRXaWSgS57ZwScywEKzy4+/2M7buXcGGBzre+TdxqIU/XsIowbiTIpQboFXvsHyjz4OTD/N1qE1f0H9rJcYsP3CI4cfQIQgjKXhnFSLMtt42JiX9I2EtzNLeImdC5c/s51d/WyjJHKn+D5te4b8xAlTG0WuDFnO2mKFo57hrZwafGf5xgfp5wfqFfBdV1yX3yExhvkfjeqr3Kay+9Cg2fyYGtZPdvQQkakD1ArOjsbO7i4fGHbxjh7aWFl7BSFnsn9zIyPHLZ7VaWZ9mW8/jA7jL3TPY1iSqVCurwYTpCpWCOsjU1wXDu8gqnbS/k++o0mQx8fM8O7DWhqqBToZppcveWAh8YHyAMQ7qvdnnf2Puuup+Np84SZSZI3/8BEltuv6p9bwbCMKRu1Hnv6Ht/4ImpYRiyrC9zR+FOjqWX0QyVu0YmmVleZLy2jx3xLaTNImkVtIJKtpygU/P6dWZaQAtiUyM9kEDV1b7JpKxleCpgWhqlsTRm4uqnVSEkjaUeS2daJFo+iRSUxtJM7i9dVN/mSvrZfbXLQ6MPvSPu6btGyFsAKSWFmoMwu3RTk4hgldTz/wfHahFN9PDIMJXbznBxO6Gu4vk1mqkcnVyOsOJjRm30xjyW3YbiON5QF6PexQxOoop9qLUS5sDzjK6usuRuoTNcYilVImO0QBcsVY7SSY4jej4j3QaJ1Sk05znU0KeuDZFZWIBUFURI4CWYSY0SCpe8OIE6XsFYXiUjcxjJCVRDQFRDs3LkRgM0uYqrnuHFzgu0NMgXc9TjNCPa8zRbdSxzP4O1EWaiiOHVNAvOMl2nRS1uYjg6iTCi2FYw1Sy2ZiNSDrNJC0dLUPADzHYbf2kZNd1XLVViQRxGeE5Iuwa1k4JvzL/Cq9oS42aH4dwAPz70AU4c/U9IFMy778arrpCzskyM7GORDk/OP8nHJh4izNTI/+PP0H3+AKsLVRr1BlZtAXP/AHpWZyA5wLakxT8bK/OtWhtTVXiklMNQFdR9+zh69CiLi1PUazqdtoam5umuiZdZyc2PVnV+BuwMpb13ot5xOyy9AvMvItwORxePEfs99p6tUHvitb4iqZWBtdVs98nvkf/pf/SWyG+XSiVUX+LFIT07IGeo0G72v7Sy3Ei/dBzHGzVfLkVKFUFA57HHaVkplpRRVEVl7/A5Amq73cZQFXYOZWjTV1J9PSNkdk0ldThrbxggwEbNnuutlhs3m0Qrlb4Ozc6d13Wsd3FjEXgRq/MdvFWNMy+tsjrbQVEVnv36KeoVAdhkBjMkMiZD27KUxtJouooUknbNo77Uo7HUIwpiagvdy55n/kSD/FCSoa1ZMiX7DZ9Z341YnWlTme0Q+eeK6k3eVqI0+tZmyN0svGuEvBWQksbyn1NHJy9auPVpmkVB847e/5+9Pw3W5Djve8FfZq3vvp/9nD69b2jsJAiQ4CJS1GaNLIeudW2H5964M3HDow9e5A9jh62YsB0OhcMRY8d8kMOOuGNb19e25CtLsk1q4U4CBECggUYDvfdZ+uzn3ffaM+fDe3oDukGABEGPzX9EddV5uyorqzIr88n/szFakGxvOWArDMcn8vsoBuSsJtbSMqL+BCl5ExVeIBfaHA1jdlSCVhbO8G1k9Qh2ZkQsJEZbUur6vHG8RLMo6CmLDJJ6d52mEmizgLu5hupdJCl2kNohCcHTLk7KxxCKUZzlRuUYmX7AYq7Mvtsns5Mm8Krs5mfxTYPauIKNiyU02hzSS2/QHYSTlUHgE3tdiqOI/XaWTl0QeT7HWSTxPHZHPepihBYSRJaSUcF0NabKU6gWmVpcpRqP2Z05ixr3qDW3yZX6HP/4o0hDoAch9fGAkYTSVJYVucWrURNCzVIjYq59ihtv3KTVEchMgYVzZ2hffgMQfPaxn+f/XP996uM63135bQ6nXIzpLNEzzzB8+Q3k9haVMKB17XuE8w7VmUm8mZxp8Gen7/damJqaQinF669/Dd832NqyGA6/i4xcQs+k7M7dOVephNbWROdfXVoGOw2HnkPPf4zX/+S36fQvYyUJ5+pj0C3MfAorU8BaOMTgUp143CJ4+wLuuYdH/f2wIKWkRI5dRrTEkDkAf2LXoN0PJ2bObfR6vTtRUh+U22n4rW8Rrq9z0XeJ5yxOnD1Mxrk7ZN2ORXBuscyLWxHX9gZ8+ngN4yEZftdbk9Dwt71ibuNu9lz7Xdd8EAQHYQDsxYV3xe/4CT56qETR3fdobg3oNTziOCHoGnT2xoR+jO2a9MPeJBbSlMO555bIle8XHIQUFGopCrUUy49U6Ld8Rr0AtEarA1tfrdEahh2fQcuncyCwpHI2U4fyFKZSqEQfbAqVaJJY0d4Z0dkfw4GJgeWaTC3lmFrOYzn/bdvn3IufCCEfATTwdq9HUt8n8iUFy2Btto0+LBipOpfDMguOwSgOCCMP5QSY0wnV9S4hfUTOZJh0KXQTuq06vjVEa4c4TCgPL5Dk00SRgbXlYIUhnrJQqs2OXOLYuEM46hPEI4bGgPXCdT6BARpGeo4p5dO3KxiZ62gkTWOJETmmwiFuukjze4JsY46xmOJC5gh+X9MOLZYdizQZZuyQrZSF6c8w5c3Rv/nTTIUmSRzQFZIwLCFkhN0XyBAaRkBgwjBVxps6xltasrh9kbkQpmo9UrNrVPxpnlyIKZTnWP3WCv322/hhFss1iTo+/UGHOO0zPrzPK2MfK5ri+E6bpfU+6/HvE+x1UCQoI0/3S3+ANEeUF9MMe3/EIdni1dZ1Xgy2yVSnCMIm69EZOuM0xULMnJ3w9vYqo82YsBOy+9kVhOtM9MPIAyZgciwNmJ1doT9oIMQ0/f41+k2BP4BW/DpjK8tULU2/3qHTvollm4xjB29XoIc+0YtX+Gpzi8QQHLaqiC8UiLIxieoTxEPgMnGlT3S1y+jfv4zbOobIVSBdRjtZDowuJmOY0JO/TXtiQn9Hxy7ushdawx07Eg0oEAZCGAhhIoWBX49oXB3TNrqoTpvq7i7u3kWs4VV8d4xpavb3I0zTulP2g7wo7kKAkKhIMO4Lxl2JSiBTSuh6HYajPo7j3okXJIQBQpKs7BG+dolQW1wIDjG+fplUpc2V1y6TxBCHmhvrW2itOcyY/p5BPdZ8NV7hSE3gZCay3m0nHqU1VzYUQayxvHVuXBR4Awgj2K8nKEeTeOs0GoI4STDMt2g2LQzDQKMmX7HWk2Ot0FqhSe4ea0306mvooYdVEnh7fwhCvqvP3LaTmTTHve1xcI8POrbcsd3QB8eTfiCkiRTWpF3lZI+Q76i7Jo5DDPNtmi0H811GjHf7yg9TxwchiSEcC4Lx7b0gHAtUAk4GnCy4GYGbAyctkFIcvM+DPg0IIe8c36mx0ngDTWdX0duHOFIH70bjZmPSlRu4ZYXrm+RrmvWZ84yCBkcqh/GSb+A3JmUKId5V9m1YD0md5FYhOyfpbAm6ezAeQ6su7tyfA3sYtLrbp4BMUVGaj8lVFEJC8yHBWoUwEdJCChMhrDvH76xnHMdI4ybd7vfeZbs1qUty0Fdu990EUJRKz2Ka/x0apv73ACEERTvDntKMTImYWqQyu0kkinSbc9iDaUS8QL/XJrIE/cwMpd0R2V1BP9thlF3D6CgyUlFcKhCE2zS7AqsJfrjHaHsaNc6QCQ20FPj+GG3YNOQ0y0mRilGlS5bEaSGmPLyxwjIqaE4xY9/gBjanrYAROfbco2QjD7c/4uW+T74lEYnDYK5E3gwIhcSTLjvpKl2zxtBr0g1qlPwUH7N+hptuFRWvIMUIJTMoAprdBsf0AoFhcaOQMBaCouNTm2/ztjtNbObIrY/wBm3CQQOBQ5K8gYoMhL3NqOuz+laH6uES4zcr+IHkhnuTjf4qu+IppmTEU94WuamQOIDoRgud2JB2GfcndL9hF9l4O2JuNkNW+NSTkIv9Fh+TJpf3l1DKYjYzQpywGBgOemtMenOP/u/9MfoTJ4jcPJabYKfuuiJODLquUy7ts7B4hCQ2udlJEeiERI1ZudlECofOeoM4GpKfKeD5W+jVFuq1DYI4YiUXojM5Th9fJly6/TnOQOSD30OnLJLtLgxGxFdvIk/sTvTT7wUrDanSZHMLd9Q63w/ai1j5A8FoOE3THLG+nmAUBjwer0LUxdMlpAzw/A0M+d4rNa1h3LEZ92y8nkUwst41f9WHXZTpkzMjhv0e0tAEIxNvTzP+Th0vnGG3XGM3cbCDiOjFdW4dqyEEhHHMoD9CSkFno0duZNIYm5wfJbAdH3x4YDkJdjqmq2H7VgYZCxq9iNbBuO3FEtG0EdMeid9gEECiEgy5zXCU/r7Peed5O2OS5j5IiZ7yicbr7+u6Hzcmz7rFcJh638/6g0IrGLYderspvN7DWafRO70+BNjpGDcb42QinGyMk4mRxoSBCD0Dr2cz7tp4PRsV352UTUeRm/LI13wMN6Rn3MBIu0grT2gMuTW6jkYza8wyGv5gIfrfiewcpKYEg4ZLby9F5BlIQyOkRpoHewOcTER+2sPJTMYU/91hQH4gJCrBNG7S7YkP1Kb5/BM/EUL+W4UQAvtnP0WyGuIHFhQHuJGL25BkVp4gJxS54RhfTSJtPrazz+Gt67hiSHIyg2f0OCk7TGdzlM3X6cZ1vrkQk1UKJ+XgRTFJx2LkCgxDUqtOY8erbOgCXnqGKR1wCJOyfYxzziUINStJhVtaE4opcvYKrhCEcRV3XERHKcZNg6XWGoaUGAWbkugijS4nMnO44zxRpsj+WLOhrtNPAqKwiF/eIjO/gSV3MRsb6O5jNOtNZGQhDZdWdZqWVJTiFtnMLnljHidXQucXccQ6cRgh9TSOU6ZarWCaMHMsw+abG/R2TWJvGruXomm0WK918JzTzLqnOLLdYMqdIlcukM8U2fvWvye2Ihb/579ENDLoN2O0rqA9QXdVcNTI0DS+xl4Sc7Wdp6/nsc00JysnGPa65JSFU7Tp9lzCVoL+I4m5NIdRKVCcEUxVxhiDLn57AyOIkQOX6rmfwklnGK4HlF2NOd1hMB7SbFowMkinNYeWz2G8sUJ8qwv2YTbnYwInpGiW+cSxn6FWNO8wFHfZCk3kbuJ95UVEzydTOoNUfQgmwtWd4VbrCRkSjdGRggjoD9DGGJ2ag1wV4WYRdhbsDNg5hGEdrIRikvGI0Ve/SeIvY0iTUJqEXcWrN6cJ8ibPp1bJT3+GuLVNtfIpTPOAITio4zuxfiGgV4/RgESTSmnstCBbFAgDevWEvWECURbVW2b/kouQoKKY8NoaKklhFFLUSzO4mZijjW3KgIOJe3KR7rBHsA+ZdJrlhXlyY0Vz1WOMID/toP0JWwKgPNgexJDEzKUNcjmbVE6QKkg2dmLsTki6XyTuHWHqsEGSJMSJoFS8bax5/ypcCDlhkJAIIRHCwLt1AT8bYR2aI7XwKbiz2ryfRbjbrtxl194Xo/TQ0eUeRuCA9dIarWO0jlDqYK+jSR+5U3eBEAZxog6e9dkHrJq5p17yB65j5Cta2zHtrZgo0AggnQbTEbgZiZOWOBmBk5mwi/5Q4Q0S/GGCP1Qk0UT1EfY1YV/f8eJ20pDEmvieyds2QbqQr0pKcwbZsok0DAQGSaK4Gttk3McJ0oqes0sqvcxMusqR2c/c017qbht9ANz7zWoUlaqG0/rgNVoIOWEchZjUR7zPxcGd8nWM0jFaTdpTqxitY975/cVxTJL45LKPPKBNb/eXu3339rFh/MQ75r9tDObpVT6LbHdw5r5GpBKCDYMTyWscMcY0I5umVcSOBPONfdx4jDQSZLdJPxeBlqRkms7uDlEYcyzrMTMfEiqbfusoDWHgS4FvC6bLeYzeFlvFQzTFDFVzj2qyzczbLo9VDMaRwWZ8nNjJUoljjuXzWCygg0WsTpMnBh7p9k0sDZaVwXQOEcVDVD3EGOQoGmnmSgW65lX248tEoxHTKs/3pEHkaaaVS3JrjiQysIsVZswZMu4s+xZkugJHhezRRu2tsVheYKl8mCF7mMKiaB9levYoS0tPAzA1FbH59m/T3N/HHZgMDEVjOmB67iTjzPMo32a+v0s6Nc/pZ36at//1/4ElbdxTZzn11BfuvP5hJ2BvtUd7d4jVzVFLzrAmNvm612VQGFDKTqPW0+yMRpj9GXJuEfvMMnp1Fd3rYu00iZo+zTcD2ihq6RHGzArSEVi3HMSXb2B/5jMYCFIuPPLUk1x483U69X2Skc3S2MP65jWIE+zUFOlnnmHVuIReucVc+nGOzJ7BNB7i+vf4OXorHtHuHkZrmdwXvvDA86KdHdSoj51XiM4atFdRozHtqzUUmuLydWz7nqBSdgasFCpUdF+8gtcrozCgmuLPeNt8I3Bo7cDNAWyJGs8aPSrtfXK7G5iWA1JOWBZhTCa/g8mw29H4mwmuEFRnTfJFi1zJxE5ZB+dKOtUhw9glCSS1XBZvqEHAaKdOPxgzTEmC08uYpskCml983MB96UWo9yh+fJGbmAR+muWFGQ4vTqOFZDXp0hzFqNkcTy9mkQq8Ycx4GHPxwj5V1+Wzp4o8dTiDEJMJY+AMkK0++VDQW7ExhjYLxx3ccY6CrmJp+0CdIom7fdRohDU3e9dtWk8YMf/GNrZ2yB09hytqcNsu5WGGifruhIX+YVQdB+9d3COE3HePu6ok0Hfa6HZ7RXGMEaxRsA5jmcY9dXq4i+47MerHrF3qgwYpNYYpMAyQBiSRotvSaGykcMmmTWqLOWpLORxXTO6jJmqtO9s9Cdm11oS+YjyIGfXjO/soSMAHCTiWIFu0yJct8hWbTM5EPMAuKEoirCCPrcrYMqAe3cAxijw59WnyqQckN9UadHJPHe/5W6sHv993NM19eN+vVNz3Pd05vn0/cXAveXDv29+gNEAYREmCDJpU0k9gWR9gihcfTa6qd+InQshHhLTKIdA4tTE5WxBrQdw0iNlAiCxoE2KFjjW+H9PMz1PwmiTBgPO4yDBLNDrObmaNghxSSm9DrCn1ImbjHUhgW2gS06IgR+yIEVlvm7o9z7zTx8wnGB2LvchFRbMsJ6fxGZOJNI7bRwnYGUjiZEQ+8li0C4RqTLLwFKY7Q8O7RhTU8UY7lJeWmHu8xeb4RRZGYz7RGVMapXgzc4bLW2M69WvkeyGVKYvM4lE+P/cIr693aDkRFd+GJEvbtGgnG3xx7fe5FX4S37bYSwRu1+fE6QJaKVbeepPVjQ26Yw819OmONjEPTePNxjw597N8Z5RDrrzKtGVQmlvAKJQI334bE5j91Cfve//ZksOxp6YY9jSXXutxcv8wgzF09Q32rD5pO2A+lWLDGEPKY25+iVNLCzg/fYj44nm8868zjgbsRll87bIvK0TBccrVKmrYIMkM6Pzhf8EcF9DnPkYq7XDixAm+8cZ5os0tsCyYmsGamyP72c+w7/hsvf4tDGFyunLioQIITJi0zPPP0/3d/4B/5SruuUexpu8mxlOex/CFFwiuXgPArFZIP/MJ7E/8HO2XblIf7kESsXOtjMgOyNh9Mo5PJhWSNnoMXlkhHvh07ROQMYjcPTIzJotvN8nEfYYJjJwcf3RzDEOT9OVLLGfiO/OdBFwLLClQCjZWpiEwmakOWKQPXaB7MFkfjOXdocLqaeYzgrOpa7w6yvL6jqSx1UMATqmI0ZqEJD+W8VnM9egbOwQ7HQb/7gb9Y8cgEeS5Cu2Ju+SZbppvN3N8bxfOf08zb3osDuqU93fpB8uYaZfjOQ/Ru8czZj+PVilm3Bix79DeE3hXA2ajV5AX90AaEzuDlTqjG/ugFNK1cZfKuItljJRN3BmRXLuBMAycZgydr3+gsUFrGPsWI8+mmPOwrfcvAPywkCrhSOMG8rW1yST2A2BrvcJ4+HCvJIBsOmS6PKTkeMgm7zugmgCcg+2OaXgGQlsy9i2k1GRT4STiRvtgewikSlhu3kANRvR7Fl7xTdywy9H++H2rLP//AXfa9NXVD9amT/8vkPvw8ra9X/xECPmI4MouRvkmhcwqzrhPfnSYBgF+mEEmNtHQISw5jA1FVJmnV66xvKux6ZFtBAgqDOMYpSEoFmgujOgMTY6vKqzRiFK4R09KQquE017HN31kENINn0Ckb2BMmSwM+2R8gVBnMEONDFv48i186zpd4XDZO0s29smZFot2jfpCiWFG0ckKLmcNSjdbmEOftfwO3eAFbo7qpFPLfDaOOVQyCK0Mm5ev4Ix7aNOiePYp/vynnyb53h69KGHP8lk0JFZ+FqfcxO5u4I3h2HiVVTlFGEZc3dggbWje+tMvsd9qI0wTy5Ck+gFNNvAHbcx1h4veHqHbZ67bwM6kOHTuca5+7zXM0RDDdlj85HMPbIeEXWqHh2RnMkSrpxl7A+rFhCBdxzmeJ2w2Ef6I5cPTFAoH9ORzz+EcPUZ+OGC+UqEzMLj62suEgyrd/jHqMwnHjuTRb7+OrG9ivdzAW/AQa2tkb9ygY1rs12oc+8LnyZw6hRCCy7e+wsCPKFlLHKp8f68Ta3oa5+QJgmvXGb3wAoU/N8m3FN68Sf9b32I8GuNpTSAF4c4uwX/8PXw3hzNYODA8FWjfpJ7KI5MqpicxhjHh5gZCpckUbPrmMkMBOp/iZvoEwUKDsN5gOdlAGR7f0GdoRQZ7OzkqjuJsLqDiJHdWgbYpiT2TfmSTcg3m5y3W4hzjIGIcRHhBTNDuo0Y+bS3BNMhZDutRju/0svj1OtIwmao6HD2WZS6VMJ9OyFoWiBrZZ8tEX32ToR/TbSbYM0Vy1dxkZagVT7iKUCZc3kloNEOujnyu6gxwDCTk/RHxqxuETx/Dni4Bgo7IgGWwsOAxIxU317KMwhTtzqMcMRzseMzg/E3i9hCkhbAkKlKMVzqMVzvYM6XJ8xs29nwZ4Wa4n914MILIoD906Q1d+iObOJ5MFm4v4cyxLqb5fliRh7ApWr+DHZF3GZJ7mQ6tIYlRwgLTBcO4f/X9PlQvY8+g5xXA1Bw9NJgkPlQGSguSRKKBUt4n7QSgNCjzLqsgxF0W7WAV/37vaztg3/FgfZ8r+CQmli5CuzTUGAzFCbuI+V4CyG0WQsh76ijfzVS8k4X6YXBvm97bVvfe595732FqDliaOEIJEwx7wla+X3zUYWEP8BMh5COA1ppXd99gnNrBdIcwSIj3NcsFRXNg4/c1NVOybQkahTT5xCLM1+gPh+T8Vcq7MUnFxzN8EFCcU4TSYN3NETaznKhH6FRCPgvYA5qtbYbTMWORZd4LMTNZqukmy+Uei+Mi7fBxzIJFa+8FytmLDG3NXi+H3eySsyTRuM+t3Aw1eZR0kmO9VEBnQRfBHAh2Oy/w5m7EbHGWT01/mkPeq/ixYrh7g8PJHrKaJ3Er/I9feBqrGdIIYuquwA8CAq3J5Qp85ujHWb0ZshvGVEc5llIeq7EkUTEXt/ep7O4QC4ltSNx8hciQhEFIo7nOiegM30p2yW6uMu31iI6fZPfmdW596UtU4oTCY6cwUg/OhOn5m4zHir09SGcLnCgeZlu6mAz50uqXGMdjZtIzTKfvXxFY01NwwD4UM11mz12ls5ki7J0hDnfYSuZQ83nonaesG4xeeplhp00tChnPL2A//gSbwGkh8GKPle4KfS/msHOMheLDdbFJpA7GQEHm2WcJV1bobW2x9/Wv09/eZrC3T6A1pFycI0cQrku8u0u4VyeqS6x4DA64VRvLl1SHAQ1rFz9QhOOQJFYgUljWEsPAZDOjeXbuCOVKiux8SPDi1wj6GY5HPX7+0QpfvRIQ5ar0gZcCmLUMzlQMUiLGTzT7zf4k0mMtzfXEmcwn7mSL9/eJ+mPQGYZxhA5gK0j4kzXNrk5YTmf5bE1y+Jd+kVypdCfTMUwy7TYaDfaePULr9dchghTThMECvuejAx/l+ZwYDjgWB3RzJuupEpuZKq3iFDKV5kj9Oioo07sFqcojpJ95ho53C6KE4jNL5HMuZ8cRV17aofn6ZVYaJWZbF9Dp04iiTfYzn8Y5doxgdRX/7UtE29uEtyu4CM6f+QU4fPg9x4JgHHHzfJ25HAURAACrjUlEQVTROJhQSPnJJk2JlAI/TLhppzjx8ZmJR8iPGCqKuNH7Msef+3mMHyCw1e4bdVgcUp7LUnlq6vtfAHdVUR9kgvwQoKKIlfaXmU2doaPegEOPc/rpXwa3/PCLPuI6fhhQUcSN7pc5/skfrE0/avxECPmI0K7N44o/JPYKsO+ihltkUhGpzpA4qdKt5GnVioSEtBlQzp8kTtsMQ4NUDG57yHAqplgekMmHaGXQHqfIuRCNYJC4pBYFoUrIDbbw8xYntzw+0fwOK5+cIlPYRicew/EvEFkpWmzilwO8lEPSjxG7mrl2g0zGIbElvgrQiQ+qTGGtD3aOelJh2tkg8APsVQN3aonF/Vv43VVuDGC83yUlJCeWlpHeGCv0iRsBrXHIJUsTDzwMAcenSvy5Yyf5/+xeoB8PGDllyk6Gw3Gfxn4b2WozSmUooCk7DhEGSb7AqNukHBS5kakS9Xu43SZ62GFHK671h8xfv0YU+IxMuP7Ki1TmlyjOzGCYkw9Ra0V9/xZrqwHFME+aFO78YWbxqToRq51NRtGIw/nDpK2HCwbd7mtIqVg4XSWfOcFWcxPDEAxCk1HlcSJnhCU38TMe0TMf4+zZR9kbjNjb26NarbKttxmHEYYukDXLDwywFYcJa2826exNYlsgBIYp6HGE7c515Atvk7FCLFNjzc/hLi6SzeVIpVI4R46yd7mN/VYHa+RTTjUwwoDYq1DSUE15+DIgTGlULkXq0NP01hIsrUiXUmRGRaS0Of1YFWu4Q+N7O0hMHmvUGS5mef6nn+ONrT5vb/dRWnNdwc+emULt9NC5BsJOmD6aIYojUqkU6XQaY2sbtV/HSaXwDx0i3tsl8n1SiWDXd1EoZp0RvYWTXLx8GQDHccjlcniex2h08B5ME2tmBrfeYK7ewGu9m38XrsPsqVMcPnMGs1JhGMQ0BwHz2TP4L7+E/9bbeK+/wejWJkn6OKQyFKQi7nSQQcBC1ePa3i6NXpdcSVA8ukDu85/HyE08B9wTJ3BPnCBut/EvXcK/chWZzWAvLb2rLvciSRQ3XqtPsqEKQbbokD+IQZEpOvjDiMsv7tBveGy83eLQuQpJHNPd3UZIieW4mI6D5TiYtvMjDV6ntf7+gbbGEe2dSbvMHnuI3+qDID5E1uAHwF6/DhpquQrVdPXHVo+fYIKfCCEfAYQQfH7a5q39LImMUbs2RbNB0BhgxEWczCzdw1VcofATxcD2+fSojd1e47WSyeG+JtOP8Gf7FOYG2InADXPEsYkDRMT0TYvdoMRi2iPyG/zSzZiOX6bsRQT1PlZ6zNDQOBsOvnGJy8YNZsd7GNNjgpyB1TfQKYs4beLlS2T9LNbeFhuFEOwKTwQZvmWUWStdZ2EUM7NeZqbV56axSkntcL2TgcSgbLvM1Zt0tzao/3//Nb1kmZXE4WYtTToJKboWn5ktk2mNOKPKfLO+y5XBmzzlzeMzxolD/CTGy80h5+eZ7+1ijm0cCXJxCRkKtmyHcrtB0XXxps9ws1Bl9sZNrNEIYQh6jmR0+S32V29iOS7F6RnytWkGUZv1qx6l9iyjMIdn29wycwhbcnxvzOzoHNtyD2X7XG1d4VTl9LvaMo4HDIdXACgVP45hmLi1hHOfm+fCV7bxBhG6VKORmaZx6zIly2P51GmsvX02Nja4du0aN7I36HsRVes003kHe7QLt74Lxz4P6TLjfsiN1/YJRtHdG2tNp9diT4yIMXATG8OeZuHJ0xz7xHHSmdSdSWPzSht3HJEumlTOpnALBbQ3Iu65JCOTQnYR91Qa6brYi4t4l/q83tknsDTnlsuYnsYbhFx+cZeMDjHKJRodj1KjTqFeJ/Xsc3z+9AxPLpX49o0Gq40R37jS4PGxQT5d5uQnZijU7gpx/uXLDM6fBylJPfEE44V5cvkctVqNtj3N4ZU6Ze3zySMZxkoxGAzwPI8gCAiCieuDlJJisUitVqPyzDNEb7yBDkOk6yJcd7J3XGTKxazVEPd4BWQdk+xBkDPrs5/FXlxk8PWvM9zeZWn3Oo4h6V8v3jk/UQk5bwCZ43RmH2fpFz+GfIDNjlkuk33+eTKf+tSd7/xh0FqzfrHJuBdgOgZnPzWH844Irem8zdEnatx4rU79Vh9hRLS3zuP13+2TLYTEyWQ5+tTHKEx9uCH9m5u3WHvjNSzHZf70WaoLSw/MX7S32kcrTb6WIlP48Rg1flAopWn1GwCcmjrxY67NTwA/EUI+Emit6b75NrODGaKRyUgmlKwucT8mNiRybokxe5QSkz4CSxj0ty5QGe3TmTZYTiQy1OSNJkVzhIwMLC9FZddAhyZjx6HnOiSDEJGESBFSMWI6aYPN6SWOyB0S5bDnlnGsPpvtLXLJHtWkjndEE5spWlNPsFkqcnhrHctM0Upp4njEy7HLTCZDgYhHdZXz8hRPZMfMpWfo5kr0soLWtS06ZopmYYrG4lFIAnqjCv2+ZiYeEsR9Yp1ili5nYp/kS1+maxicjkO+kUBbNtkxXRw3ixx3sPM5grlZhofmubQTsLgxxox9qpFkt5wnFYwZa0VkOUgzzfH1TeZbEbXCcUQlRbdYZTzs0tnZATT19VWSVAbtJ5TDHKF08ExFJ5VwTVjYERjjXWqUmRMzxNsRl4LXSD2X4lBh+b627PbOo7XCTc3junNE0URQMG2DTMFhejlPZSHL9tUNokAy7NZQic3y8jKtVouN3gaXG5cZ+LAUnyCV3qP/vW+S0j6mk6WdfZ61N5uoROGkLY49NYWdNtjY2KS32mOqkKd8ep7MOE0/ShN4gusvNTl0tkJpNk17Z8TuzS7pQUhxJkPubBX32EkAVJAw/O4OOlaYtQr2XJa46zNojBnFCaP5DJ/8xDymho1LbZpbA2SnhzeMMWrL+CON2e/T/w//AfXxj1F8+ml+/tws//q766yvdEmbNs+eqN4vgFy9yuDr3wAg9fhjZD75HCsXLwKQzub51loPaVp85vFDLNfuhqmO45jhcMhwOMQ0TSqVyn15MJxP3m94/EHgHD2KOTXF/u/+J8ROn5R1kOzNtpGugzAtrM6QzCOPEDkpmltDpg493G7n/TAS+2t9WltDhBQce3LqXQLIbZRmMiydKXP9exu8/keXyVeHmHlFqVAjDiOiwCeJQrRW+MM+V77zTU48+ynKcws/0Lu4F1EYsPbGazQ31id/Bz43XnmRzUtvsXD6LLWl5TvCSBQmNDYmzrKzR4s/9L0/KnTjLn7sYkiTk7WfCCH/NeAnQshHBOftOZSVQ2hFkGmxn2RJXEVihKQKDUaewMKgJAqMYsmtlAe5HFZsMHBSlALIjhLCwTRK2Riey/R6jsDMc2s+D2GIIWMGYUjf0QR2QKHssZnfZdncIPFz7Jem2D9tUl9Lc6KfEMsYlbHomXOsWSc5MtrgSFim5wr2HMn12KUlXLbyu/yUGlIcH+Ip8Sjj+Qr9vbfIGQrZbJJgo2pzXH/sp8j0OmBJeoZFSdUohiluDkcYxJQJKYcjUqkUMpMhjI6xHAs2zQ3qKkAkPvHciDAeUXUyYGqmvDRJrYg16jHu7rG6vcewWKQYxcyPFMVAUwlnsIuQrtpY1QoZncXPjBllBowZ0Ox2ces2WSGw3Ig1JbhGi6yfsJGqERt98sYtnliM+fnqr7By6RI0W7z5nZdwPuMyk5usNON4xKD/NjBhQe6FVppgHCENwdKZMv36G/TqCjtd5PKLOxx7coqzZ89y4dULCCFIhSVE7FPcf4mWdxM0eBs9bqUL5FJFarMljjw5hWlJbt68ydbWFqYlWVpa4siRIwgh6DU81t9qEowibp7fp1BLMWgHCD8i65oYrkmQsfH2RmgF0hBEJYfoVh//YpNsyoRbPdrDgG7WZG4qeyenypEnapTnMvS+6pEXip2RxcahswTNSaj18auvEdxcIfdTn+OxSparFxtclTG/cOzuZO1fu87gq18DrUk9eo7Mpz6F1ppeb7Ky3/MlYayoZG0OV+8PpW6aJsVi8YE5ZT4MGLkc7ed/mvXqac4tlak+uog4iBgaRRHjL3+Z06dn2LnWY+tah/JcBtP6wbxH+k2PzSsTtdHi6TL56oPtle5A1xl1bqASg82GZrTcZ2YuzeeXPk/RLaJUQuQHrF14jfb2Jte++x2Of/zZSUqAHxDdvV1uXXiN0PcQQjJ/6gxCSnZvXMMf9rn56ktsXX6L+VNnqS0fpr7WRyWKdMEhX31vz5gfFlprkkgRR4okVnePI0Wm6JDOv/9w+3vRPjkOUc1UcOz3f91P8KPDT4SQjwBCCGqLEDYEAyPCt7YRQwdf5BhkCwxDyVDECK0phEUkeTQ5GrOSXM/HT5kMdUAchPR3JBgmVjtGxha+naWbylDtD0FrPNtkO1PCjTrYnQwnI8HYKjEaTyHTDbzUHknuJLmkRcOIQI2JklkKfp5cvQwqjavaqHSLXV2kYfRxWWXFCviCnOOI8whvSE2lPMewuUV+0CNlGpx94uPsjvpEpmS6UiEcexwZp0iAN7N50obHkUKVXG6R2c99jqEniV7Z48lkmu7w99ADTSyHtFwPjUCrLT7RX6Lqpjhx5FH8s9O8/JWvE6ytMtVscjaAc5njiLFPz3XwLWgUTVKFNGYkgAyuTmPFZVJymtj2sVN1bjoD3hjmKTkmp2uS6zJgbTRkuyORQczHay2OPvUI4atvQKfPG9/4Dp/4qc9Typbp9d9A6wTHncF1F+9r4yhI0EojpCD0+iS9DapzGQpzU4x7Cddf3WfqZBpVUsxmFhka50iHipPqVUJhMeyPiaMG/Wht4uEkR+zshoxGI/b39wE4duwYi4t371uopTj3mXl2bvbYud5h/e0WwSjCCRM8S2KECuu1/fvqqTWE2yN0pDC2hjhKMzIVrWmHz0zdnzCrOJ0mv2yQxCZbQ5ud3SZh5nGKU1PY2zdJ7wwZ/+5/QqeOUxgLAlvx8tdf5jNlgQ5DgpWboDXu2bNkPv1phBD0+32SJMEwTS7VJ6qWJ5dKH0lyvnditxcQp7OUa8U7Asi9qB3K0d728IchO9e7LJ2tfOB7hF7MzdfraKWpzGeZPvxwRkUrxfrFN9i9cZV8BTwrw0hJ2CizR5vfGf4HPrn0LGcrZ3HSaU5+4lPcfPVlGhtrXH/luyRxzPSRByfOG/d7BKMhhmlhWNZkb5rEScxoe4OrXh/DkLjZPMc//iy5ysRWYvb4KfZWrrNz7Qr+aMjK+VfYuPQ248EibrbI7NHCh9Z2WmvG/RB/GOEPI7xhhD+aHKvkwZ5GhiV54qeX7qjLwiTk21vfxjEcHpt6jLx9j1Ac+7SiDjkOMVN4n0a0/x3AGw7o7u0we8CYftT4iRDyEeHFozbLso+KFbW966Q6LXaY58bi82jbJKVGZJWHKWKi2KKbGtO3IiyRkNY2ZqqPKwLUWELaIdXpIULNtdosY29ADg9DmkTpEmMXotiiGMaIOEc+SVOPjqPjDoY5Is8q9bFHaiYisHK0wyKm61FODFACnwz7os7YjRHmgJKoU2kUyWtBbHVZaqfoHD7H3LiD7EWkp6bYTSxMoZmanuKnsyYX3uxSyi9wsTdm2wo5JbrMVassHz+BkcmweX4bgOPHl8h6f4a3X3+FSGeZS83j+QOmdIajwzmmStNMn5wjyNq0nniaR0Y55ltvsWQa2GhkLc1sUdB/7Bh1pRgnCfgKa6CxB2AKG9txyR612E1f440bOUw7zaO5kL50Sewh88kujtSMR/CvvvY2nypH5LRJ2B8R9xXf+b0/5OxTjxDxIoZtUCg8/a6BNxhPQoXHUYebX/tTZtvfxKweZvrZX+HWlQE3127xjTf+mIYZkbcz5Fslzo5eIDE1iX0YJxuT8nc4uWTSzaSpdwe8vtWjF2jSluDMscMkqTLdcUjOtZAC+l5McxTQshQrI59GY4gFnHYtEAK74mKnLSzHmEQjTTRaaWyRI9gcEI9j+nHCNop4McWxdwghaI2Mhywvplj1pmk1A2J8kkyR4NiTDDY3iRuToA9n0VxyEi5e0xzL9KkYk0nDPXOa7Oc+e+d93WZBPByGQULGMTg189GHih4GMTs9D+BdLMxtSClYOlvm+it77K/3mTqUx81+f28Dfziku7dDt75PfcPCditky2mWH6s+dMIOvTE3X3uF7t4OAIUTy1yM34YreaaNObwNj37Q51uXL3KptsGzx59iarrMsY8/izRN9ldvsHL+FZI4Zu7EKWAieLQ2b9Ha2mTQ7hEFEpVIkkSgEoGKBVEEo6YmyQsWTp5k6dzjGPfY05iWxcKps8weO8H+6k22r12hux/Sb23hpHZZPBWRxMfuu+YHgdaa69/bp1cfP/QcaUpMS2KYEsOSeIOQJFIM2gGF2oRdem3vNa53rgPwduttTpRO8OTUk5TcEje6N9CJIGWmKWU/gCHtf4PQStHZ22V/5TqdvV1Ak69OkSmWvu+1HzZ+IoR8RJgvN9jZOs8h7xSpXgJa4NlFXMOgq3xi4TDHLQrGECspslYbsmo1mPYCDjUyTJ3eI78VE/VdlFcl7+0ySCk6M0cZ788xP/RJikXeeKrMVf8lzt7IontVpvQq1fQ0TVNwXRuUZZ20vYPtRojKkJ2qxRvxLWaCIVPOLF0Nq06PYDSFcHrMpVqc6CScq6cYlxrU/Dy9UYrr9U2ctM2pdIYwMRiubWBiYm1vsq98Ursxo6jN274gK32KZoC81ScvFHsrG0RtHzPvMH0kx5tf2sQIwDLyzM+dIN+PSW0E5LMW2awm3LrOVy95VDZiZkdwKjONtIfIlEf6sTOkn32WKdvmnWtApRTJIESNIob2Rb5xYYbizCwL6XmOssMfj8e04x6zesQXpre42MzSHyu+Vjc5lVcs5UyC9hDVUlz45tcpza9gGmlal17DSV9GSAOVKPprN1i1SuyttAhGayznNtFCkzF8+t/931itLfOK/TZvbaXxwxzZaJZsuEXVbFLKWJjTz1IytiiJkHExw565zI1Oi+FoRBxHVDIV3mwkvNmYCG5CgCEEsdKgNHLLQwwjdMYklzYwheCRx2YoPv1gg0WtNePX6/S2hly42mJgwpSn70tvD0xCw6sEKQ0Wjy4j3G064xtQ7lDITKGmTtG/1SBqtHhiDpSClaHiZafMuULCGDDTaYxXX0VKiZQSz5tM/BtDASY8tlB8z0BtPyqs1IdoDbMFl5z7cMGiOJWmMJWmVx+zcbnFiY+/+50mcUy/sU93b5f27i7j3oA4lIwHFv7IxLSbzJ84wYM8buMoYufaZXauX0UlMdIwOfTUU3x9/AqahMWncjwSnmbQDthobLE52KK5MeTLWy+wlFviyNICs0cfQRoGuzeusv7meYbtJuNej3G/SxwJRl0bb5TFtF20Uiil0EqhVYJSGq0KSOscqeIy8iHBrQzTYu7EaaaWj/HSf7zIqLePkxmy/uZ5br19mVT+CIcfXSZf+/7MSNNrstZb49HaozjGxKC1vj6gVx9PXNGLDm7GIpW1cLMWqayNnTbf5bK8eqFBc3NArzGmUEvR9btcbE7sjabSU9THda61r3G9fZ1D2SUanT1kIqlmq5j2fz9Zau9FFPjsr62wv3KTYDy883txZu49rvrR4idCyEcArTWlZoem3iO7IxGjmEjkUa6LVAs4qg7Sx06qlHSClyrSyp1hwNukMy0iu4+5GBB1TCLPRg5j+maaYC6iKFtoVURKhZG1uWU2GRseKpMQDxbZCk8znctRHF/kyOYrxIs2cd4m3Y/ZKaZIhKInE6r9Bn9S3iMEet4TyNimYI3I6gxLh/4c6aVlnIzJnhcwbCUYcYmvSUlTznOueYvUKGFWC6aTkLxr446naSUj+pbNoj0iJ2LkOGCHWwQdgYo1VjrixZvfou81iCKPWq5I/nKd6a6B127iyVWckcPmLZsRi+RCyZw3YOi2KU5nKX3h57DmHv7xSCmRBRcKLm9f3Wa97ZDNFPmFZ09TzT7G/3H+a9jdiEWdZ1bkKE6v8fLuFP2gwGU/zUba4fRhibW3ivIVvc05IjVGDC+i4kn4c6U1vVaLN1ZuEYw8TFsyW93HzyZc3rjGq/UL7JkFrvlPIYICs0GeVhCiucWlxOGyqCK2dqkxYDQwCLnKKBshpGQ6LZnPmoT+PuOxZKQkwxgUEiEEBlDsCtwQUpagsmgQr8e0FPyXlQHPcGsS9klP1ERSGgjDQEoDKUCEEaN0yGiYUNlKuPTti5RmJnpyIQRyvEem00LbeTISTBUT+2OajQ3arS2y2SzTZ6bIpQ8TKJ/afpOrV3fZDBNcN0XRtaDdulPeBIJBmNDWGWw35ETZJPTGkzwWcrJJeZCn5ENU0bzT5fRGfTIAH5/OPvBcfU/ukKWzZd5uenT3xwcTXpo4Shj1PLYv32Tn5jqhlxCHkjgWaJXFSadx0hmSuEeu1GXz0qu0t1c4/MRT5KtTKJWwv3KTzctvEQUBWiuypQqHn3iaF/uv0gt65OwcXzzxBVxzYnNxJphje2+ZF6+/Qrc1Yq2/ymhlSK+xRLY4Q3FW0tm5THPz1kT46KXQukQql6c0lydbSmGnTSzHxHIMTEuQqIhv/tH3sNwMG2+3aG0NWX60+lBvl14jwMmUWDxbYfZIyMrr12isJ2h1i+2rK9QWNZliiUypTLZYIl0s4Waz9wk339r8FvvjfXZHu/zC4V8g9hWbVyc2M0tnKu+psroXhVqK5uaAfmMi2H5n69vE3RFTUZbH8nM0upK1xg2avX1uJNdQSpNtWTjLYBg/PhfhjxIqSRh2WvSbDQaNOr36PkpNxi7TdphaPsL00eOksh89G3kbPxFCPgIIITiRNtneSOHsrIMCnTmG7SywJ8vU9ZB5FZMkJWx2GdmKWGjcSNLPL7N3+BYr6X2mlwxy1zTKDqiXKuStMZYaUU5aJMJljzbdzjWy9Mg5WXI4OImg324ThRcQfTDnE6KyxUq8iBs1SYwqy8ZppoNd1kopVgt5RG+WE02bskjQ9jTrCx9jixRm2UVkTMYrTZrtIV5g8E3OcFiOGFXmSdw0c6U8U77N9pWYoZnHM1qURUA6CBiEdc57e6SCPJXEpdDu0zWHWALmZYmpsETVsDGlJlZtfN0gl/8YW3qJTGTgujH7NUGUnUMdP87Uewgg9yJJfF5cGQMGjx2ao5Zz2BvtsxmNcTNZ/tLTf4lM/zz1nRf5GbfO2n6aq0NFtxvwQitA6CYnE0FFOkhdZpQfgRszZ1UQStDpdtGxQpomVilLkN/mVXPM27aNESo2ugsUAomjEh63rzCMO1SNfca6xOXgLGHQpy0E5TiiIAZUJUxbmjDq0xmMyaYLHMrWyJs5hCnwFcRKEDYdQs9ECCjVPPIdk0SluBzCxV2fVi/mnN0jGI9QcTyZhIVAo+mIAVuRx4XxIuUoT74leP0Fm+pcSD4tiUnAW6UyuEbTTPN6738n8CH2+8y2UnhRTFMlrCVvHST+mggNdmTSjm2u+gGfmhJIMQmUqbVGM9nf7DvU45CjmZgrX3nz4d+NlJPJSwjkgYByW1i5Lai8C1ofrPQTVDLZosAn8n2kaWLaDiGSl/ccEIJuN+Ll83fT1WulSZKE9o0bvBIOMU1rYsvSchj1LPZWrqC1YtwfE4xHaDVRO0lpTGJ42A6WYwA+KvEpTcdEQZ+9lR1UknDje98lXSgSjkeEvo/WGtO2KUxNI4TgP33tX3I5WUNKg+ftJ7h4479MErDd86wntOKaU+e62qLdLbO/s8acnEYKSRJZqHiIJo9pWwgxBgYY5jojnTB6R1iVRCmC/jVGLY9hx0EpwfWXNZliTDof30mHogG0oFu3iUJJrhjSvCUY9UxCPyT0PIYtn2FzfRKg7h4hTkiBaTtYjouyJW9zE2yDBm+zZ73ObP8coWdhpxRJFLD2hj6IZ3Y3H4vQTARow0AaJtKQKGWwfU0T+gFvnv+XrA2ug9IUjTne4BYAFlDWkrYeMtAj3O4MO5cv0V5/lfU3DLLlyuT93iMACyHu9LWH9bHbfeV2ZNM7guu9xwf9fbIIOPDAui1c3xGyxUGem8lefNDIq/puUsTb9xoPB9Qvvskfr10l8saTpridygiBk8mQr07h5vJ09/fo7u9N+tUnPkk6/9GrqX4ihHxEuOXvUS776EsRWucJs6cYWima0kCh2NMS5YOdC1m3bQi6FP0UbpLHX5qjJ1r0pyJOrygMIrxTJrvNEzDcxLEs4nyKnfyI+UCxHD/Kx/3jbLkFknGbfhRQFAXmHU0bg5tWiWQmTdYvMlKLVIaPEuROU1A9iBJGtkHkKFKhi+UbFBodcmlJTJ/RRouyByVPo5KA627EH9Se4ZHSSU5jUAkNVH9M3enQlYqcG2JbBsdkkRPDDI3EwRcJsTXglhsylhZZkWFZL+CaDqlsBvtIngFlgkGdK94UnVgSEUOxR+QKhID63i7z01OTQck0Me5s76bW31hfpTkycG2b509MDDu/tv0qCsF0qsKxwjSedZogvkl1vsDjn/x5GpsbfPvl87zRWmGMwRtKMuPPcsQQpLWBTmKulPYp5XN052xIpQhzadxZwaBjkcRZZPosnd1pjhMxb1qccnO0u4eoiFWKRhEjP8PH3Rp9BQMFC2Gdsu7TcDQrcYwfxEgEbb/Ofm8XmXPJl2tUqnOwV8UzNUk2IVcZE0WCbhwj0n10ccy4a3OtpVCO5rQLhmkyjj3aQYdu1CPWMbtRhSjx8UWTQagZRSXqPUVcWiexAhZUk8CT7Kt51O40phaMYo8t5ypzVPEDzVhplNaT/DES5hBshFN0/JirwYBjBYmTzuCk01huin4kaPUlhqE5VUgQCKIwJIlCkjgiSRJUHKPieHKcTIQnw7IwLBvTNDEsG8OyHhi7Aq2JAp/Q84h8j9D3SKL4vlO6ysaNU6Qdk0AIIjmZ3G6zRBqBiiNCzyORE+NZ0xwShzlCLyLwxgdGyDGmrcmWMqTzKSxbYdoBhunfN48YZobaocP06nuMuh0GzcbB7yb52hSZUhkhBC3V44paB+CsOExepYjDB+d3P8IUriF5o3iNnewu3mCeQ6MTGDhIc8Ji2G5IthhiuxNBKYnfXU6STEJ+O2kPJxXSbzn4I5NBWzJoP8h7RKNUwqgvSGIJKIpTgnG/iFKaYs1CJSMib/Luo8BHK03kTwTBtu4j1QBTmMQkNCNBFO6QFjZueotxO7rvXg4eGQZIEgJS+KSJsLk9q/rjeZLEoTlqoc2YslWikCthuanJeHBghHvYMolixdXX9xBCkkQ+7Z0O3f1dsuUKbiaLYdsYpvkhM3CTd/9BM+Z+UCRJjNfrMep28Mdjwm6HoSGRQiBN8w4z52QyWI6LEAJ/0L+/ruqjy1l0L37sQshv/dZv8Y//8T9md3eXs2fP8k//6T/l+eeff+C5u7u7/M2/+Tc5f/48N27c4K/+1b/KP/2n//Rd5/3e7/0ev/Ebv8HKygpHjx7lH/7Df8gv//Iv/4if5OHQWtMdl8mtGUjXYd2YQqTS2IZFVdVRooMvDYbpEpflKTxtkvMiUp5F2Y+ZmRqRJAv4Q4s3jyQoLQnHNvuqSj4EDI2RybAcFbF9ExODdZElSGvG0ZCOpZkpC4JMjTYpmmYGZQs2UiWux0fpWymMxMYaJqQbIQtjj5+JBkiVYuCNmG7c4hHDJ0qFJFLSYYjhS54QJl+pTqETkydXG2QwGdomoYah1uxbI4y0hU7lWDDnceIxUyGYKVC5iEvDHUw00+kZdOKSLZaxiymEY5LpFNjf6LLjxoyNmKG7R3EwJBpZXOtGmBK6m7dIGxrXAFMKNBLpZHAzGZxMFjedQboZvnbpOkkU8vihAqaK2Bs2uTloIKjyaHkJKQSp1Pwkq2jUYzTYo3HrJkvVt5irtqkH02wEn6Tjmax6IXPDmEwyYrbp0Bm2ado++ewUhulQEDFle5p0ap5W/PMUchYlWpySu9xq2ygd0EnKVEouufknyAHTeqKjlwNF2LeRoaTqTFGz5sgaGcLRiFEwxIvGBD2fzqUuKlK4yqHi+ji9eMIAoOmbXQbuLmWdZ1VNcT6yUdN5psojun4EKoujM+SlQ7d7mBnf4Hi6RVE1GO8YJIGL5R+HZIzhHcZLImyrxJRdRakENfbQYouG2Wa5eojjmRoYBpYUJFGEiiP0yORC32Fb5klkgvJAjUGLkNDK4Lgmc3ZM0VZEfohtarRhgTYPGJP7V3Z397dXxzE6jB6abd2UAiuTQmRTICVSSJxsljgISKKQYX1E1YuYLzrk8s5kOjuYeASTgFamUJgkSBRaa6TQlGsRcWhiWIpMMc3CyVOU5uYnrAy3F//3rIIfMKiPuh32V1fIFItMHz2OZdtIaeCpkD9Y+30Wo+MczR3h0zOfQh/0C5Uk7yoH4FHgKa/OV3e+hZ94DMQOT8tP4iQZKnMu6aw8eDYQ3Jt75G5emThOaAGPf/7zd9K+95oBOzeHRH5yT0oUjQBGvZA40qRyFpYtOXQ2T77icv18l1E34tDZPNX5zEFQVInWmsD38Yd9guGQb6x9laiX5oizRBJLbq1qEtegMG2wOH0KGXu4URsnbOKETaSObw+iKDVEJz1iLfBJERk5Or7P/thF5Wq4J/P8wiO/ipsugXz31BbHMbut77IwdYxixccfrhAMhwcNp9CRh44FZiqNnUpjOc4BI3LAXNzDUmitQCmUVgdJdROUSkji+OA7iEni6E7bGZaFaTuYto15IERL05gwe+KdDIhGJQdtr5IJs5coDMtGWjam42BYk6i5Wis6u9t093axHJvS9PTk+myGp5//DIVqDSeTQSAm/ek9UhI56YdHif5R4scqhPzO7/wOf/2v/3V+67d+i09+8pP883/+z/m5n/s5Ll++zNIDQiAHQUCtVuPv/J2/wz/5J//kgWW+9NJL/Oqv/ir/4B/8A375l3+Z3//93+fP//k/zwsvvMAzzzzzo36kB0Nr/O9kmfefQ2Q1bqUCcZ40Fp9SMbdMF60F0yqHiFL0TcW8Erh+wKnRiLBdwTNNWn4NO+yTEJMowXxg4yazWAKKcZE4tkmExpeaSDpEqYhI1ijrAZlkGu1JAj3P8fRLaCHRUjDdLOOMQ5Kxj6cESqZIywwZt0rJH7Id+4xVzDgMsH2BJQNmAIsESZpP9KCHJlYJzTjkVqSIRYwlPTBuoMwskZshDF6jVdHIOM2RtMnaSFAwBHlpMxvFOCmPcqGJTiziZp6knaNvZAgMj71cg8dHt9gKM3RCm30/hQYGoy6GUGg0FjGuiEhMk0hmiIwMoUwTCZtA7pCxhmS2+ry2MeBmd4We5eCW8gSdt7j4xjeIvAF9cZ5INUmar+HkNU4xojK9xCeO/EUcd5G11pjX1urstPqIehq6ORwvxWOqjN11MbRJdjXBSmqMRIqcsUnOVpzOecTjXUYjhZUM0Wj29B7+8AUyokBGTrIo98MGmaRLRdjk5RIVu4qhPVTKIrFMgsBmOBas9ItoDXOpbTJJgNZDtNkAo4Um5FQCoaO4YM/xVnCIrV2B2WmitcSQeSQFAp2ipjtMC/i/FeqkTEFYHnBpfYphYCF1CsNo4sgRuXyPXOY6680FKiKgQgdp70F4maoss+TOIm+v9AzNYxlFMJqnHZqM/XgyMCfxnUnZAj7uXKW6N/GEEEJgmCbSMDHuUO7G5FgaaK0mZcQx8UFZSRzzsBHVtCwsx8WyHWzTwbJtRCLBgFAnCDkAN+aobWB6yR1DzdsDfpIk5JM2peaNd62KDdMkmymSFlm4cQFufLChwAUqACNgYmeM0pqN0RonkzGudDmd3UJeeuF9lbcI/EUVcnN0C18FROKPWUwvkt9/t63Lg2AoxdmtDZxvvnFHmKoebO9Ef5zi+t4kKFreG3F4ah/r4mSSLbQqeN0yXrOHMVW/c40AUgdbqCJODCaZnh9NxWz0FkgZgtCqU7Pe4nh4iKyZuZs2lzJIC52ZAcMBv4MIugeJ2iZqt67fpHsrwBmFPNPZJve9f/mezzrXTGF5Tab9fSrZPp4aMR72iaOI+D361H+NUEKiERTRFNHYlk06l0OmMqStOrWNLtnt98/AyM/+Vai8d+qBHwWE1j++t/7MM8/w5JNP8s/+2T+789vp06f5s3/2z/Kbv/mb73ntZz/7WR5//PF3MSG/+qu/Sr/f54/+6I/u/PazP/uzlEol/t2/+3fvq179fp9CoUCv1yOff39GUu8FrTVf/b//P5nXkjhlsFstYycCK6jiSViXDQytqaosO5ZiaGfQOkVpFFE1eqQqY8aOS1PO4EUp0mGPKLFID0YYekDVymFbeUamZtvaRymDsnBQlkmu6+OqkBQjtlUZQyiYvwwFDxmnkTc+S+BFeMkQL+WQkg5G2kRbFokzRHe6EPnMRgkzsoUnYKwtfGHjG0VumRV2HBNNH8Ix7djFF2DRpeyOGOTzyILizwxfpmr2yZoeQSLZ6S7gRgZP6j62gACDsTbo4HLDqvItOUMUThNHgsPjIblEI5SJ0JIESBC4YmKLkNzeNCTmiNjuoEWEUAoFjAs+z2UvcWxXolTCHh1emX6KXnqRjzWvsNzdJNKgSh6q7IMSaNNACJt8q8xUZFKUk7LayuBylOdiMk0/qXBIF7CURGAhBKRFgKkTYmETi4BF8waGaNIKZpFJgqFDfJ0Fd0S18PJ9tL3QmkNRm7xykOZhELdz3ki0TqNUhh1vkX1/hoz0OJK9jGE0ECI4KEcg7zHojLXiG/EMr8c1JAIXE8n9g9IZo8nn7I07f/uJy9Z4GcfwqcpL5OQ+iTmLlil2xnOsd8rU8j7Z/OvU5RANOBjMqTwF7XKbJu8pm1VVRB6soA2tgIl6Jas9Zk0PQ0gMOaGMP6pcIq3EYD22SAnFGTt84DlaK9rtNuVy+UdOo4PmluzSER4mkuNJFecHWBsmKNZkm6EIEcDJpIaLxaQ93vlu9Z39+3vWg3QA42WawRQlu8Wh9CpC3LXZ6EVFVocncA2f0/mLDyylKUZsyR4ZbVPzj7M2Oo5Akyq8iGc1MZEcU1NYskYiiyhZQsncQcbY21VWCD1GqiFSj7jKJiud0ziJxfPZTTJmD6GjB95fa8Xre0eRTpWjuevkrd47/n8i2CRKEatkwnLcmR31fW9OMFELTxiMe/4W8s43KG8zHEwETaXVZK8m+9s2L/e0xuQGt8uDAwZm8rc6YNlul3Pb9sQ2LVKWg2VM7KeuOGnq4SRvU14lTEUhxSTi+/Vk51f/Iebyme9z1vvDB5lDf2xMSBiGnD9/nr/1t/7Wfb9/8Ytf5Lvf/e4PXO5LL73E3/gbf+O+337mZ37mgWqb27g3RwVMXiBMIifeDsv9w8IwL7A18KiXyuynU0Suycg5TNcoMUpM7E6TeryLLyVK2JQTm6poowsBsSOJY4vVWBC4eXRRIiKPGW+LAgkzWU3W6HEtv4afrPN4v8/SSBCZBTZlmabO8Ga8SKL7JEjyowLLmQ7dXoWrsY+h+thqTMZ0cMMuxhjGpQJtbTDtJMwlgquWzWY6i2OG5NwCxZSBEhH9pMl5mSGyAs7qm8yLhMzoKPW9hL6osONMMx1K3hwV0CQIY0gcTijQxDZ5wXRBFRiQoyts+hjEJARexHLfIat9fOUyLRyqFuSlYqgjxkphCptA27SVSaQFoHESi7znkHG2KVkbmKkBdqWBG0PPnKJvdGhYKbZzM5jaxUwEI7uKr10cpbGtPaSQjLXAa07heSZdfBwiNIIAG4TFaWuM6UBXx7RaHnZqhpyZsOScJ4VPZB+nI4tciY5Rj07g6RRaKuaytzDHZzlua+z0EQZuh33RZ0DIMV0jO9pCxl3C1Blie/FOmnMhBUoYtHazkDWoTIeQmeLdRP3tlO4KoROeV4rqWNCJJWlDkzEgIzXpg70tFwj0owgmacClTlhCgRa43W2UzhOUP4s287iBoPOmj5mpMTP/NL7R5cXkKgM9mcwrIstjxiGWRAVHCN6deed+JAfbR4lvtw02fMHTOYWfe7AOPEliVkaXcQ+dwTB+tEPkxWSD88kaUgi+aJxDyxL+D1jWrFZ8JXmLXdVlYCzytPngwGX3IokjVkaXHvKs9wuHnU2HOJKkpwOCzD2sstYYiSa+lWYIDJfOYj7AA/Y78ZvsqS5Pc5TR3nFiS1ArRlRLh/nj5CIN1ed7wsQVNgmKhCYJdRIUFiZVkaMm8tREmapYpq/HvBBHGDLNCf8E7fKjmKXbbMa719ZJElNvDKgUZ0kWTuA7D7eBkAfbD4LbpT6sb0u4I+w8DA9mBm5/2xoDdVeNhGQsBCDZNGy+lCrQajSpVGt37KZcpTgZ+xyNA6yH8A4LbpnUhzTffZB588cmhDSbTZIkYXr6/pTp09PT7O3t/cDl7u3tfeAyf/M3f5O/9/f+3rt+/9M//VPSH5Ke7F8/9Xm6bolYChKhUDImEQmmdjATE79gEQW3mB5eoSR9SolPPtOjVzLwkiyDURFL7CG1CQGoSNHJacYyw5axQSx8In9MCOw7M3zTTaNkhkAUCaMMfghTYRdCl/VeiUBZDIdz2MpnZrxNzowYaYvE9Eikwhr0qAlB5GQIZBZTC+J4nmvpFIW0R8XuUTEi7GiBoBDiCc3WoIAaR7jUyeSLhGYaL1tChj7NVBk/FjhxCltbRDJh10kxkg6+sEDEGEaEIUGoEYdGkinDwCjUUfkttk1NZCyyJy3Go4TBMCE0XEIzR6IshDKoaDDGAj9O4YslOnaJTPk6KVvQj2ZppRbYcS6yXjqDlsco+JK3M0WmypLplEZJRZT7LoiYJDzJ0Fpmp2/R6JsYoSa2NElRsJTVzGcACVnAahv4LQMnM6YoFOBwa/oxtDTJq4DVmw3iGAa2S7vwFEeyku1YYooMmWpMBsgAQ+Atx6U6vMzAjdkp1e7rQ9FAMpYmjhximjdZ00U8u0Iiv0/ysINYXMOD7f3ASAKOjSYBoK5n59DCgBTER8ps+pJGZOJkXSq6wijeYDPZZEN7vMFVciLHYfMwVfnw4Fw/DkQKvpsIlCk4VFC88NDwIA48/TFe+hHXp57UeUttgGlwyjrFijnDyg9Z5jhZZiN8i4bo4Fnvw8jStt7Xs6oQBspEGNDNGw+MMDtMS5JQ0FQprPT9E2ygA17VQ7Q0mB4cRmNipDTdaclNmSatn6QZnmesxsA7jXEFkHCdLtAFPWEGJJLEkMzn0rTiNL1QkbHfK4mggzdXYlNDN6WRH1GWe60nHldhGBKGIdFt1c+HfR/g9UKGfpiwYJuU65vsOhl23QyBNLiACe8hVP/Miy9RMT8c5m88fnjQuXfix26Y+s6P5P2kkP6wy/zbf/tv8+u//ut3/u73+ywuLvLFL37xQ1HHAPyzf3cR39JYSUIqDrDjADMOcBJFbKVoFx1cJ0U7+wy9uIm1d4Nsrk/KibCjIabIkJMaTxkorYgCMEQaQ0paboFWOkVkZogMB6EtFAYKgQQMNELENGRMNvEw4iF7QZHH6PDZvSuo7hq7swb1TIZi3MeWYNkOWsccMvvs6rPU/eNYxBRtEElCGFhsq3lCISi0oCoU6bBC6AtCHdNWCdulCpHr0hcGiZlGxyFGt41nZagXZ/DcDLbZp2T0KIkuU7pDKdkn7LSw40dxnAzmdIthZoOEkDEb5FggbdgIZWM5ipnZmLwjyVgTOhQt8LtZhrtV4shC+WcxzaPkiieR+Q5b0sHJLLLkzvHzpiLPZHGhk0lE0X3PxBuPyUVHSAcOR4XmSAFG0cQDZPm0jZW6+6EmScJbN9apZOaZKQ/JRTkiO8/M/CJKK767+ypFI4VdFpx7dJGRkpRMSfvqZMVWLVhY6bvl2UWD3OYmaTNAz8zctxJtDiPMdMCSPs+02INoGyKInCJBaprQnSJ2CgcKkPuhDAdlpN632sPym+TGORIzxcxBcrQgDqjfWqecOYSNZGpm4r66xBKBCljxVljz1oh1zBprNI0m0/Y0FatCxapgfVSj/kNwqxeTzgTkHcnxpRQjz6febzNfrWIbdz1BkiTh8uXLnDlzBuMBk+2HgW7UZbO3Sc7JcSR1hHPZcx9KuTVdY6u1Raxj3KJL2Sq/5/nv91mHjQSyMXZWUlt4cDt2o5hRMyGbNijM3j+1rHvrZIdZikaR/LCGymoqxyzc/N2+P6/n6UQdpJBIJIYwkEJiYOArn07coR216cQdxslkkjOFycdmH6N3ZaKKmK5ZSPPBfTwKY/Yu7lKr1ZidLyM/glghWmuCIHggM/Bh961dLbGxmVKKQyu7nD16hMcNA6VhF8kqBi3kQ1gWeP7scZZLH46L7m1twvvBj00IqVarGIbxLoaiXq+/i8n4IJiZmfnAZTqOg+O8ezVpWdZ9mTt/UCilcOw9FuwrRAOB3XMp9SKcREI2xaF4hry9y9s1l3WrQDt+HDOpssxrGJk+l6LTpNUjaG+JVHODvj5PKpRMlT5Fs1hmO7VHKD0sFKk4It9P6DkOaS9CJgNEJgIXHCvEkprEyeI5ed7MaEo3W5RNxV5JcC7epKgVWkgMmWIgDCwpOZG/SWY8S6R95sMhA8OhEcxjMSCQQ8bmxKVXS5PYSghEhnZasFVIkxPQTRQdDZVxF0NrAtPF0zb5nk8+EOSDLCmdBlHlaqpNYTjDlF9GWSmisYcTZKg7N9DCx6fHbHgIEQtcnVAahggvILhDglqgbNKFEV5nGr9fIBo5BBoaYkRzZol0kGO5tUXSbVI384RGHiUkLd2mp29/PNdxhE3OyFB00jixPVnlXRqSKtxd5SmtkANBEIwR8S18PWLgVOhGda7rm/T2YxzfZraQQ9d7ZIBAgwok4VCy/2ZCppLco6ZXZLo+Sg/Y995kZKRwhYsVOfR3bbLRNunCLQZdGy0kdjxAM8Rgi++TFg0lLEJj8rxdw+Gb5i20zDMvF5hjFlc4d8wHMsE2/nDIwDB5O3qDLb1NV3eZjqfJDqsEbYGhYkznrpZ8jipVnWddb7DBJg09osHe7f8mR5YSRabFNGXxoPDQd4NSvEMV/wGg3314sL/WF/ghLNqa9f0+a6M9Ih1xuXyJQ7kKs0wMbLVSWB1F70b9wXYS4p7dA8wtvl/dfR3wCq/ia5+qqDBHlY7Yf/DJPwCy2mVX73GtdYlT4h2ZYt9Rd6U1ZlfRW2ncNS5+Z+U19BsG4Vgi4oTOtQerEYKRwGuZRAONGt6/0r+hr+DpIQv+IUbNIdLQjHdivN37yzABxKR8BSgB8UF9y2Qo6wyaRQId0td9UrhErQFhzySJBY23Yuz0g198HCkMTxO0R3Rv9D4qMyRAI4Uk62TIOxmyToacm8U6YCUmjkriHvOdD14xrTW/k3jMacXjGBR1n0fckx9I0EllChgfwnwHfKB588cmhNi2zVNPPcVXvvKV+9xnv/KVr/BLv/RLP3C5zz77LF/5ylfuswv50z/9U5577rkfqr4/DIQQHBnm+XZqgam+5tiN6zw5XMYar/HajMAtFsm0pnnKeg1dHWNJhbLgdfcx2k6BHXOaTJLmtJ9ClhboqT6WvYhhFbEMhZZNjkX7WN4q2W7Eif0U+7mTVBsdQqeDV7E5bHjUUnXGxix2nOb/rB1h1XZZOT7Lx3c3mM0bWDGMpcsgO41TPMaeOoEc1shWXuRoOGbUz5M2DYoLnyEKM4wjj24S8zXH5LKtiESTqajN8XiBLwfXcelQTOAJkeZY1mQ82sV0Hc5WlzlkpbDuiaIJcD1e4XujDHKYZ86e5nB1mkNzjwKaoRrxp8E38bRPYheZCaeRSA5bx7ENC02MJkbg3DEGIw1hTTEYJmwEu2y4GQzb4qQX8InBNkiJoRtotc+eEWI4Asd0ydsZunaT2PFpmzEdIZgaLWE1q3SDkJ7TwtcBgQ7wdUA951GzZzhu7+EoEyt3hHHKZtAfk49mWLLneXx2Gsu6O8j7MwkbGz4iFtRcRV3u09cDBmrIWpLgJR1C8w0Se5JoyxqWSYsskbvGatYnU/gMS845pPIxw33McB8j2kcmowf3QeUjtGaiqe7wom5QTAYo0aVtu3RosWDMctQ4zIycImSfm3HCVafPyN7BRFDRRUbpPkvpMqOhoqAspnPvjiXxCMfwdcBOsktdNWmoFgM9UQSNGLDGgMP2p5k2au+69keFSGm+1+kx52sWY4N9tjANA0NLbL/ETnmbkRzyuPkI06KK2VEcyR+64zHyMCiteC26AMDHrCe+L4sb65ivhd8mq1zmRI0vOp/FFh9uNtd0YvGd8CW0iDjhLL1nnZRS2C3Ncnbpoc+qtWal7qEczdJUCtd98HlRWrE29BBCcDSXuhNm3dc+r/uaKkVO+2cIHYNi0WKq+OE9dz0I6XYjCtJk+iHRXsfjmKGxTzVd5GjxwfmCfhSwpEnaTt0v5IWg+PBUMqsk7MkIS8PjiWQ7kqhhCA8Jw/9AqB+Pj8qPVR3z67/+6/zlv/yXefrpp3n22Wf5F//iX7CxscFf+St/BZioSba3t/nt3/7tO9dcuHABgOFwSKPR4MKFC9i2zZkzE6vev/bX/hqf/vSn+Uf/6B/xS7/0S/zhH/4hX/3qV3nhhffn8vajgNaazChC2A6epWnlTOp6yIwfU4mvURllKCYLrHKKvNuillxEjwSb5jKRY+IqDxU4jCwDLRRENUo6w7HBgDPhi8xmvsHA0jiewvIrzDlLZOUSZtoimDexxDZ2aCNTp3GHJznqfYtnzQbt2tMMZ6oM9CLS8bmUqrDlV3Aqz7Gw/DHKjQBEQDyzRiE/JnhdYItpTnzuaYSTAyHYDEIu1jucCWO6YxsngQU1ZP5Kjq4dktebTGeeIEoUU9NFFip5PvPcMwc2b3cHRy/2+OqV75HZLVH2D1GpTHH42WMsnr5LJ894J/iDm3+AH/ls3qozZdTIf2yO6erUHVs0HSuIFTpWqCjhzeZFbvRvcn7cpC2XOJP4/BXvGrVqiK4+SthfY63xPYxkzAKSQ4XTlOY/j1f7BVbGa9wYrVAP6oyTAfguQgt0MQRXARZWYjBstDHybTxxi20VcqW2xijdIzucY6q6wGNHTnLoePEg3sUkgmRMwpZ1je1Gg2vsw8w91hqDGnZ/TDpl4E4fYhiOUN0S2mzQr9XpT5XRhSYzcyZHsudAnDuIwPgenVDF4HfAazIcbLGx+yfYXsLTZoXN2QX2kjFdfM5zBVeuEphXwAoxclXmqoc4nT/J660L3IivUzibQ143kIZk9mNzPGyePspdS/txPGbX2+NK/ypb4202U02emH/m3RPk7RXhwfGDA1ZqVodrtIM248RjHI/xYo9xMsaLfbJWhopboeyUKbtlcrrIyhsD0nEfmYrYcrbYdzYZ5BssNx4jjjUbVoPAusVr4iJ5M49ZMfhrj59jITf/gPvf/gdea55nv9UFIJl3OJRdemjdlVb8yc5XiIaCmjHLn1v6sxTsDz9C5Yw6zOXVNaIkxFzKM5u6m+/m3rqjJ7lrbnhbzD59GNN6wHQgBIOuT8ZvYNkGR5+fe6hQo7VmYO4SBgmlR2rkSpNw81d6V8ntlajYVTIbM7glxfEnp8iVHmLLdCcezOT4Tn3fo29kmx4332xiuSbzz808sI6t+pB4vU7p2BQLz33/aMtaa6IoIownDgrRwV5KyUxt+oOZDdw+V8KB+8vd50PftWb9AZxVtdZcaPewIouPZ1KUUw4Xu5c593gN6wMkFpSpH4848GMVQn71V3+VVqvF3//7f5/d3V0eeeQRvvzlL3Po0CFgEpxsY2PjvmueeOKJO8fnz5/n3/7bf8uhQ4dYX18H4LnnnuPf//t/z9/9u3+X3/iN3+Do0aP8zu/8zo8vRgiTHCZ5UeT46gaSFGZiMmCXtOhBMqIVN2l5glJ7hvTgEIP8TcrUqdBiuGMQDySN0VmmkjxaaM6IPLNhg6fECiq1wVraZKRjUknC036DxJSMwyamLTg3UyZqb9Oggmk+j3DzjI0Vns1tszdcYSV9lG8f/jx/ufIJTCqI0KODYK/tk9obE8aK14dHcbN7zOVSTI0DRhdeQJ/7LDlTsuVH9JSi6prADOvdDlHnKhiPUMsKZq02694Gw6hGN7bI96F/Y5/Hqjmm8+6dpGmv7L5CkAQ4gUsqLpAqpslX3fveYyVV4ZeO/RJ/sv4n7Nv7bPW3+f3rf8Az8hnOVc9hGRY4k/KiJOIbm99mJV6hIXqcVxlmxuuc1T1cN0I+9hfpFOb50kofVXycuUGLZ408OWHC6FXspRmePPwMT/IMHb/Dze5Ndv0RSceklj/J7IkCKTNFNFT8wflvMJV2mJW3GCcefrkMnks2qbI8c5ilZ2awMxN6suk1udy6zI3ODfySgmYB0c8w/0iVqXyNolOkGAUULv1n0lYG8dT/TGNnyNWbr6KSIZXFaTYOPc36aJsL4ducqJ35AINhDljira0R2jjLQneHT+gMn6gepjX/BJdbl7neuU6QBBhWwqF0kbPHvsDisZ9DCkl/bcyVjWvsFnaoVU4QejFDrak8IP/KsOMz7ARMHcohDUmBDAVqLISH+TdX/g113aKe6bKQW/hA35LSim9tfosr3Sv3/4eEXhBxdbdPyu4xlWtTzdoYfQlXi7QbipGKCAr7DKfWSZyQk+WTOEicXp5HnKfZyd9kf7xPXw3o0OE/Nv4T/+vc/0rWfnDMjZ3hDheCtzGykxX9xfgyR6snH9geWmu+tfl1NtUOVsblzxz9v1DJPjjB4A8LEzg2PsG1zjXW2GSxcvjhJ0cRfjrBnE4/lEIftX2MtEVpIYtVfW9D/fxCjvbOEE+D53R4ZfcVLrcuM0pG1JIl+npELp+hcDiP/BATF5YKDsbNHrHSxK5JKvsAlmUYkJgau+hgVt5bebm7u8v169dRD/FgMYsus7OzH0bVf2hcH/k0LXBtm2cWy5gqIXQVZtnFvKdN6+M6O8MdzlXPYXwQhuRHjB+7Yeqv/dqv8Wu/9msP/L9/9a/+1bt+ez9hTX7lV36FX/mVX/lhq/ahQWvNRmtIYdAhcgTSyCFVi0h7yMBg6IyIfUHKrJKLgf2TGKU2BSshaoX4skRpOKYYdChSoWbXGEiFh0vuxP/CRvwWXedlcvVtyv2AcdpCiS7K8EkaLdJOiB8dx+8ZTOVmmHnmL3Gy91WyF9/g/50x6c0ssHF0gb8wO42KNfW9ETd2+vTWfd6wNS+IJRzvELmpAeVBm5mNHuPsFsV8nnoYsuNHTNkmzUiyF2ZYH6fp5xRFuUA70uTsiCIJhIKBkvzvmy2+t9GlKiSVrEMmPeSmd5G0kCzoRcIIMpk02bL7rndZTVX5C6f+Ai+EL3Dh+gX8sc/Luy9zoXGBx2qPsZRbQgrJV259hbbfRiDYVVMsBF3mowHL0RX+uPwIYesNosb3CJOQQmGRZ574f5CzsrD2Ldh4BVa+DpVjYLmU3BIfm/kYzUcGrL7RwB3ZHCnM0/djzm/t0w8qnE0spjPLWLkaR8/9T1x+ZYOkbFCbz+MeCCBrvTX+eO2P70QGyFazlHtzFHWF4/YcM3MHq2Kl4MbXIQ5huE9zZYwz2GW+FjP/yJ/nWPU4/+bKv6Hlt1jrrXGkeOR998VxNOZy6zIATx/5WVj5DuxfonLkczy/8DyfmPsEe6M9ij7kvB6UT92J03CiOLEvWO2vcHz+Meo3BzQ3h1Tm7p+k67f63Hq7hVaaYBxz6JHKnf/L2lnOVM7wdvNtXt17lfns/PsWopRWfG3ja9zo3EAgOFk+Sc7OkTbTOEaKP3mrzamMIFQjvGGXW4M+lZ4k1TcYKZ/V+csUqmPKboGfWvopHpt6jGTKYuNih1Ta4sxz/1d6QY+vb3yd3+38LlfaV/jPq/+Z/+HE/4D5jgicfuzzlVtfQaM5XDjMRn+DvdEeu6Nd5rLvXmW/tPsS19rXEELwxeUvMpv90U5gx0rHuNa5xmp3lU/Nf+od9h7fH3ujPZRW1FI1evVJgrhC7ftZHUGu7NLeGdJrebwRf5Om1+Rm9yYAU/ttmp0ILI+Ll79JLVWjlq4xnZ6mlq6Rs3I/sFOCYUpyFZd+w6PX8B4ohMThRKAw7e//LjY3N1FKIYS4YxtoWRZJkjAYDGg0Gv9VCCFaa17sTljUpwpp0oYkUu92DvZijy+tfgkv9jCEwbnah2MI/WHgxy6E/PcAIQTFQyW2rq6xPzONzizzyM0h6d4GXStibTriUDfHxUqKx/w80/0ag/XTRNNbjI9BP64wPayQG2nmp88gQgMZ9RCySMmtUA4eoeE30WELo1Wg65xAR+uIQkQ7SWMFBQZeAdcMSZ/Kc/KpI0Q30sxfyvKxcI/vmoKXm5ucyeZ5PJ9mdjFHMWfxu50Bt+KAqZTNI6FB0xIEckRT5VHbG2x05mkZMETRF5JIa1phkdhdJpY2ozjGxGYUtSkNupxVFTYzRVoCXokipn1NdTxmP/wWke7yXPkYiZ/GsB0yZfeOTjlSmkGSMIgT+nGCrzRT1eM80o7xTZ+23aYb9Hhx52X+JPgT1vprWNKi4BQ4UnoW+jvUMPmf8i7ewv+Il/Txo4ntxGxmlp87/HN3MpWy/Glo3oBxG9ZfgONfuNOOpekMCQ02dgdc+c46O0HEoD1mNdTMtDfJDPs001OsdG7h3BpjSMG1rOSFl0YI4K3+1xjEXY6XD/GLJ57jaHmJVn7E2psN9lZ7TC3nJ88sJRSWoHWT8fYtBjdbCBS15RJMP4IrBI9WH+W1/dd4de9VDhcOv+/B+0L9AolOmMnMMD//LGy+DuEIWitQO4ElLRZzixAdRKtw7nqHzWZmSYkU4zDglrvLYGBxqz1mzU44tVhkqZRi80qH/bW7QaD213qUZtLkq3cnsCennuRK6wq7o122hluT+30fxCrmq7e+ympvFSEEP7300xwr3Y2DcWGzSxjElFyDjy0f5tJOn/bWENn00ICc3ybnFnl86jCfWfwMj1QfmZRrJ+xe7hOOEuIx1PI1fvHIL/K9i9+jq7u8svsK06lpPrf0uTvvWGvNNze/ySgaUXAKfGHpC3x357tcal3i/P75dwkhb9Tf4EL9AgCfW/wchwvvwUx8SFjILuAYDuN4zM5w5wMxTm813uI729+Z/BFJ3JV5MlYGmyHNts3hwmEc48GqlGx58vutnR06TpdxPGYxt4gjHKqteXwjICz1CJOI7eE228PtO9emzBSH8od4fv75Cav5AVGopiZCSN1j5vC71VxxdJA91npvIWQ4HDIajZBS8txzz93HEA2HQ1599VU6nQ5xHN8Jdf/jwrWxTzOMcKTkqfzD7Vy+u/NdvHgiTF5sXuRs9ewHFkx/VPiJEPIR4S/9wl/gX6yfZ8cReMUyN2rP8eitGwQqZj0nWRwXqJdm2BwYHDUk8uQc20s7hLZNameZk708s+ksTddGJjEyGmGTI97rcXi2xOo4RGiB4U7T15IkKrCpSnQUWKMKMCK2xgi9w/q6xNqoY2Pw+alH2bN6rI5N/rQ5w1LKRmn4g60mm4ZCmSZHahn+XycW8PshX/vDIXu9NpH5/2vvv6Mkya46D/wTLr3P8t53tbfTM9Mzo5EdIaQVAhYJWBZpBbs/LbAIicVI2j0ScBbxW6y0gDiwWgn9gB0WOTRoxBhJ411PT3tTVV1d3mWl95lh3u+P7Mzu6q52Mz1dmlZ85uSZ6ojIiLgZES++775774tzTmmjKNfmpeisCCq6SVqVkPHiEXm81Vn2xtOklHm8OQtDqtAltWO1KKQdMjF3idXCUaim0HWJk+dclIolcLt5sppi5ZVlDKGC7ESV1PMVCWthp0LXieRNOpFRO95CQp9gNvEcidwYkjBwagFm6Gd8fBafXqJNz/F84EfwaIN0RFRWi3PoZpGO6FZmKhAwq/gVBY8so/e/DY4+iH7uBRLOQXJahHzVZDZZZG41g5TVMc0qotVFUFNpUWW6nFkcikzO0YRYLlM1LKygRs4wIGdQsQosFhaRkKhmR/nXozrbOlbZ1RlGc6pUSwaTh2K0DQbxhhwQ6oHEBCvHT2MVFELBMuboeylaAoHFYGQrr8SOslqKcy59jsHw4Lr3nRACCzCFoKiXOBw/TtWy6PZt4+8PL9CaaaE3fxxx4jnM7R0EPBqKqBCoFDFNwXxWJhdPkC3qrGbLzKfamVNSjKkvMpTbi1Q0qJ4yObSYpTll0KmoNHkddG+OUCkarM7mmDoaZ9v9nSjnaxDUvSHH48c5uHSQDm8nSBKWqJ2nSW2eGFMIDCEwLJ3vzz7GQm4OWZJ5S+87iPj6SOsGqiShGxbPnI0DggODUXZ0hRgNeXlxaZYln8mkY5E59TjtPhc7W/YwFN5C0ayV+0cCV5OLzHKR5bkcnZvDgMoOx27mQ3OMp8f57twT+F1RtjRtAwGnEic4kzqLIinc2/U2qkJmKLKdw6snOJuZ4Wx2iai7GQGcTY3x7PyzSMBdHQfoC46gWwKlngxxlfgKU4AhxPnfpPZ7WKJWnqr+f5naTMWKdD4d//z/JUmiy9/PWPI0Z1ITtHo71825MM7fH/UKnKeTpxsCxK26ya/qpMop5sxpHj15DN3SafG08h+2/gdGI8OXufU9fgeyKjEfX4CCgsfjxaf52abuw+VvRmtW2HJXO9lqluXiCqulGCuFGIlygky1wLH4KSTZyV3tdyMB8vnqoYpErbLuVQi2eJg7nSSXKGOZ1mXDPRd7QuoedYvLwzCWVmJYAsLhMLKqrinx4PV68Xg8FItFEonEa8rkvF7q98LFCTSSJGEJwXOp816QgAf3FYa35nJzNS8cEqqskqlkmM5OMxC8fg/q64ktQm4BQgiOPf0dKmUfvkSBZb/CYV8zu4wePPo0USmJ5fRQwkNRW8DvLGAGW/CWRoikXETm+gi4LPKqQioa5KRrkXvn4ug0YWZMdjT5GS8EGIxprLjayFEiJ0Oh0k5gGZyqoOwx8QYdxFdjWKZB+cwZmnSdbX272aucJpEqMptb5BsrLnKGSalYxS/J7HQq6E4NA/CGXGzdNkDzi4sEMmnuMY7zhfBOQPDOosLL8TKZiITPGaJSLaBqaRRpjmBFx12VkcUyw1MVhhcEz7escMZXwJI8hB29BKthUmaWQw4neU+eXGEJq2zUAtAUCVWVcCkabsWBorjIGRC3ikyZFdzTD+GUM8iSQtS/GeEYZqnchpJbJqLP01pKMqvdycmYE2LzyLJEMODE623mlYUldN2iqpvoVQvDsJCEYH/aTWdlmvjM3/P90I80Asu8kkm7aeKsmtCpMHP6KawAOJ0Zyh6VTLQbKyehB1UKWwNY5zMJVnMTlFFxKM2crqoUs1meSmSRji/QiUJnzkJL5xFnVrB8Ks6Ixo5EkdW5KpalMNUS4aGkgOSFVM5lq4vl9DGOnPoeWzs8qHJtwjLB+Zf5+RdVnaXUYVYyaRxqmEMHi1QqOQJGM+9MZhGrh/mXlSEqqodmOcNblmOUcfDP2emLb2RiohepcoiYOY8S2EGzLmEWdPKxIumqxZgE+S43zRmZtrALyiXIFHjyyQpi0E9NQkFV7+Rk+iWs1ARHjMP43esECuZ15DNpYtUx5tvOIasq/c1v5rGsF7Krjc1mZjOsxAu43RqWXuLxs0WkI2nMfJ6Yc4q5til0Q6HoH+C5Si/Pz65Nh5WooGYKiFNlDHcFyxJMuLsIOzvIkGAhPslk5Z/Z1GGhyE4mlh7DEiadkX08uGqQzD1FxcgSzxUolFc5Wvgq3dG70c0S84kXEMKiJbgVvdTO05ccW5EklPNCQj7/YjHOf14ruVKQyUyeQ/ljvGKMrJtubJkWE84g47OrZMozzMafBSEIuNtQZQ8sp3BUqiQ8WVZ0Gd0wWSjPMfnyF4n4h+gM7SLq7UWRJAS1BIt8cZZcPkdmxSIbKQAS+YKGK5PH9Lr53nzi/NEjtY9rFMthkC7Wjv9y9jmeKURwOUJrzlVGQpVqgkSVJFRZWiOshBCYlTKiYvHKySVEWKs9A+eFlrGYIqU4iSWziOn165kKITDGJhGVMpI/zGPTF8o9SOevk2kqGOk8L52awFG6+nXKl1cwLZ2g53JPVL0c+3ri4uJnWHD5Mepl3S0Erqt4QXRL58m5JwHY2rQVTdY4HDvMsdVjtgj5YUKSJE6kXZTMMGrFwGMZqB4HAVWnK51m+3GLgz0GFRPU1RR5Z5JV1w5aMlUkvYJWcTAtLM5VlnBKXgbCFsX5RYqWhGFGiSaKvCPThyt9kHhHG22qiyHZT7Ao0A2dggyJQoyCrmBVdMIeDwuFIjFAj0S507OfmcK3OVRyslRuxak46dLhbcLFo36ZRaPIRGaeQa2NQrZKPBemWl2mUzlFk3cHsseL4pfxaBYjPolop4/Z2TwHevsoZMoUcyXiMzGcikLMe4S5ygz5YhyP3kzeO4Ku+Mi4yximE0dFxqxU8KfidFYtXHoBU2SRsZAVCVmTkTWFkjfIqtWEjkbFbMYn++nXqqSkTUzlfHiNKqOlBAdyMTzuHUx5NpG0DBJVE12ykDI61YxOVQiqQlCxBLq48Li/4r6DtuoCrcYqm6xplgOb8LhUIv0ugqeyYArOLR4kU55HV7LopoVqeikvuZAlEF1ePGEX4vx8D5XULA5Npiu8ibA3QjZXZSVWIJOrMIdgRbUY0BQiOpDRqWRkluKDSKaB5JKY792DaZyfFvx8dH3EPcpK+hTFcoJYZpqA+8qTT1miymrmDKZhUch0I+kWHqdKa28fSN1480uMmNOMaVvxlLNIAsqaH7dLw+VScLs1nA4ZlzOLI9JPxUgQDBRoHm9BMgW6UyNVMZj0Q1kVJM8lmXIotHo1WjMGjoUCZkRDnE/LVFQ3Uf8Qq9kzLKeP4nO1rxnuqC6X4HicTH4aIZWJOsO0bb8Lv6v1IpsgW6wSW60VrurpDmAJgTSeoZxaIGMusjwYQ9Mc9LTsIeobWT9oNOJAKBJS2UTKGeCt9e6jvhHylSXmEiVShWnOxb6PQ/FgCZOAuxOnGmJs8SEqehYJCd0skSsvki8vUq2m0RQnChD2D9ER2rvudal7fqp6gVj2JCFPDz7XRQGr529IWaq9gOtiRaGmi63ziRVW3WNykfD0udpQFReGWSZfXl5f6J0nU5xlNvksQlh4HFEypSUQ0JFvQ1MdRHq20tX6TkqVBGeXH6FQWcWpBZiMPcGiI0JraAea7KJqFlmtvoLfcKEVVIhIuNQQzqwGCETT+sM4sqwS8Q2SLs6QLc6zkDrIQMvb11wvi9qz2nhI19ERil9FLpUx40Us/9pYJVmv/TLiCsXMAES5hKiUWTYmSeZO0eu6j7C3//ylOP/7BkJYy0tY2QySYaxbPRZAN4qML9cEa3t4D63Bbesd8VXUwqmdS/1rB0I+XFfwgry8/DLZahav5uWu9ruomlWOrB5hMb/IanGVZs+tS5O/ErYIuUW4M6t0FtJoZQgEpyh5AmS9HnriApETVIwygXwGT7zM4809tKgy7bpFQkqyaAxSlSRylRR3zaXp3tlLwd9MKR8nrzsJlyIMKG6q0TejOtpoxsJvllAlNzkg6TfxI1GqGqTml8kuJfAHHORdTmZXY2zbto2hQDu5dIJMcYH3de6gc2KVs9V5ThdXmI2vkJqQ2FvZSZ88jKmFMEUYNZRmh/ss8ea7mZ3J4w05+clNTbxYLSGrgv3d/XQNd/GNQ9/A8JbQ9RmK7lNkPC5EFYZNE93KMat6kQyJlpJMOKkjVxR09zAHQhGaFJViqULByFKU85SkAmWpiJp0MKKXWQ5opJU2ZM3H8aogqxtIRpk3JV7mgexpyqqfQ2WL7tUsHdRcq1nLIm6ZVBRwawoeTcHrUPE4FFSnguZUcKthIvI9RLIvcEfuGCvuLQjTCQVBsiSzmF2mqRwHTMxSgaxcpiXVT49hICkSzUEJ+UxtDDZlxcmUkyiSytsLLWhSpdYY4iGpOhjPFlko6hQosSvqx2sJSukqjkoQpx5HC/fQOSmA8prpyEygVR9kXD+BO3mIvc4mkCVkUes11ue/kIBJ/SSZaoGVvJOmShiPYvHW9gD+hIJH2UpIJNhenWPGfxdyyaJDcWK6W9mp+rEM0HNgmCaT5yq4RScn9WWCyTMMl1opZqo4XArhjiBVGcYzJcZzJUqWTpUyqayJv2LhWyzRMhAg6nFiCkG/2c/T5RMY1jzeuTE0s4lUxaCQKiNlMxSkZSpqCafhondsiLtUL25PuSHCAJ5YStFbNGj3OLlzSbB4bI6ZpWkkUcbREWN3vpkdjn14i16gcqHHyYWeqECQKEkUszrewzl8TU5aJkqMGGUOyHv5fmmZ8eoJHMWztCtdyCg0KVVi5iN0AE7ZRbfSh4HBiWqZpLlKqJqjVfHTqnSwo7gbebXS8AJd+qmIMs+VHke1shQ5yaBjP33qALIARYjz11Bak5YqXZyuegn115MFhCrtTOsTtGfG2eW8vHqqZZqok7PEs/N0SYI2tZukmaAsDNrMbpqKfXgVH+2lEMqMhCQiPF2eJWYuYSRNHIBBjMri41SArJUkX8wQKm0mHAvhdRkM650EYzqKKtOyYCAtXlAP9Vdn/XrcYe3ge6U5DDHH0OoEHWpPzcNy/n63EI05h0wuf39XsxaFuI6cMQkVJVRFbjwHyfkKnrjJwGwVb0Zec1zpfFpwIrPEmfwMwjlPtxVCjT/HXlcYVXI0smgtAQtJCcOs0KLH8HlCrEm7Pc949QTp6vkS9PGXCDvKDDsuCJGLr1PdDgvWPLcXP8f19ZzfXpxfLqjwMhc8g5Zpkp108MR3jvJU9QmEENzp2sGx2cWazeUAC8YMX5t6jH2uC/WzttzTgSdwc2vWXA+2CLkVCMHO7CwLxRgVd4hSLs10MMhYRxtDGQ+5DhczkVac+SIdsTgFw2Kl3yDhP0Qy3kJIVol6FHYsTyBVNE40hehydWBkc6wUTiKSBpIviCx5kbJxFCuH3OSk6nEQd4ygtvi562eGefzhR1ldjDFXMvGkclij7ayurpLNZtnftp/53NdpsY4xPXuOF3NzSIpEOi9TyFXImjJjnGB7zxb8kVYKiybp8iptq8c4l+/AJUXoiXi4ryvE6dkqsoAOp0bE5eeu0F6O6jM4q1kCmQQHAh007f053M5+issmq8s6ifwc5GTC4VayLV6WPRIJVaa3J0y3V8ODhFq1MPIGuUSZlYUcZ+NzVBIx9HSC2WaVglvBmzd4Z3qGtxhjoKk81uQj757CKxwMGlvRyyZaxSRycWEeAzAsKFqAjilJ6F6NrG8LIcc4TitDtPIKmfCbain9oTKx5BJyxk2rt4u4NMu0XMRXbEN2SASjbpz1nokksWLNokgS3Vo3fs3VqA0gBHQ4HbRHVV4kx2yxwpF0gQfawzQ1uSnlNmNVSnij4UYDJyxxfkbO2r+HlRFmjXHKIkNBLNIhdV/WGBpC56x+hplChUB1M05Z5t6mAE4kqlWTqtKP13wayUjiLMfwWHkUAUXLQ7l84YUhWSaSDs1GB5b5CgkjScVXwKv5cXpUDAtkC0a9bobcLpbLVZbKVZatCnrFIluoEjubpOi/0OwklVYy6jlWrZfpqN6Dq2ghF2NU5CQVTwEzahBYHKZYVnn65Aq7hyN4ztezWC5Xmc2UkCRBqyPHSyvHKC2ZICTMSIHt7j10iB6kaq0uy9VQnErNS5Sq4PQpCB2Mioksq+yU7iYrZZmvTLMklvE7/VQMHUmS6JOHGJG2o4la492sdPOc+V1kS+YO9a24hYdKpS431msaDF7Rn6RkZXBKCqYwOWm8QFXNMaJsQzQ8Aa9ueKbZ6mTSGGfRnGOLtQdZWttrjxmLjKvHCBoBOtVeFF2hYhbwST42FXZStHQ0l4JZsRq/4Baxl4T5CAiTTepWdKrMm1NIAlatAppDoUluJWhG8Zk9BLLNVAwDt0/DrFx50jYABTe9YpRx4wTHCi8TdrSgnp9NWgKU858rYam16SrMkok+ncfb4b3gTalYyGZtsj1x/r6++FcVQjCXn2ZSGsctB5CFQsUqM1E5yRZ1V+O4CuB3BMgUVinn0gSUy6f2MIXJbHUcSQhalHZi5hITxlGo6owo29d4eJSLvhO35imL0nnBWvuvLlY65R78cqjxvfrQa+nS38AyqRoWLxVfoCpM2pVuQkYbpfPz1XRaw0wZU8yYUwyK7bikWtC4aV792rxe2CLkViBJ3P/+/w8Pf/1zLPkKKNFV6NpKRvdjrApWt4RJd3vpPhmjw3WGYl8rffkyc6UsydIQvZqDva1BckkP8XSeQqmK4RlFEROUS3nyiVeQkhogkyulUVuaaXvz+8lGdmI8Oo2rZBKoyGzbPsJ8U4iYFGZa8iNnFghagunpaXbs2EFfoI/p7DTJXAJJSARKTXRKnWieFhTreYJRQakvxoDYzNl0hVi6BSm/wK7l/0clupv7978PRZb5qdYQ3mN5gqoCmQX009+lXVJpjvYS9fXS5oogzR2FHhfsvodcsczBFxMkyzJN7SHefF8nT86lGF/JcXA6eeFnFAYRK01EyjAbaiIpPFQMGY/Q2VKSiKKyy68yIk7i8/pJbtpNWF4hDEhymgNb+nGr7kbqaClfpVoyKRaq5HJVirkqhbxOpWJSFYKSLiiKO+irfAdJOk7KP0K26uOFytO4RQivFWLQM8yx/LNIRherfoVohw/vzgiGAMOyqJoG4wsLVEwVLTjClKqcr79UEyGWAEtI+KMByjNpEhWDb5Tz7O4JIUc9CDzohoVhWeimQDctRF2BSBKgUlYGWaqcIi6OMqpdXqhpsXSGY6UMluVG1Trwtvo4pVm1VGAAVWbI20tT6Swr+ilUqUJUsZh2uVl2XKjqaFkmk06DlFMhL7eRNuZ5QjtHl3cXYF5USOr8/z0KEm5ahYt8uII1U8CqmiQNg4pLrsWwyMPoyiy6lEaUEmAVMNwlyuECjpYm+h27KHgNcmcyUNH55lycjt4gHk3hWC5NWl3A4Z0lW9GJrrQgIyMH3YQ6drIku1i63nl6NZDjAskymDarnHUapBwGsiyACKq+nZ6VbiQLkm1JKn4vXY49lOQwRwEa1S/DZImSN1d5RDpFl2PXFQ8phMW56nNkpBiKqjHieispY5Zl4zSLHOe4nKXHsW+tcLikFP21ECLMquVAF2W+ry4SVNqxhEnWXCJuTJKxlkipOqqjjZTWzWTlGVBg2LWHs2kTSbGwghLCcXF1Tw+WsoXF6lFWOM4W148QkrcQ1yexqgU0yY0zsIlqWRC3XCQqFSRFYIZlcFy7SqilDZEoT1KxCuSlY3Q6dl6fsXV6ncizRaRqFSsNorWW+SZJJinVIu8ykdc5j3I1zinlEIZkoXn7cWgDTJafZkk6TdLRg0u+IDYsyUu1sgJmihlH23l/xQUSxhQzcgmH7KHVdTeSMcFC9SiL4gRnJIMO7YIQMUSFuDHJqnEWXVx5DmXZOk2feich9eqZTpZlctgzDVIcVXESde3gZfliewNkiZA34zwqnaHDUUvXHZYE/qvu+fXBFiG3iInELAX/MOVKlciCilATVGSdlDtMwuinuSAR0ktYQRWzw0Qu5/CVC/THKnQ73XgVDX9PN6p1DtmvMNTaTmqlmfTqOIIq/opERvJQUVXG+jYx6x1iWBKkNInmqkXpbJpAVwB3IsG+FhcvpTRSehOx3DyKnCCTyXB/9/2EV8PISQtP3IHl9eJyaJgtGu2Bu7AKBzmyeoQtI1uQFIlZ1wilfJzN0jm2yeOET34ZBt9GMDxE0DKQ5l+CmWcoFKuguuk58DMEoi0w8VgtDXbmeYidJunZiVEGp+bE4VTxBjTeNRqmz2eSic2hp+aQsvMohRVkUXupRJDIBEdZ7QoT8gXZ0TNIIVUmknsUl0um6G7lW6UqM/kcVaM2Frwaf4wez87zjgiBbgpKeq3XANRenj4BDoGUM5BKBhRDGNUOmrJTWPF/4SlvKwk1QZPiJlRpZbpUpaniJJNtYlLLsipKyOcuCKe0Ps9iKYcmu8hIfrLSpf2WC3SE3JxYyLCYLmEJQV/0Cil3l4iMZscIseoEJTNDxljAp7ZQNJMUzATxUpzF/DxVyyIsjbClPYTHcfljvxraRHN1kubqFFXVh6xKmJ4gquvCC9C0JFAFikulRRsgW1wgI83R69y9/hwrFxFpVwEZEhXaZakxxTiWg0R5F5nqIkI/S1mWiEeXUKI+PIrChPldZJeCo9eLPOdGK8CR+AQun0pMmUZoJZqlIC2xNjxKBHekCUdvbVjqhok6kVJVlLLVsFORZSibdCX6SCkz6FKZ4exu3C3dSM71++Sd6lYmCk+SYoouxzbUdWY5FkIwW36FHEuomsqI5358agQ/EdxVP7PlQ6StWSyjwoDnHtRXXdpdIUoPseoEKWmKCinixjmqVgkkkDUFr2ilz38XE6XvIqsSLY4hws420LNIqowUcTSKANbpcI6SLSxQMBMscJgB5wFi+hlkVaLTvRVFdyHFK0hZA0mWEE4FNaRd5wSKCr3qPs4WnyLOWVq0QdzKDVSWdSnQKyHNFZFyVXKeFKvuWTy6TEU1cLj8BFwta75iCp1z2ScxZR2fo4XBwN0okkaKTtL6IkvWMYZd9ze2F5ofM+NEmDqyVULxXBAoQggSxllkVaLNtQnNqdHJFtSKwlz5MKtiDFmCFscIseoYcf0cpjBAAZfsw6c0nU+frc0ULEkyRTNFzlhl2nyeLm0nrY7RK2ZWFY0CacdZImqYHs9u3OsU22tXNjNZfIYk5+hybkOWVJSbWDzuRrBFyK1CuNF0F4qhEhEFQsYMp5wyC6F+8sZmXNlOAskUmepdpFe6kUOzOGaOEKiGEOUl3G2DqM1duGNLdHpdtPp8UHVRqFRQCjmUaDeG5CTXFsHs6CZRsji7kkAxTZosmZVjcVRX7UHOZbPcNdDNIyd1Vopumi2Lqakptoxuo2VlkNLkCoppIiJudu5tYrGQx6314TLPkSgneCV+lBl3Gws5i0V1P6HebbwleAbKaTj1z0iBbrpSx5HO+akKmaqrCaJDaE19ZEwQg+9FCk6gnnsMKRNnaeIxCokIjmoQYR1m6aFlDFPgtiwc1vl0REugO6BgucnhJmSmaMqNkcg4WHI0sSCH8VWWGYqfRCDxUssBXsm+CECncycLlaOMV06hGf2o0uUvBVmS8DgUXA4FlyqjdcpoioxsCeTUuwhM/j1JawWfZwZCo2wfuAN5WsOSqgTi7eiag1LYwtuRYCCwBVWRUGWZw8kjGGUPo6Ht7G5ur+1TYk26cT31UJJgJlHge2diAOzqDjLY7K/tS5FwKDKqIqPKEsolmQEHlwscWjmEIo9TNU+Ry1dIZcpUZZOmgELQ0cUn7v1R2gJrK17Wz0FiCOnFM1Cu1/iIcue+HeC/ECSp6zoPF8/wo28eQFaG+NtT5ygbZd494KI30HvNR8A0LI49OUsqkyWvFyhUC+T1PFGpgmEaWKqg1L3Cnp7WC3VbzvcwRU8Ry6WQXAK1WmXVNU+bG7Z6+xnNbKZ5uJmmtiDD+1pedSXOzGqJsReWkBToDQre/eYB9JLgzPNLGD0OvKFacapCuoLX72TzgfZ1jyXEEP80vky8FGdbU5K9rXvxamsF5cHlg6jLaQZp4p3977wkU2GYmexmHp1+FN3SibiO856B91yxcuu1WMr7+MbZJFAGlunGg1uNMuwZpaXcydH8UaJDCbw5J35HEx/Y9JMUVnUmyipOj8aOt3atXwa91MQ/jf8TlijT7Z9Ay7nxak38u80PkItVmDh4IROobTBIz5boZfu4MsM8fK7AdHaaLv8i/2Zg73XXwhFCsFhY5MjRFebOJAkWDIItOiLkI2FlCbS+wlB0iP1t+4m6owghalWYS3laPSF+4Y5/T39HLRg1XW7mwbEHsUSVH+3X6Av2NY4zPg4LCwu0tXnYvHm4sXwuN4c6qaDJbfz81gcuqqkyzIl4H0/NPwXEgTh9QB9BmtxN7GzeyVBoaN1qppaweGbhGU7ETwDzbIp4ub/r/jVF9HLVHEdiRzixeoKBlMmbtm7hJze9c93fzRKD/MPpBbLVLPd3WWxtGr5sm1uFLUJuEQPbtxM/kyBpHaffOEg5EuB0eQeZjkG6eocopIoEDYtyaDMe0U4s58HweOnMu9Fzy6ycyeIdaSHaN4J/ZAel4/O4Cgb+bAHJKVFw+0n6fASjbvbfu4NpJciDB+fIByU6MxZqpox4Tmc1mqe5XbA74iTqcxA3mlhIzJCLLZA5J+NWvfh0C3/ERdv9naQcEhTyZE2LN7Xv51uTD/N/p16kWXo7xUKVfo+De/begRK5D2afh9kXkNLTeCvLWISYCe1nLlOmkDA49vQ0ViP1UEOx3k578iXKq2epZiAgl0i5ElQTxfPbSJS0IDlHKzl3GzlnK2U1CJKEv7xEd+YgCgk85Rjts/+ES6tlD6Ra9lPx52nTXfQF+3hH95t5dD5NpppkUyTFzua9yJKELEt4NAW3Q8Gpyldp5DpIbvkZnn7x/0ubaXBn1MHufbs4/N15qulVUiLMYCCEtk3HF1zk7ZvfjCzJlI0yp0pJOl1u3rVpD03ua/fmeqNeFFnmpakkJxezbO8K0eSrNWKWJchVDFKFKhXDRJKkWoqnLNHiHEE3j7CQzrOSLSMLDx6lkzZvE3s6e3nz4BBhz9UqXkrQtg2mn72wyHXl81VkheHQMMfjxxlLjq0RIbqpEyvFSJaS5Ko5snqWXDVHrpqjFKzAJXOUKEj0KRH8ATc7O34UTdFqU7hLyvmURYuKWaHYVGbm+RwLyQKOUoSWcIQDRi+yRybU6mFo76sXIACBqAvNqVIuVTGKEsVslcmX4xhVE2/Iyaa72jANwcmnFiikK8ycSNC/8/LsAkmS2NOyh0dnHuVE/AQn4ifwaT5ava20eloxLIODywcBeFPXm9ZNlewN9PK+offx8NTDJMtJHjr3ED8+9OMXibP1SSzmycRKOD0qnoADt99Bq6eViCtCspykTe6iyxjAnQhSmtJJWFVSKwbL319GbvJx1957cSgOFldrs0kHm92N5yKXy3HixAna2tro7+8n6o6yt3UvB5cPMpebA2Bf6z5UWcUXWfssRdpvXEDd03kPc7k55nPzjKfGibqjZCoZ0pU0mUqGTCVDxaxgChNLWI2PYRnolo7wACE/WsZHNDaML+ynkj2GJOeZykwxnZlmKDyEW3VzauUUlmlxZ+BOelovZJmFXCF2NO/gSOwIzy4+S7e/uyESmpubWVhYIJFIYFlWYwLAY6vHAGrTAlxS1G1b0zYkSeKpuacQCLr93exq3kWXf32hV0eWZN7U9SbCzjDPLD7DWHKMbCXLj/T/CEW9yJHYEcbT47U0ZcskIAd4S/dbrrhPWZLZ3rydZxee5bnp5+jSuggEAq+6Yu1rwRYhtwi3z4+/6mWrNYUcTRJRiyieu6hUW1nUTRxWhZCsk97cwy5/FK2sM+uoYggvjvkp9IU5VrDQg81oTy4jFtK4FqYwPa1kHVAORKhU8wT9IVq7OhG6Rm/Uw5IqU+xyop8tQNZgoVhmYbWA6ZlmyB9ifDxJPCkYcVUQriU294zS3O3D6XOgeDWC50VD2bLwubqYMXyk9WViySPc4dpEp8eJK61jRjxkW+4kpfRRHXucU5UUT5fvJ52RMNIpZHcAhxBoilTrfUsg4WZB7UME3LgqfoqBCM7tQayAG4fTiVNzEtQUmhQJTZHRznsXal6GHmT2c/aVJ8jPnWLIV6QjIKMFBijvehezZ/4Bv+Xlx4YO0OkLoLju4ZHpR4jp47SF7rxixcf1MC2Tx1InMZo305WcZU+pgjT+EOGWA8RitWJBQ91RVoMJstUsk+lJhsPDTKYnsYRF1BWlyd103ce7eyDKcqbMbLLINw8vEHRrZMsG+bJxkYi7nIp1By6rwKg7RNTrZ1d3iG2dAZzqdc4T0bb9gghRNLjGC280Msrx+HGmMlMcWz3GammV1eIqqXJq3doGAJIK7ohKq6e18VJu8bTgUK5juCEM7UaWmRNxtlsCjVomUKjNw9Ce1yZAoDaxYLjdw9K5KtWUwvhLKwiDhgBRNQVVg8E9LYy9uMzqbA5f2EVzz+Uj6YOhQe6s3snZ1FmS5SR5PU8+nWcyPdnYZl/rPrY2bb3i+TR7mvnx4R/nGxPfIFVO8Z2p7/CewfegyZdXExVCsDCWYnEifdk6WZXZ4j1AtapjlWovmRI6SBKeiEZMWSRkRWnKd5E6Ijg5vUC1VBv2DLbUhKthGJw8eZJyuczs7CwdHR04nU72tOzhXLrmIfU7/IxGRgHQHApuv4NSrorTo9UK8N0gQWeQPa17OLh8kO/OfveGvutQHAwEBxjqGyZzXKKUqWJaFm2OFt4x/KO8kniFc+lzTKQmACgUCmx1b2WkbQTlkpTbfa37GE+Ok6lkOBY/xu6W3bXzCwZxOBxUq1XS6TSRSIR0Oc1MdgaAHU071j23rdGttLhbkCWZqPtGvEOwvXk7QWeQR2ceZamwxD+c/gcqZqWxvtPXyfbIdo7NHSPguDxg9mI2Rzbz0tJLTC1P8a/Jf+Wtu99Kc/OtT9m1RcgtQhQNAtUp1MA8eadJ3uenT3eyknVg5nO4hMApq1SjATAlnKoDT8CBKxKmq9OD8czTqMtnyIseDMWLa+44QlaROkZIaUWsag5VMvA1hXD5gzz70iweh8pP39HDvr4ws8/MkZhME4y7WC1nOfrsOTQlSkqvYsl+0nKF9laZSIeMY15F8WtIkoRDkvAoCkXT5MHlJD7fdqZX5pD0SfLefizLwXe+O03pGQm93Q2KhGXdxYTSxLAaxllZJeRzMtDXxr4d/QTdFxrQRCLBsWOz6K423OF2/EEPO+/rviE1nu0epoIL3Q8OXwl67uJUagzDMmhyN9HhrdVGGAgOEHaFSZVTHFs9xh1td1z3MU4mTpIoJ3D523j7wHuRzjwMsTNEnA5iFQtJsugdjZIPdXBwuRY3MxSqzd0BtR7RjSDLEj+6vZ2/f3GGXNkgV74QVKbIEgGXituhnA9qFViWwLQElojgc7WwqzvEULOvUfZ+ZWUFRVFoarqGEHKHIdwLqZmaF+Qa16HJ3dToYT+zsHaWap/mo9nTTMARwO/wr/nciAC8lJY+P8mlPCTKICDc7mVwT0vD1tdKtNPH0rk0RknGqFoEIu6GAKkTbHbTtSnM/JkkMyfieAIOvKG1NkmSxN7Wvext3UvVrBIrxlgprrBSWCFeijMQGriuezDgCPDugXfzzbPfZKmwxOMzj/POvneuKbltWYLpY3HiczkAmrr9IKCYq1LKVbEMi0yyRFEvIiSBK6LgaVZwRWUWSnPE2sdo79nHTtcoueUKhXTtpSbJEoHzE71NTExQKpXOH89icXGR/v5+FFnh7b1v59nFZ9ndvHvNUII/6qKUqxK5OEPlBtnVsovJ9CTJchKn4iTkDBF0Bhsft+pGkZQ1njNFUvA7/I2hisodBiefXsAsWUiyIOwK8yN9P8JqcZUXl19kJjNDu9VOt6OblpaWy87BoTi4q+Muvjf7PQ6tHGJTeBMezYMsyzQ1NbG4uMjq6iqRSIRj8ZoXpDfQS8gVuqJdr6U+R0+gh58Y/gkePvcw2WqtRk1/sJ/dLbtp9bai6zrHpePX3I9DcdDj7GFcH2dWniUcDr/qc3ot2CLkFmEuL+NUnybvrZJxBLGcXfQ7VGKSCgJajCq0tYNLRTIU9IIOuozDpdH5wE7SCzGM5TGCiZcxcWPKClrfJiIfug/9X/8PlZUkmgPCHd2cXs6RyFdxOxT29YVxaQoDu9poNSSCQZ3nE1WKpSpCkWn2ujldLXO84kRKFKhmz7DF0YPhVajOZ7CEIJMts1IxKFYNqgUn+RUPurTKnG+MiLwfaVlHqgjUskV4U4hoqxd11eID+7tZmi6TTpuM9jSvESCmaTIxUeuFBD3NSDgINLlvuLHyeGoxDkUtAqM7MS2TE1MnANjZvLOxP0mS2Ne6j8dmHuPY6jF2Nu+8rt53xazw8srLANzZdieepq0ga3DymwTLx+gOunEUp9GiP862cAeHY4dZLa5yKnmK5cIyEhLD4Rsfb3U7FP7t3i4mV/N4nSoBl0bAreF1KDf0G2UyGU6dOoUkSWzduvXaPZ2OPTUR4r/25FySJLG/bT/PLz1PwBFoTETW6mnFo119ttVXiyRJ9O9s5uzLK3hDTnq3N900AQLgCztxuGrNojfouEyA1GkfCpJPl0kvF5l4eYWtb+pEc6zvcXIoDrr8XTc8Y3CdJncT7+p/Fw9NPsRUZoqn55/mTV1vQpIkTN3i7KEVMqslJFmib3vTGs9MoVrkpamXOb0wUfNOBXQkVdSKbMRqzyES3D96gKFoB3rVJD6XJ7mYJ9DsRtFkVlZWWF5eRpIkOjs7mZ+fZ2FhgZ6eHhRFIeqO8t7B91523l2jYbxBJ9HOK89pci00WeOnRn4K3dKvORR1JZxuleF9rZw9tIzqv5CG2uxp5j0D7yGWiHEyfRJVVa/4It4U3sSJ+AlixRjPLz3P23reVttHczOLi4vE43G6+7s5kzwD1Nqeq1Eul5FlGYfj1QUcR1wRfnLkJzmbOkuXv4uw69UJiGg1iiRJlBwl0nqaJvX6PbY3C1uE3AqEQB/7fxRCMVADLKrt+CyNHZEIL50TCEmiRa+it9V67VrIgR6v9X59ISfOoBvn6F4wyuhz86imgaNjEN+BdxDePkjHUS8rioGEhK+1i+9P1soi7++P4DrfgCohJ0rQQUQP0CN7EB4He+/eynSmRP7FWeaTgoX0PA6zTF7SyVWbyecLSJLEnGQQkyy8FqhLJXzmKFVPCn9olS19bjr2tJM/m0OqWsgliQ63i4oPoj4nk8VafIfXu7Yhmp6eplQq4XK58FSDlNAJNN14I1Pfb6FQm5DubPosBb2AV/MyFBpas+1gaJCDywdJV9Icjx9nb+v6VSwv5tDyIcpGmbArzObo5trC5k2w+T1Ipx+iLZonl8yBrwW36mY0MsqJ+Amenq/Nv9Hl77osKPF6CXkc7O29vMDUjTA3VxurF0Jw+vRp3G43Pt9VxudbRsH1QXBf33EHQgM3NIvvzcDl1dh2/6t7oV8LSZLo2xHl7LzJ8P7WdQVIfbuBXc2cfHqRSkHn1NOLaOtky7j9Gs09frwh52sab+/0dfKO3nfw6PSjnEycxKt52RHaxfhLKxQzFWRFZmhvC6HWmvgzLZMTiRO8vPxyzV0fgWZ3Ew7F0fAcyJKMsASyJjdiejSHQvtgkPbBWjxQqVRifHwcgN7eXnp7e4nH45TLZVZWVujouHIVVlVT1h2qulEUWXnNU8/7Iy62vbmT2YePXrYunUgD0NTUdNlQTB1Jkri3816+PvF1xpJjuBQXu1t2EwqF0DSNarXKy7MvY1gGUVeUTl/nFc+lVCpx8OBBNE1j//79VzzmtXCr7tc0G65hGBRTRdq0Njpbr3y+rze2CLkFCCDZqWHknAjnnWRJglEhGumiXZ9m0eGiUy+z0NlRqzzj19AtHYBAkwfZo6K4NbTB/Ti6vZiZCnJ4J1qzD1QnTb0DxGJHkCSYtYLkKwZBt8aOzguBhZIk4ewNYKQrSAUTNSShyTp7eyO0Bd38/56fJhOr4EiuYpBD6FX82QTeUIQ2f5iM00nEkjhdktjePkRXl8FqZR7hOsu2vndi9IaYOhontVRg9lSK4rzG6ecXiZ2tgIBZJYMk5RCWoFyuMDMzi7AEbW0hSsp5W6PXnir8UuqekEqlgq7rHF2tNTLbmrZd1nDJksze1r18d/a7HIkdYXvT9qt6Q+pjwAAHOg6snXWydSuYOpz+F8pauBE/sbN5JyfjJzFMA0mSGAmP3LBNN4tCoUA8HgfA7/eTy+U4fvw4e/fuvXoPLHDlF8sPA4EmF64m85qzraqawvC+Vk49u0ilqFMp6pdtk0+VWZ3N4fY7aO7109TpQ72Cx+RaDIYGubfzXp5eeJoXz75CIikISVE0h8LI/la8ISeWsJjOTvP84vNkKrVMp6gryoGOA3QHLp+tWNd1Hj7x8LrHsyyLU6dOYRgGwWCQ3t5eZFmmq6uLs2fPMjc3R3t7+4YEM94sLMtidbVWbXS9oZiLafO2sa1pGyfiJzi6epSTiZNsi27DG/KSjCU5vHAYV9DFjuYdV/1NFhYWME0T0zSJxWK0t1/b6/h6sLq6imma3BW5i7u33b1h19EWIbcASZJo3fJBZsfLdKhvw5S+RMHQcXm7eKB0jNVilgG3g2Q4BKUsllvBkKoARJp9yG4N2a0hIePa8iaMVAkjUUaJ1l58wYEddM6fQ9VkvrVaCwi8Z6gJ9ZJAPbXZg+LV8Cke8rkq2WyWQCBAZ8jNaFuASUvgtlxs8pgU2mq9KShAsUCP6eZI3kvA7eSeoSYG2g7wT2P/xGR6ksX8Ih2+Dob2trAylWX6xCpGWSKxlKNaAE1VKWZqDbQQgqXlZYyKwOvx4DgfH+CLuHC4b/x21DQNp9NJpVJhMj5JvBRHlVW2RtcP+BsOD/PyystkKhlOJk42gszW44WlF7CERbe/mx7/OvOydOzC8rQyn32a+tGCziBtjjaeH38et8NNsCu4ZhbOW8n8/DxCCJqamhgdHeXQoUOUSiVOnDjBrl27GtH8Nq8eT8DBjrd0NeIoLkZYkF4pklzKU8pVmT2RYP50knC7l1CLB5dPw+3Trjug1rIEHdV+ehYyzCwucpYpcJ2FkQwvzFgwc8m5qR72t+9nNDL6qqZtn56eJpvNoqoqmzdvbtwv7e3tTE9PN2aSvWas0Q8wqVSKarWKpmnXFRNxX+d99AX6OLh8kJXiCkdWj1AtVdGLOkmRZDgyfNXhV8MwWFpaavx7fn6etrbLCwzeCpaXa5PzdbR3bKiQtEXILULTgmjZvXiDHoRcpWJZoITwu5x4Mhm0oX68ztrlyFRKVHriUFLoaG9GUiSUoBMW85gFHTNXe6FrTTUvgNQ0TG93mLNpQdlSaA24GGm93OUuyRLOngD+JS+ZTJ7V2CqdnZ1gCe5sDTAxHmeu6qC/PULf1hao5MmmEiQSCU7NrZIrLtM2uJm9vWEUWWJTZBNnkmd4ZPoRfmrkp/A5fLQNBPGEVObSp4n2Oyg7IBT2MTzaiiRJxGIrpOUKflVl9+4tOF01N7XLd3nE/3pUzAon4idwq25aPC2EnWE8Hg+VSoVDS4dArmVtXGn8uO4N+d7s9zgSO9IIMruU5cIyk+lJJCTu7rhKL8HbhHlJMaqmUhNOyUmn1MnpE6dZDi8zODiI33/r6hFWKpVGI9Pd3Y2maWzfvp1XXnmFTCbD+Pg4mzZtekP3Yn9QcLhUHG3rN6WRDi89WyMkFgqszmYpZqsk5vMk5mtZVUgSLq+K2+fA7ddwuFW08/MX1T+mKVidzRGbzlItGTTTQclnsOqaQ3TlkbQLmUiJRIJyscyW0Bb2te8jYkXQqzpO540FA6dSKWZnZwEYGRnB7b7gpVRVlfb2dubm5pifn3/NIkQIgWEYVCqVRqfiVpDJZDh9+jRQ84JcjyiXJImeQA/d/m7mcnMcXD7IkrXEkrmEZVn0OHrW1O64lOXlZQzDwO12U61WyefzpFIpIpHXNux6o5RKJdLpNJIk0dbWdu0vvI7YIuQWIYRAMSUUq4LTrWCobvJGETXgx8xk0Lq6GyJkqbAMoSrBlgBeRy2eQPFpyE4FoZsIUyCpMkp9siFvE5mhH+OJo7VKnfcNN13x5aJ1eGkORVnILrN6ap6JJWhzRvAI6NMlJhE8k8qjHq6l6Lk0NwFnN8nqGYRVoc1Yplrpwe12c1/nfcRLceKlON+Z/g7vG3ofmqzh9jtwBC1Un4ErJNHSHSTc5qVSqbAyPo/DKzE8PECk9eopZJdiCYtHph9hPjffWCZLMkbOwCya5ESOaCR6xdS4OiPhEQ6tHCJTyfD/xv4fb+t9G93+C65qIQTPLtRSVUcjo0RdUWZmZlAUha6uq8ci5HI5jKzB24Jvo6Ojg6WlJVKpFC+//DKtra0MDAzgcr26ADuouY+npqbI5/OMjo5escGen5/HsiyCwSChUAioxc9s2bKF48ePs7S0hNfrpbv7che9zc1FdSi09gdo6fNTSFeJz+coZmuZK6ZuUc7rlPM6qeUr7ECS4HxqtuZUaenzs7unB6HV6mPUSSQSnEycRPEqKIbC4twii3O1ScucTiderxeHw7HmI8tyQ7Capkm5XKZSqZDNZhFC0NbWRmtr62Wn1NXVxfz8PKlUilwud0MCO5PJsLCwQKVSoVKpUK1WawGy1F7ymzZtet2HKJLJJCdOnMA0TYLBIP39/Tf0/UvFyMOlh4klYjhTzjU1Qy7Gsizm52ttV3d3N4VCgYWFBebn52+5CKl3UEKh0Gtqj24Gtgi5RYiKiSQkTCuP16lRkHxkq1l67rsPfW4O5/AQ3tVacOVyYRl/qDYGWUf2akguBVG1wLSQ/Y41ZaOfTgbJORT6m7x0R66cmSApMoH+JnqznUyl5plemcXf5sHr8XD/YJRwoUw2oJGummTLOmXdpKyD1txHi7GMU7I4evQou3fvxul08iP9P8JXx7/KanGVp+ae4q09b20cq3hRUKoQgomJCQzDIBAIXDWg7Uo8u/As87l5VLlWZ2K1tErVrJIXeRLVBB7Vc83UOKgJl3f1v4tHph8hVU7xL5P/wu7W3dzRegeKrHA2fZaV4gqarLG/fT+Li4ucO3euYcvV3Lb1QNDm5mZGRkbo7u5mamqKlZUVVlZWWF1dZXh4+FXZb5omp0+fboxh14dVLg1sMwyDxcXay6enZ+0wUjQaZXBwkLNnzzI5OYnH4yEavbFaBTavDkmS8IWd+MI14SiEQK+YlHI6pVyVcl6nWjHQyyZ6pfYRlgAh8ASdtA0EiLR7Lxq+udB867rO7OQsDtlBR0cHPp+PXC5HLpejUCg0XviXYlkWyWSS8fHxy16cXq+X4eH1hxZcLhctLS2srKwwPz/P5s2br+s3ME2TU6dOUS5fPkeKqqoYhsHY2Njr2kNfXV1lYmICy7KIRCJs3boVVX11r8K6GPmF/b/Aiy++iF7SWVpaqnmYLyGRSFAqldA0jdbWVqrVKouLiyQSCQqFwmXB+68XQghWVmrVbDfaCwI/ACLkL//yL/nDP/xDlpaW2Lp1K3/2Z3/Gfffdd8Xtn3zyST7+8Y9z8uRJOjo6+M3f/E0+8pGPNNZ/+ctf5j/8h/9w2ffqmRgbRX3WRkPO4lMdVCQf2UoWtWUA9fxLoO4JWS3FLhchHhXZpWIky+f/rSGdD5zLFHUmVvJIEtw7fG3XqLMvSK8yTGHKJFXOMhfOsPeOIQKKwtsv2k43LdJFnVSxStWw6A/3c/zYUUqlEkePHmXXrl0EHAEe6H2Ah849xFhqjCZPE1tCW4ALIsTj8TA+Ps7q6mqjp3Oj8Qgn4yc5Hq/lvr+95+0MhAYQQtSKgy1P8lLhJSzZ4p7Oe65rfxFXhH878m95duFZTiVO8crKKyzkFnhrz1t5YekFoFajgCpMTl4oMHX27Fn27t277vmXSiVisVrJ9frL3+12s2XLFrq6upicnCSdTjM2NoYQYt2G6krUi0Ulk0lkWUaWZbLZLGfOnGHLli1rPF+Li4sYhnFFgdHV1UWhUGBpaYnTp0+zb9++De8N3Y7ouo4sy1fNuHC4VBwulWDz5UHZQghM3cI0BQ7X1VOzJycnqVQqeDwehoaG1hzTMAzy+TylUolqtbrmUyqVGqmpHo8Hl8uF0+nE6XQSDAavmrnR1dXVENf9/f3XdQ8tLCxQLpdxOp0MDg7idDpxOBw4nU5kWWZiYoKFhQXOnKmlut7sl2SxWOT06dPIskxLS8uaWJfXgqZp9PX1MTExwfT0NK2trZcJm7oXpL29HVVVUVWVaDRKPB5nfn6eTZturJ7QqyWdTjeu+0YUJ7uUDY1M+8d//Ed+7dd+jU996lMcPnyY++67j3e9612NschLmZqa4kd/9Ee57777OHz4MJ/85Cf51V/9Vb72ta+t2S4QCLC0tLTms9GNrFUyAAtDzeBVHaiqn1w1t2Ybr1NFCItkOVZzha4RIRqyS0FUa2JGCV5I+ZtN1l72HSF3o8T31ZAUCVdfkK0HduH0uymUCkxPT1+2nabINPudjLT62dYZxOtxs3PnTpxOJ4VCgWPHjmEYBl3+Lg50HADgucXnmM/PY5omul6LXZmbm2NxcRFJkhgdHb16iug6LOQXeGrhKQD2t+1vpIRKkkTQGWRb+zY2uTaxRduCT73+fWuyxpu738wDvQ/gUBysFFd48MyD5Kq5WgpkdAenT5/GNM1GKl4+n18TWHYxc3NzCCGIRCKXuacDgQC7du1qDH+Mj4+zsLBwXedZrVY5evQoyWQSRVHYvn0727ZtOx9jE2Nm5kJE4sUu356ennVfXJIkMTw8jN/vR9d1zpw5g7hKJVabG0MIwcLCAs899xwHDx5ct9d/PUiShOpQcLrVqwqQZDLJ0tJSQ+BfKhxUVSUUCtHe3k5vby/Dw8Ns3bqV3bt3c8cdd9Dc3Mz27dsZHR2lr6+P9vZ2IpHINVNHA4EAoVCoYe+1qFarjXu1v7+f1tZWQqEQHo8HRVEa92VHRwdCCM6cOdPosb9WhBDMzc2RydQyhjo6Om6aAKnT0dGBx+NZY2edXC7XiMG4uPNRH95dWVmhWq3etHO5GvWhmObm5ledHnwz2VAR8id/8if8wi/8Ar/4i7/I5s2b+bM/+zO6u7v5whe+sO72f/VXf0VPTw9/9md/xubNm/nFX/xFPvzhD/NHf/RHa7aru/Iu/mw0omwgUUE4DALOEJLkIFvNrtnG61AoW1l0S0eWVCKuC+OEslcFWUZr9aK11LJc6sylaiKkO3xjBaKcTmdDfc/NzZFOp6/5Hbe7JkQ0TWukfBaLRXY07WBTZBNCCB6ffZycnkMIQSaTIRaLIUkSmzdvvuFrkalk+Nepf0UIwVBoaN3aHpqmoWkaQoiG9+VGGAoP8f5N76fN29YoN35n+50szC2Qy+XQNI3NmzfT19cH1MRwXWDVqVarDXFy6RBIHUmSGBwcvCEhUi6XOXLkCNlsFk3T2LlzJ5FIhHA4zMjISON86h6YlZUVKpUKTqfzqimHiqKwefNmFEUhlUo1hIvNa8MwDE6fPs34+DiWZTW8husNhdys442N1SrzdnZ2NuJ/bhX1l2jd+3Y1ZmZmMAwDn8+3bpwJ1J6RkZER2tvbG7VtboYQmZ2dZWpqCqg9nyMjIzc9O0yWZQYHB4Ga16NeYbb+b6gFwF7cIQ6FQvh8PkzTvGLn5mZiGEZjOPcH4b0IGzgcU61WOXToEL/927+9ZvkDDzzAc889t+53nn/+eR544IE1y975znfyxS9+EV3X0bTaizmfz9Pb24tpmuzatYvf+73fY/fuK6diXjpems3WxIGu65e9bF4ter4CUhlL1Qm62rEqBdKl9GX7r4g4Qlj45AimYWJS83wISSAkAe7ag2OpAl3XEUIwHc9hWSbtAe2GzzcUCtHc3MzKygonT55kz5491xwfdTgcbNmyhWPHjpFMJnn++eeJRqNs69jGqmOVlcIKp6qnWF5eJiyH8fl9bN2ylUgkckPnVzWrPDT5EMVqkWZPM/e233vFhs7lclGpVMhkMq/K6+WW3Ly7990cjx+vFRyyohybqtUIGRgYQFEUWlpamJubo1gsMjk5yeDgYMOe2dlZDMPA7/fj9XqvamdPTw+maTI/P8+ZM2cwDOOyGBHTNMlkMpw9e5ZyuYzD4WDbtm14PJ7Gvpubm8lmsywsLHDy5EkURWF6ehrLsmhra8OyLCzLWu8UgNp17O3t5ezZs0xMTODz+a7qpaof91LbTNP8gehR3SyuZOe1KBQKnDp1ilKphCRJdHd3E4vFyOfzvPLKK+zYseNVV8i8EhMTExSLRVwuF93d3Td8zq/W1jrBYBCn00mpVGJmZuaKArxUKjU8hfW2uR6Muh4DAwMYhtFol0zTfNVDB0tLS5w9exbTNPH7/XR2dl5TML1aAoEAgUCAdDrNxMQEmzdvplKpsLS0hBCC1tbWy37r9vZ2xsbGmJ2dpa2t7TWLo6td0+XlZXRdx+12r2lLbjY3sl9JbJAfdnFxkc7OTp599lkOHDjQWP77v//7/O3f/m1D3V/MyMgIH/rQh/jkJz/ZWPbcc89xzz33sLi4SHt7Oy+88AJnz55l+/btZLNZPve5z/Hwww9z9OjRKwZZfeYzn+F3fud3Llv+D//wD41iWK8Vd0HBo89Q9k+RUJp4trSIIinc77x/jav1q7FTJMQy+3197PaurUTZtOJEq9Zu0ILPIBvWyenwzLKMIgne3il4NRWsLcsiHo9jmiZut/u6e1O6rpPL5dYIOEuzGHeONwSWqqgEfUGaHE1E5AhuyY1V/080/lp3/3ErTspM4ZSc3OG8A6d05aGmTCZDsVhElmV8Ph8ej+eKLmzDMCgUCpimicvlwu1eWy7+ar9HpVIhmaxlITU1NaFpGpZlEYvVhtDC4fB1iSAhRCNoEGqNl6IojbH6ix9iRVGIRCLrikMhBKlUikqlgiRJjZok15tyePH3VVWlqenKmVXrfTeTyVAqlfD7/Tc8zPaDRD1NtN7xEEI0YiOu53csFouNjBJZlgmHwzgcDgzDIJlMYpommqYRiUSu+yVT96RcnLqqaVrj+lx8L0YikVuW2nopxWKxMcwRDAbXbTNTqVQjFuR6M0Euvr+g1tHw+/03FERaLpdJpVIA+Hy+W5Imr+t6o0hgNBqlUqmQz+dxOBzrxmgJIYjFYliWRSgUWpMOfbNJJBJUq9XX/XktFov87M/+LJlMhkDg6lmQGx6YemmDd63CTuttf/Hyu+66i7vuuqux/p577mHPnj38r//1v/j85z+/7j4/8YlP8PGPf7zx72w2S3d3Nw888MA1f8DrpVqt8uSTn2JwsIu9bT/B6uTDCCF465a34lYv3HRPf3cWkY9wYNvbeMvg2ojz8skExkptuMExEMTRF+DIXJqViTg9EQ/v2fXqK11ms1mOHDkCQF9fH93d1z+RXD3VrP4gdevdPDf+HJbfItgTxB+qPfgCQZHrHy5pook2uY33DryXFs/VqxmWy2VOnjzZeKl7vV4GBwfXCIhiscjs7Cyrq6trlmuaRnt7O+3t7TidTsbGxggEArhcrnU9QydPniSRSBAOh9m0aRP//M//TH9/Pz6fj3379t3QS3xqauqKQyFOp5NQKER/f/9Ve9CGYXDkyJHGUFRXVxcDA9dfSr3uldR1nc7OzoZL+VJ0Xeexxx7jHe94B7Isc+rUqUYDDzUPT29v702tPZLP5xvXVAjReN6FEASDwVedUVAXX8lkknw+Tz6fb3iNTNPk3LlztLe3N4RDU1MT0WgURVEQQlAqlSgWiw3xkUwmaWlpIRQKMTo6uuZ6FYtFjh07RrVaxefzsWPHjiu+SOsv3qWlJeLx+GXtT72oViQSYXp6mmg0Snt7+xU7WNfi4mta9yTfKEIIJicnGxlZIyMja1z9F7cte/bsuaGXnxCCc+fONYYt60PtPT091xRd6XSaEydO0NTURFtbG319fTz++OOvydbrZWxsjJWVFfx+P+VyGV3X2bx58xW9ObOzs0xPT+Pz+di9e/dreoaudE3r5eIB9u/f/7rGSdZHE66HDRMh9Tr99SCZOrFY7IrjhW1tbetuX48yXg9Zlrnjjjsak6WtR73Hcyn1WIObgWFkkaQKiqIS9Hfjd/op6AWKVpGAVmtoinoRSy4hSTJ+R/Nlxzb9LqzVmtdB89R6RUs5HVlW6Gv2v6ZzjUajDAwMMD09zezsLJlMhk2bNl1XIx8KhQiFQgwPD7OwsMDs7CxNehOjLaPce8e9VNQK87l5FvILlIwSqqyiSLX5IFRJRZEVJNYPoNwc2UyH79riqj4Pw+LiYmNemhMnTtDc3Ex7e3ujUa+L3Gg02ghgrlQqjUm5wuFwIwB069at6/ZKRkZGOHjwIJlMhkwmQ6FQoLW1lb6+vht2t4+MjKCqKrOzs3g8HkKhEMFgkGAweN09Ik3T2LVrF6+88gqWZdHX13dD94KmaWvqh7S0tFyzt3ry5MlGnEprayuLi4vMz8834l5uhhBZWlpqZBJdiZaWFvr6+q7rPhVCkM1mG6nSlwYCapqG3+/H7XazsrKCz+dreBvqWUlut5tSqXTZMJeiKI25VS71dASDQfbs2cPhw4cpFoucOnWKkZERLMvCNE0Mw8A0zUa9jnrPX5IkAoEAzc3N5HI5UqkUhmEQj8cbPW2Px9O4h14Lr7WtGx0dRVEUFhYWmJycbBQ0E0IwMzODLMu0t7e/qplaR0dH6erqYmpqing8zsrKCvF4nK6urkYhvkvJ5XKNDJt6Fkx9+OdmtutXYnh4mGQy2RDQHo/nqkMt3d3dzM/PN4TtlbzR9bi3bDZLNpulUCjgcrkaQ6k+n69hW91rVhfMsVis4aV7vT1CN/L7bpgIcTgc7N27l8cee4wf//Efbyx/7LHH+LEf+7F1v3P33Xfz0EMPrVn26KOPsm/fvisaLYTgyJEjbN/+6if6uRlUKrWgI4ejGVnWCDgCFPQC2Wq2kQWzUlxBUyTcSpCKfvkY+8XBqLJTwbIE868yKHU9+vr6cDqdTE5OkslkePnll+nv76erq+u6XMgOh4P+/n6ampo4depU7eHw+ggqQVo8Lexp3fOaz/Fq1Oe1aGlpYXp6ujHFdj0QC2rit7e3t9HDrE/ItbCwQDqdbri3u7u7r9gQeDweurq6mJ2dZWxsDNM0cTgcVxTPV6P+0u7v739NY8Fut5s77rijMYxwozQ1NdHZ2dlIj9y3b9+6gso0TY4ePUq5XG5UYa17JCYmJpibm8OyLIaHh1+TEFleXm4IkEAggKrWMkTq+zRNk1QqRSwWY3V1tSFGLh4KEEI0XOHZbJZYLLYmWNDhcNDc3EwwGFwzhKfrOmNjY+zbt49KpdI4RqlUarxUFEXB4/Hg9XrxeDyEw+Grek29Xi87d+7k6NGjZLNZXn755Stuq6oqLS0tdHR0rHlZWJZFJpMhkUiQTCYpl8ts2rTpNQuQm0E9swVqabj14XRFUchkMiiKcsMFwS7G5/Oxfft20uk0k5OTZLNZZmZmmJ2dxev1NmIxAoEAkiQ1MvdCoRBbtmxBluWrxqDcbJxOJz09PY1g2Gu1oQ6Hg7a2NhYXFzl69Ghj6E3TNBwOB4qiNMTHpfEsmUxmTfCupmkkEola3ZJ1YjM2aq6aK7Ghd+/HP/5x/v2///fs27ePu+++m7/+679mdna2UffjE5/4BAsLC3zlK18B4CMf+Qh//ud/zsc//nH+43/8jzz//PN88Ytf5P/+3//b2Ofv/M7vcNdddzE8PEw2m+Xzn/88R44c4S/+4i82xMY6lUrtJnE6a4Ij4AiwVFhak6a7XFjGocp4lSiFyuUPjOy5IEIkp0I8X6GiWzhUmRb/ax8PliSJjo4OIpEIY2NjJJNJJicnWV1dZXR09Lpd3+VyGUmScLvdGxKw6HA4GBkZoaOjg7Nnz5JOp2lpaaGnp+cyV3C9XkBLSwu5XK7hUr5Wg9nb28vy8nIj/bKrq+s12XozIvVfa9Dj4OAgqVSKYrHICy+8QCAQaHhlAoFAY66Qupdmx44djd+z3sjWM34sy3rVGQgrKyuNtOGOjg5GRkbWFTT5fJ7p6WlWV1dZWVlpeFEVRaFQKJDP5y9rsBVFoampidbWVsLh8FXPT5Ik/H4/fr+fgYEB8vk81Wq1UU/jRkWW3+9nx44dnDlzhmq1iqqqKIqCoiiNvyORCM3NzesKi3ov9tV4E24F6wmRuh3d3d03JWYlFAqxZ88e4vE4U1NTjeucz+cbz249Nsrn87Ft27YNC5qu11GpB4pfi3ogs2EYlEqlNYL5YhRFwe/3EwgE8Hq9lMvlxm9QjyGqVqtUKhVkWcbhcODxePB4PPj9/mtO1Her2VAR8oEPfIBEIsHv/u7vsrS0xLZt23j44Yfp7a1NK720tLSmZkh/fz8PP/wwH/vYx/iLv/gLOjo6+PznP89P/uRPNrZJp9P8p//0n1heXiYYDLJ7926eeuop9u/ff8vtuxghTAQKTmettxxw1npN2cqFsbPlwjKacl6EVC+P3pY9KvV2T3YpzC3W5p/oCruRX01E6hVwuVzs2LGDpaWlRq/j5Zdfpr29na6urmsG617sgtxIfD4fu3btuu7sDb/ff90Fg1RVZWBggFOnTv1AzL9wM1AUhS1btnDixIlGQF895qPesNeDdXfv3n3ZcFFHRweyLHPmzBmWlpbQdb2Rflgfcqhfi7a2NiKRyGUv8lgsxunTpxFC0N7efkUBAjReMrlcjqmpKRKJxGXDtZIk4fF48Pl8RKNRotHoq/Ic1AXJayUQCGx4W/R6cqkQ0XUdh8NxU6cHkCSJ5uZmmpubKZfL5HK5xvBELpdr3KM7dux43Yddroaqquzbtw/gutofj8fDgQMHGjOC1wPU6x+3290QHlcSz4ZhkE6nWV1dZdeuXfj9/puekXWz2XA/3i/90i/xS7/0S+uu+/KXv3zZsvvvv59XXnnlivv70z/9U/70T//0Zp3eTSMafQt6tYDHUwv68ztqDVpOr3lCTMskVozhUGQ0uYlC5XIRIqky7m1NtbljNIW5ZE0pd92EoZjLjrWOV2RhYYHFxUWam5vp7u6+ovv54kqpPwi8Xj2htrY2dF0nmUz+QLjEbwZ+v5+77rqrkfGQTqfJZDKUy2Usy2rUKrlSvEp9RtDTp0+viV24lFgshtvtpr29nba2NpxOJ6urq5w6daoxZ8n1TrBX9zBkMhmWl5dRVRWv19sYYrFnC7611IWILMssLi4yNDT0uj0fLpcLl8vVCPi0LKuRsvyD8EzeaNtTH+Z7taiq2vBUBgKBDRVh18vGX6UfKmQkqfaTBxxrPSHxUhxTmPidbiqyn2LVXDdTSGurDYmYlmAhXRMh3ZHXL6Wr7hVJp9PMzs6STCaJxWLEYrFGFUZJkho1KSzLahQ9+0ERIa8XkiTR3t7+A9/TuFEkScLr9eL1ehv1S0qlEplMhlwud017W1tbcTgcrKysNMqWXzzkkM/nGwGY586dY3p6mkgkQjKZbNRSeDUz/NaHjmw2HkmSGBoaYmBg4JaKwHqKvs0bB1uEbBB1EZLTc1jCYrlYcyN3+Ts4l5CoGhZV08Kprq+kV7JlqoaF26HQfB2l2l8LkiQ1xqLz+Txzc3OsrKyQTqfXrbJazxy4VRMy2bz+uN3uRnDo9XCt2IWBgQFisRiLi4tks9mGx6SlpYXR0VHbe3GbYF9Hm2thi5ANwqt5kSUZS1jk9TzLhfMiJNDOvCpTNSwKFfOKImTu/HwxXWH3DfcYXws+n4/NmzfT39/P/Pw82WwWSZIak6rJstyYpdEWITZXQlGURm2WXC7H8vIysiy/5iwhGxubNxa2CNkgJEnC7/CTqWTIVXMNEdLmbcPn1EkaVQoVg4h3fdf3XOr8UMzrEA9yPbhcLoaGhtZdp+s6k5OTt1Qc2bxxqWeg2NjY/PBhdzk2kPqQzGJ+kYJeqJXb9rTgcdS8H+tlyAAYpsVSIx7k9o67sLGxsbG5fbFFyAZSFyHjqXEAmtxNaLKGz1lzUK1XKwRgKVPGsAQ+p0rY84Mf/WxjY2NjY7MetgjZQOppuplKbfKnNk+t1oSnIULW94TM1aukRm5tPIiNjY2Njc3NxBYhG0jdE1KnXr7d5zw/HHMFETL/OtYHsbGxsbGxuVXYImQDqXtC6tRFiLfuCalePhxTNSyWMrVS4RsVlGpjY2NjY3MzsEXIBlIv3Q61lF2fViuy43VceThmMV3CEoKAWyNox4PY2NjY2LyBsUXIBuJSXGhyTUi0edsa8R11T0h+HRHSiAcJv35VUm1sbGxsbG4Fdp2QDUSSJAKOAIlyglbPhWng6ym6VcOirJuUqib5ikG2rHM2Vpu0zk7NtbGxsbF5o2OLkA1mW/M2ziTOMBIeaSxzqjKaIqGbgi88MXnZdySpVinVxsbGxsbmjYwtQjaYrdGtbI1uXbNMkiTagu5GaXZNkfC7NPwuFZ9TpTfqxe+y40FsbGxsbN7Y2CLkB5T37eogXdLxOVWcqmzXA7GxsbGxue2wRcgPKKoi0/Q6z45rY2NjY2OzkdjZMTY2NjY2NjYbgi1CbGxsbGxsbDYEW4TY2NjY2NjYbAi2CLGxsbGxsbHZEGwRYmNjY2NjY7Mh2CLExsbGxsbGZkOwU3TXQQgBQDabvWn71HWdYrFINptF027vQmO2rbcnPyy2/rDYCbattyM/CHbW3531d+nVsEXIOuRyOQC6u7s3+ExsbGxsbGzemORyOYLB4FW3kcT1SJUfMizLYnFxEb/ff9MqlWazWbq7u5mbmyMQCNyUff6gYtt6e/LDYusPi51g23o78oNgpxCCXC5HR0cHsnz1qA/bE7IOsizT1dX1uuw7EAjc1g/Axdi23p78sNj6w2In2Lbejmy0ndfygNSxA1NtbGxsbGxsNgRbhNjY2NjY2NhsCLYIuUU4nU4+/elP43Te/pPS2bbenvyw2PrDYifYtt6OvNHstANTbWxsbGxsbDYE2xNiY2NjY2NjsyHYIsTGxsbGxsZmQ7BFiI2NjY2Njc2GYIsQGxsbGxsbmw3BFiG3iL/8y7+kv78fl8vF3r17efrppzf6lF4zTz31FP/m3/wbOjo6kCSJb37zm2vWCyH4zGc+Q0dHB263mze/+c2cPHlyY072NfDZz36WO+64A7/fT0tLC+973/sYGxtbs83tYusXvvAFduzY0Sh0dPfdd/Od73ynsf52sfNSPvvZzyJJEr/2a7/WWHa72PqZz3wGSZLWfNra2hrrbxc76ywsLPBzP/dzRKNRPB4Pu3bt4tChQ431t4u9fX19l11XSZL45V/+ZeANZKewed158MEHhaZp4m/+5m/EqVOnxEc/+lHh9XrFzMzMRp/aa+Lhhx8Wn/rUp8TXvvY1AYhvfOMba9b/wR/8gfD7/eJrX/uaOH78uPjABz4g2tvbRTab3ZgTfpW8853vFF/60pfEiRMnxJEjR8S73/1u0dPTI/L5fGOb28XWb33rW+Lb3/62GBsbE2NjY+KTn/yk0DRNnDhxQghx+9h5MS+99JLo6+sTO3bsEB/96Ecby28XWz/96U+LrVu3iqWlpcYnFos11t8udgohRDKZFL29veJDH/qQePHFF8XU1JR4/PHHxdmzZxvb3C72xmKxNdf0scceE4D4/ve/L4R449hpi5BbwP79+8VHPvKRNctGR0fFb//2b2/QGd18LhUhlmWJtrY28Qd/8AeNZeVyWQSDQfFXf/VXG3CGN49YLCYA8eSTTwohbm9bhRAiHA6L//2///dtaWculxPDw8PiscceE/fff39DhNxOtn76058WO3fuXHfd7WSnEEL81m/9lrj33nuvuP52s/diPvrRj4rBwUFhWdYbyk57OOZ1plqtcujQIR544IE1yx944AGee+65DTqr15+pqSmWl5fX2O10Orn//vvf8HZnMhkAIpEIcPvaapomDz74IIVCgbvvvvu2tPOXf/mXefe7383b3/72NctvN1snJibo6Oigv7+fn/7pn+bcuXPA7Wfnt771Lfbt28dP/dRP0dLSwu7du/mbv/mbxvrbzd461WqVv/u7v+PDH/4wkiS9oey0RcjrTDwexzRNWltb1yxvbW1leXl5g87q9adu2+1mtxCCj3/849x7771s27YNuP1sPX78OD6fD6fTyUc+8hG+8Y1vsGXLltvOzgcffJBXXnmFz372s5etu51svfPOO/nKV77CI488wt/8zd+wvLzMgQMHSCQSt5WdAOfOneMLX/gCw8PDPPLII3zkIx/hV3/1V/nKV74C3F7X9WK++c1vkk6n+dCHPgS8sey0Z9G9RUiStObfQojLlt2O3G52/8qv/ArHjh3jmWeeuWzd7WLrpk2bOHLkCOl0mq997Wt88IMf5Mknn2ysvx3snJub46Mf/SiPPvooLpfritvdDra+613vavy9fft27r77bgYHB/nbv/1b7rrrLuD2sBPAsiz27dvH7//+7wOwe/duTp48yRe+8AV+/ud/vrHd7WJvnS9+8Yu8613voqOjY83yN4KdtifkdaapqQlFUS5Tn7FY7DKVejtRj76/nez+L//lv/Ctb32L73//+3R1dTWW3262OhwOhoaG2LdvH5/97GfZuXMnn/vc524rOw8dOkQsFmPv3r2oqoqqqjz55JN8/vOfR1XVhj23g62X4vV62b59OxMTE7fVNQVob29ny5Yta5Zt3ryZ2dlZ4PZ7VgFmZmZ4/PHH+cVf/MXGsjeSnbYIeZ1xOBzs3buXxx57bM3yxx57jAMHDmzQWb3+9Pf309bWtsbuarXKk08++YazWwjBr/zKr/D1r3+d733ve/T3969ZfzvZuh5CCCqVym1l59ve9jaOHz/OkSNHGp99+/bx7/7dv+PIkSMMDAzcNrZeSqVS4fTp07S3t99W1xTgnnvuuSx9fnx8nN7eXuD2fFa/9KUv0dLSwrvf/e7GsjeUnRsUEPtDRT1F94tf/KI4deqU+LVf+zXh9XrF9PT0Rp/aayKXy4nDhw+Lw4cPC0D8yZ/8iTh8+HAj9fgP/uAPRDAYFF//+tfF8ePHxc/8zM/8QKaIXYv//J//swgGg+KJJ55YkxJXLBYb29wutn7iE58QTz31lJiamhLHjh0Tn/zkJ4Usy+LRRx8VQtw+dq7HxdkxQtw+tv76r/+6eOKJJ8S5c+fECy+8IN7znvcIv9/faH9uFzuFqKVbq6oq/sf/+B9iYmJC/P3f/73weDzi7/7u7xrb3E72mqYpenp6xG/91m9dtu6NYqctQm4Rf/EXfyF6e3uFw+EQe/bsaaR3vpH5/ve/L4DLPh/84AeFELV0uE9/+tOira1NOJ1O8aY3vUkcP358Y0/6VbCejYD40pe+1NjmdrH1wx/+cOM+bW5uFm9729saAkSI28fO9bhUhNwuttbrQ2iaJjo6OsRP/MRPiJMnTzbW3y521nnooYfEtm3bhNPpFKOjo+Kv//qv16y/nex95JFHBCDGxsYuW/dGsVMSQogNccHY2NjY2NjY/FBjx4TY2NjY2NjYbAi2CLGxsbGxsbHZEGwRYmNjY2NjY7Mh2CLExsbGxsbGZkOwRYiNjY2NjY3NhmCLEBsbGxsbG5sNwRYhNjY2NjY2NhuCLUJsbGxsbGxsNgRbhNjY2PxQ8MQTTyBJEul0eqNPxcbG5jy2CLGxsbGxsbHZEGwRYmNjY2NjY7Mh2CLExsbmliCE4H/+z//JwMAAbrebnTt38tWvfhW4MFTy7W9/m507d+Jyubjzzjs5fvz4mn187WtfY+vWrTidTvr6+vjjP/7jNesrlQq/+Zu/SXd3N06nk+HhYb74xS+u2ebQoUPs27cPj8fDgQMHLpv63cbG5tZhixAbG5tbwn/7b/+NL33pS3zhC1/g5MmTfOxjH+Pnfu7nePLJJxvb/MZv/AZ/9Ed/xMGDB2lpaeG9730vuq4DNfHw/ve/n5/+6Z/m+PHjfOYzn+G///f/zpe//OXG93/+53+eBx98kM9//vOcPn2av/qrv8Ln8605j0996lP88R//MS+//DKqqvLhD3/4lthvY2OzDhs8i6+Njc0PAfl8XrhcLvHcc8+tWf4Lv/AL4md+5mfE97//fQGIBx98sLEukUgIt9st/vEf/1EIIcTP/uzPine84x1rvv8bv/EbYsuWLUIIIcbGxgQgHnvssXXPoX6Mxx9/vLHs29/+tgBEqVS6KXba2NjcGLYnxMbG5nXn1KlTlMtl3vGOd+Dz+Rqfr3zlK0xOTja2u/vuuxt/RyIRNm3axOnTpwE4ffo099xzz5r93nPPPUxMTGCaJkeOHEFRFO6///6rnsuOHTsaf7e3twMQi8Ves402NjY3jrrRJ2BjY3P7Y1kWAN/+9rfp7Oxcs87pdK4RIpciSRJQiymp/11HCNH42+12X9e5aJp22b7r52djY3NrsT0hNjY2rztbtmzB6XQyOzvL0NDQmk93d3djuxdeeKHxdyqVYnx8nNHR0cY+nnnmmTX7fe655xgZGUFRFLZv345lWWtiTGxsbH6wsT0hNjY2rzt+v5//+l//Kx/72MewLIt7772XbDbLc889h8/no7e3F4Df/d3fJRqN0trayqc+9Smampp43/veB8Cv//qvc8cdd/B7v/d7fOADH+D555/nz//8z/nLv/xLAPr6+vjgBz/Ihz/8YT7/+c+zc+dOZmZmiMVivP/9798o021sbK7GRgel2NjY/HBgWZb43Oc+JzZt2iQ0TRPNzc3ine98p3jyyScbQaMPPfSQ2Lp1q3A4HOKOO+4QR44cWbOPr371q2LLli1C0zTR09Mj/vAP/3DN+lKpJD72sY+J9vZ24XA4xNDQkPg//+f/CCEuBKamUqnG9ocPHxaAmJqaer3Nt7GxWQdJiIsGVW1sbGw2gCeeeIK3vOUtpFIpQqHQRp+OjY3NLcKOCbGxsbGxsbHZEGwRYmNjY2NjY7Mh2MMxNjY2NjY2NhuC7QmxsbGxsbGx2RBsEWJjY2NjY2OzIdgixMbGxsbGxmZDsEWIjY2NjY2NzYZgixAbGxsbGxubDcEWITY2NjY2NjYbgi1CbGxsbGxsbDYEW4TY2NjY2NjYbAj/fzv6h/eSicoNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -35,7 +35,7 @@ "\n", "for _ in range(10):\n", "\n", - " data = pd.read_csv(\"result/mnist/07-12-16-20_70_300_0.25_0.45_0.35_acc.csv\", header=None)\n", + " data = pd.read_csv(\"result/mnist/07-13-17-44_100_150_0.2_0.35_0.25_acc.csv\", header=None)\n", " print(data.shape)\n", "\n", " loss = pd.DataFrame()\n", @@ -71,28 +71,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(164, 200)\n", - "(164, 100) (164, 100)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIhCAYAAAAM8cN1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5wlVZ3/jz/POVU3dJ6ePAMzhCEMGQEVMCsoGFB/6grmFXfVdVHYXYV118hHfch3EdcVNuGqLGtYWTAjKEFQUMKQhjDMwOTUuW+uqnPevz+q7u1uuicwNEyPnOfjMY+ZrltV91Tdhnrd1zspERE8Ho/H4/F4phG9txfg8Xg8Ho/nTw8vMDwej8fj8Uw7XmB4PB6Px+OZdrzA8Hg8Ho/HM+14geHxeDwej2fa8QLD4/F4PB7PtOMFhsfj8Xg8nmnHCwyPx+PxeDzTjhcYHo/H4/F4ph0vMDwzgs997nMopejv739O3/fyyy/n29/+9m7vf8ABB/D+97//WVvPnhLHMZ///Oc54IADyOfzHH744XzjG9/Y7ePL5TKf+MQnWLRoEYVCgeOOO47vf//7k/a7/fbbOffccznhhBPI5/MopVi7du0uz//www+39r/77rsnvPaKV7wCpdQO/2zdurW1bxRFfOYzn+HAAw8kl8uxdOlSLrroImq12jO6J1dffTXHH388hUKBOXPmcM4557Bhw4Yp9+3v7+fjH/9467zz58/njDPOYHBwsLVPqVTik5/8JKeffjpz585FKcXnPve5Kc/3/ve/f8rrPvzwwyfte9lll/HWt76VAw88EKUUr3jFK6Y8J8DNN9/Maaedxrx58+jo6OCYY47hn//5n7HWTtiv0WhwySWXcNRRR9He3t66nt///veTzrl69Wre8573sGTJEorFIgcffDAXXHABAwMDE/b73ve+x8te9jLmz59PPp9n0aJFvPGNb5x0zltuuWWnn/2HP/zhHV6fZ+YT7O0FeDx7k8svv5w5c+bMSNHwdPjoRz/KVVddxRe/+EVOOukkfvWrX/Hxj3+cUqnE3//93+/y+Le+9a3cddddfOUrX+HQQw/lf/7nfzj77LNxznHOOee09vvNb37Dr3/9a44//ni6urq45ZZbdnluay1//ud/zpw5c9i8efOk1y+//HJGR0cnbKtWq7zuda/jhBNOYMGCBa3tZ599Nr/4xS/4zGc+w0knncQdd9zBxRdfzMqVK/nJT36yR/fkG9/4Bueddx7nnnsuX/nKV9i4cSP/+I//yEtf+lJWrFjBrFmzWvtu3ryZl770pQRBwD/+4z9yyCGH0N/fz80330wURa39BgYG+Pd//3eOPfZY3vzmN/Of//mfO71HxWKRm266adK2p/Kv//qvtLe386pXvYqf/vSnOzzfr3/9a1772tfyspe9jP/4j/+gvb2dn/zkJ3z84x9nzZo1fP3rX2/t+6EPfYirr76aiy66iFe96lUMDg7yla98hZe//OX87ne/44UvfCEAfX19vPjFL6arq4svfvGLLFmyhBUrVvDZz36Wm2++mXvuuQetdev6Tz31VD7+8Y8zZ84ctmzZwqWXXsrLXvYyfvOb3/Dyl78cgBe84AXccccdk9Z/xRVX8N3vfpe3vOUtO71vnhmOeDwzgM9+9rMCSF9f33P6vkceeaS8/OUv3+39ly5dKu973/uetfXsCQ899JAopeRLX/rShO0f+tCHpFgsysDAwE6P//nPfy6A/M///M+E7aeddposWrRIkiRpbbPWtv59ySWXCCBPPvnkTs9/ySWXyOLFi+XrX/+6AHLXXXft8pq+/e1vCyD/+Z//2dp2xx13CCD/9E//NGHfL33pSwLIDTfc0Nq2u/ekXq9Ld3e3vPGNb5yw3+9//3sB5O///u8nbD/rrLNk8eLFMjg4uNP1O+fEOSciIn19fQLIZz/72Sn3fd/73ift7e07PV+T8fd/Z7+773rXuySfz0u5XJ6w/fTTT5eurq7Wz/V6XYwx8u53v3vCfps3bxZAzjvvvNa2//iP/xBAfv3rX0/Yt3n/77333p2ufXh4WMIwlPe85z073c85JwcddJAsXbp0wvV69j18iMQzo9iwYQNvfetb6erqoru7m3e/+9309fVN2u8HP/gBJ598Mu3t7XR0dPDa176WFStWTNjniSee4J3vfCeLFi1qWdmvfvWrue+++4A03LFy5UpuvfXWliV7wAEHPO01r1+/nne/+93MmzePfD7P8uXL+ad/+ieccxP2u+KKKzj22GPp6Oigs7OTww8/fMI36Wq1yt/+7d9y4IEHUigU6O3t5cQTT+R73/veTt//uuuuQ0T4wAc+MGH7Bz7wAWq1Gtdff/1Oj7/22mvp6Ojg7W9/+6TjN2/ezB/+8IfWtuY31N3l8ccf5zOf+QyXX345XV1du33clVdeSUdHB3/2Z3/W2va73/0OgDPPPHPCvm94wxsAuOaaa1rbdveePPTQQ4yMjEw658knn0xvb++Ec65du5af/OQnfOhDH5rgakxF8/dputnd+x+GIblcbpIL0tPTQ6FQmHA+rTXd3d0T9uvq6kJrPWHfMAwBJu3b09MDMGHfqejs7KRQKBAEOzfOb775Zp544gk+8IEPPO3fN8/Mwn96nhnFW97yFpYtW8aPfvQjPve5z3Hdddfx2te+ljiOW/t86Utf4uyzz+aII47ghz/8IVdddRWlUomXvvSlPPzww639zjzzTO655x6++tWvcuONN3LFFVdw/PHHMzw8DKQP1oMOOojjjz+eO+64gzvuuINrr732aa23r6+PU045hRtuuIEvfvGL/OQnP+E1r3kNf/u3f8vHPvax1n7f//73+ehHP8rLX/5yrr32Wq677jrOP/98KpVKa58LLriAK664gvPOO4/rr7+eq666ire//e2T4ttP5aGHHmLu3LkTQgkAxxxzTOv1XR2/fPnySf/j393jd4SIcO655/KGN7yBN73pTbt93OOPP85tt93GO9/5Tjo6OlrbmyGIfD4/Yf/mzw888EBr2+7ekx2ds7nt8ccfp16vA3DbbbchIixatIizzz6bjo4OCoUCr3jFK6a0+Z8OtVqNBQsWYIxhv/3242Mf+9iEnI6ny4c//GGiKOK8885j8+bNDA8Pc9VVV3HttdfyyU9+srVfGIZ89KMf5Tvf+Q7XXXcdo6OjrF27lg996EN0d3fzoQ99qLXvm9/8ZpYsWcLf/M3fsHLlSsrlMr/97W/5yle+whvf+EaWL18+aR3WWuI4Zu3atXzkIx9BRPirv/qrna79yiuvRGs9SRx69kH2qn/i8WQ0QyTnn3/+hO1XX321APLf//3fIiKyfv16CYJA/vqv/3rCfqVSSRYsWCDveMc7RESkv79fALnssst2+r7PNERy4YUXCiB/+MMfJuz3kY98RJRS8thjj4mIyMc+9jHp6enZ6bmPOuooefOb37zba2ly2mmnyWGHHTbla7lcTv7iL/5ip8cfcsgh8trXvnbS9qZN/tQwQ5NdhUi+8Y1vyKxZs2Tr1q0iIvJf//VfuxUi+dSnPiWA3HHHHRO2X3fddQLIVVddNWH7lVdeKYAceuihrW27e08GBgZEay0f/OAHJ+yzevVqAQSQzZs3i4jIl7/8ZQGkq6tLzjrrLLn++uvlmmuukWOOOUYKhYLcf//9U77frkIkl156qVx66aVyww03yA033CCf/vSnpa2tTQ4//HAplUo7vE+7+t393e9+J4sWLWpdhzFGvvrVr07azzknn/nMZ0Rr3dp3yZIlsmLFikn7bt68WU4++eTWfoC8/e1vl3q9PuUaDjvssNZ+CxculNtvv32H6xURGRoakkKhMOXvo2ffwzsYnhnFu971rgk/v+Md7yAIAm6++WYAfvWrX5EkCe9973tJkqT1p1Ao8PKXv7yVdNjb28vBBx/MJZdcwqWXXsqKFSsmhSymg5tuuokjjjiilQjX5P3vfz8i0krce+ELX8jw8DBnn302P/7xj6eslnnhC1/IL3/5Sy688EJuueWWKSsjdsTO7Pjdseqf6fFPZd26dVx00UVccsklzJ8/f7ePS5KE73znOxx55JG8+MUvnvDaGWecwbJly/jUpz7FjTfeyPDwMNdffz1///d/jzFmkp2+O9fU29vLu971Lr773e/yb//2bwwODvLAAw/wrne9C2MMMBaWaP7+7LffflxzzTW89rWv5a1vfSvXX389Wmu++tWv7vZ1juf888/n/PPP57TTTuO0007j4osv5rvf/S6PPvoo//Ef/7FH57znnnt4y1vewgknnMBPf/pTbrrpJi666CL+4R/+gS9+8YsT9v1//+//8f/9f/8fn/vc57j55pv58Y9/zGGHHcZpp502Iew4NDTEWWedxejoKFdffTW//e1vufzyy7n99tt505veRJIkk9ZxzTXX8Ic//IH//d//5YgjjuCMM87YaWLw1VdfTb1e59xzz92j6/bMMPa2wvF4RMYcjI0bN056bf78+a1v9hdffPGEb09P/aO1bh23du1a+fM//3OZP3++ANLb2yt//dd/LaOjo619nqmDcfDBB8urX/3qSftt2LBBALn44otb2771rW/JySefLMYYUUrJC1/4wgmJieVyWT7zmc+0vvUVCgU566yzZNWqVTtd0zvf+U6ZO3fupO3lclkAueiii3Z6/Itf/GI56aSTJm1/6KGHBJB/+7d/m/K4nTkYr3/96+XFL36xDA0Ntf5885vfFEBuvvlmGR4envKcP/7xjwWQr33ta1O+/vjjj8uLX/zi1ufd3t4uX//612XOnDkTPoenc0/K5bK8+93vbn2D11rL+973PnnTm94k+Xxe4jgWEZF//dd/nZT42OTkk0+W5cuXT7nmXTkYU2Gtlfb29pYjNxU7+9190YteJEcfffSEBF0RaTkVa9asERGRhx9+WJRScskll0zYL4oiWbZsmbziFa9obfvUpz4lYRi2HJ0mN910kwDy7W9/e6fXFMexHHXUUXLMMcfscJ/jjz9e5s6dK1EU7fRcnn0D72B4ZhTjex5A+o12YGCA2bNnAzBnzhwAfvSjH3HXXXdN+jM+IXHp0qVceeWVbN26lccee4zzzz+fyy+/nL/7u7+btvXOnj2bLVu2TNreLMdsrhfSBMPf//73jIyM8POf/xwR4Q1veAPr1q0DoL29nc9//vM8+uijbN26lSuuuII777yTN77xjTtdw9FHH01fX9+ke/fggw8CcNRRR+3y+EceeWTSN9DdPX4qHnroIe68805mzZrV+tOMvb/yla9k6dKlUx535ZVXksvleM973jPl68uWLeOOO+5g48aNPPDAA2zfvp23v/3t9Pf387KXvWzCNe3uPWlvb+eqq66iv7+f+++/n23btvHtb3+bxx57jFNOOaWVm9LM35gKEZn2hMRncs777ruPE044oeXCNDnppJNwzvHII48AcP/99yMinHTSSRP2C8OQY489dkL+zX333cfixYtZuHDhpHPCrnN1giDgBS94AatWrZry9RUrVrBixQre+973thJKPfs2XmB4ZhRXX331hJ9/+MMfkiRJq6HQa1/7WoIgYM2aNZx44olT/pmKQw89lH/4h3/g6KOP5t57721tz+fzTysU8VRe/epX8/DDD084J8B3v/tdlFK88pWvnHRMe3s7Z5xxBp/+9KeJooiVK1dO2mf+/Pm8//3v5+yzz+axxx6jWq3ucA1nnXUWSim+853vTNj+7W9/m2KxyOte97qdXsNb3vIWyuXyhIoJgO985zssWrSIF73oRTs9fiq+//3vc/PNN0/486lPfQpIezn87Gc/m3TM1q1b+cUvfsGb3/zmlqDcEYsXL+boo4+mra2NSy65hPb2dj74wQ+2Xt+TezJr1iyOOeYY5syZw09+8hMee+wxPv7xj7def9GLXsR+++3HDTfcMKFZ1ebNm7n//vsnhXSeCT/60Y+oVqt7fM5FixZx9913T2qq1UxG3W+//Vr7Adx5550T9ms0Gtx7772t/Zr7bty4kU2bNu30nDuiXq9z5513smzZsilfv/LKKwEmfI6efRvfaMszo/i///s/giDgtNNOY+XKlfzjP/4jxx57LO94xzuAtLT0C1/4Ap/+9Kd54okneN3rXsesWbPYtm0bf/zjH1suwAMPPMDHPvYx3v72t3PIIYeQy+W46aabeOCBB7jwwgtb73f00Ufz/e9/nx/84AccdNBBFAoFjj766N1e7/nnn893v/tdXv/61/OFL3yBpUuX8vOf/5zLL7+cj3zkIxx66KFA2syoWCxy6qmnsnDhQrZu3cqXv/xluru7W98AX/SiF/GGN7yBY445hlmzZvHII49w1VVXcfLJJ9PW1rbDNRx55JF88IMf5LOf/SzGGE466SRuuOEG/v3f/52LL76Y3t7e1r5f+MIX+MIXvjCh2dEZZ5zBaaedxkc+8hFGR0dZtmwZ3/ve97j++uv57//+7wnfgvv6+rj11luBMTfgl7/8JXPnzmXu3Lmtc071YGx2/DzhhBOmFILf+c53SJJkp/H3r371qyxYsIAlS5awbds2fvjDH3Lddddx1VVXsXjx4j26J9dccw2bN29m+fLl1Ot1brnlFr7+9a/z4Q9/mLPOOqu1n9aar33ta7zjHe/grLPO4iMf+QiVSoUvfvGL5HI5Lrrooglr/eUvf0mlUqFUKgFpN9Mf/ehHQFrh1NbWxrp16zjnnHN45zvfybJly1BKceutt3LZZZdx5JFHTroXd999d+s+jo6OIiKtc5500kktZ+j888/nvPPO441vfCN/+Zd/SVtbG7/5zW/4p3/6J17zmtdw7LHHAvCSl7yEk046ic997nNUq1Ve9rKXMTIywje+8Q2efPJJrrrqqtZ7/9Vf/RVXX301p512GhdeeCH7778/Dz30EBdffDHz58+fkD91yimn8KY3vYnly5fT3d3N2rVrueKKK1izZs2UlVr1ep3/+Z//4ZRTTpmyGsWzj7JXAzQeT0YzB+Oee+6RN77xjdLR0SGdnZ1y9tlny7Zt2ybtf91118krX/lK6erqknw+L0uXLpW3ve1trSZA27Ztk/e///1y+OGHS3t7u3R0dMgxxxwjX/va1ybEpdeuXSunn366dHZ2CiBLly7d6TqnarS1bt06Oeecc2T27NkShqEcdthhcskll0xoEvSd73xHXvnKV8r8+fMll8vJokWL5B3veIc88MADrX0uvPBCOfHEE2XWrFmSz+floIMOkvPPP1/6+/t3ef+iKJLPfvazsmTJEsnlcnLooYfKP//zP+/wPt98880TtpdKJTnvvPNkwYIFksvl5JhjjpHvfe97k46/+eabd5j/sqtcll1VkRx66KFywAEHtBpUTcXnP/95OfjggyWfz0tPT4+87nWvk9/+9rdT7ru79+Taa6+V4447Ttrb26VYLMqJJ54oV1555Q7Xcd1118lJJ50khUJBuru75U1vepOsXLly0n5Lly7d4b1q5q0MDg7KW97yFjnggAOkWCxKLpeTQw45RD75yU9Omafyvve9b4fn/K//+q8J+15zzTXykpe8RObMmSPt7e1y5JFHyhe/+MVJzbeGh4fl05/+tCxfvlza2tpk3rx58opXvEJ+8YtfTHr/e++9V97ylrfIfvvt1/odPffcc2X9+vUT9vubv/kbOfbYY6W7u1uCIJAFCxbIW97yFvnd73435T1tVot961vfmvJ1z76JEhF5DvWMx+PxeDye5wE+B8Pj8Xg8Hs+04wWGx+PxeDyeaccLDI/H4/F4PNOOFxgej8fj8XimHS8wPB6Px+PxTDteYHg8Ho/H45l2nneNtpxzbN68mc7Ozj0a4uTxeDwez/MVEaFUKrFo0aJdtrJ/3gmMzZs3s//+++/tZXg8Ho/Hs8+yYcOGXbaHf94JjM7OTiC9OV1dXdN23jiOueGGGzj99NP3+UE9f0rXAv56Zjr+emY2/npmLnvjWkZHR9l///1bz9Kd8bwTGM2wSFdX17QLjLa2Nrq6uv4kfmn/VK4F/PXMdPz1zGz89cxc9ua17E6KgU/y9Hg8Ho/HM+14geHxeDwej2fa8QLD4/F4PB7PtOMFhsfj8Xg8nmnHCwyPx+PxeDzTzvOuiuTZYNPj97LlyQepDwzy6OCjjCQjnLro1FaW7cDAAFu3buWQQw4hl8vt5dV6PB6Px/Ps4x2MaaBcfphS41aM2cAft/2RB/oeYLA+2Hp948aNbN++naGhob24So/H4/F4nju8wJgGtM6n/5CEyEYAxC5uvW6tBdI25a1tIyOUbrkFOzz8nK3T4/F4PJ7nCi8wpgEdpGEPISFxCUDrb5haYNQeeoj6gw9RW7lywrmsyLO9XI/H4/F4nnW8wJgGgiB1MIQxUTGVgyHjxIOrVNJtUdTa1h8l/Mu67dw+VHpW1+vxeDwez7ONFxjTgDapg+EYExXjHYymczFeYEi9nv6djO23PYqJxLG+PiY6PB6Px+PZF/ECYxowZrKDsasQiavW0n/EY6LEZQIkcT5M4vF4PJ59Gy8wpgGThUjYgcCYysFw9VRgjHcwmvIj8nkYHo/H49nH8QJjGjBBAQDBtrYlkgoH59wkgSEiSC0TGPE4gZHpCu9geDwej2dfxwuMaaDpYIiamIMxUouJkzHR0XIw4hjJto93MJJkmHkj3yeoPfAcrNrj8Xg8nmcP38lzGmgKDDfOwegrV7n9wSc5dG6Btmxb08lwWYIngCTjqk0aWzCugmuse/YX7fF4PB7Ps4h3MKaBZpkqasyNGM5CIIPlRmtb08Fw2WsAjHMwRDKxIZHvh+HxeDyefRovMKaBZg4GyrE+6uDhaDa1LLcijscLiCwHY5zAkPFVJC4tT1WSEPk8DI/H4/Hsw/gQyTRgwmaZqrA5aSOmjUGxBECUJK27PJWDIVM4GIqYxDsYHo/H49mH8Q7GNGBMHoXCIThJ8yyirJPn+CTPVg5GbVwORpyMCY+stNU7GB6Px+PZ1/ECYxpQSqF1iFOgJBUUDZuFSKaoInG16sQTZC6Gk2aIJCYa15TL4/F4PJ59DS8wpgmlQpxSLYER2WYfDNvq0NnKwRhXRQLjwiRNBwMhlgSPx+PxePZV9rrAuPzyyznwwAMpFAqccMIJ3HbbbTvdv9Fo8OlPf5qlS5eSz+c5+OCD+da3vvUcrXbHKB3gFOism2fDZc6FE5pmRCtEUq1NOLaZ6OlkLOEzSvw8Eo/H4/Hsu+zVJM8f/OAHfOITn+Dyyy/n1FNP5d/+7d8444wzePjhh1myZMmUx7zjHe9g27ZtXHnllSxbtozt27eTJHv32360di35lYPkwxi1MAuNZA6GiMOKEKDGQiT1pwiMbP3ixkRF7LzA8Hg8Hs++y14VGJdeeikf/OAHOffccwG47LLL+NWvfsUVV1zBl7/85Un7X3/99dx666088cQT9Pb2AnDAAQc8l0ueknjrVoKNo+S7E3QW2ohskvpD4rDuKSGS2lMdjKYYGTfu3TbweDwej2dfZa8JjCiKuOeee7jwwgsnbD/99NP5/e9/P+UxP/nJTzjxxBP56le/ylVXXUV7eztvetOb+OIXv0ixWJzymEajQaMx9rAeHR0FII5j4nE9KJ4J0tkJaMKqQ4lFnCOyCQ6LswnVxFIODJ1xkr5vpYI4i1IaEUdcr0EcY5M6komRalSbtvU9XZrvu7fef7rx1zOz8dczs/HXM3PZG9fydN5rrwmM/v5+rLXMnz9/wvb58+ezdevWKY954oknuP322ykUClx77bX09/fz0Y9+lMHBwR3mYXz5y1/m85///KTtN9xwA21tbVMc8fQxpRJdpTJh3lItDTNQ7WR0cDuF0mpy0ShPzg4YamvnxE2b2LR+HbNXrgTAFouYWo3RX/+aeM4c+vJPUjZpaGR42x/ZljwyLevbU2688ca9+v7Tjb+emY2/npmNv56Zy3N5LdVqddc7Zez1RltKqQk/i8ikbU2ccyiluPrqq+nu7gbSMMvb3vY2vvnNb07pYlx00UVccMEFrZ9HR0fZf//9Of300+nq6pqWa5Ak4eH7fs5IeZQ5xuB6e1EywsGd3bhajo29BWbnQxYV5/O6w5cxtGEDSmmCBfOJt2yh8yUvIXfQQfzmsTX01SsA7D//SE5dcNS0rO/pEscxN954I6eddhphGO6VNUwn/npmNv56Zjb+emYue+NamlGA3WGvCYw5c+ZgjJnkVmzfvn2Sq9Fk4cKFLF68uCUuAJYvX46IsHHjRg455JBJx+TzefL5/KTtYRhO3wcShuiudqQC7eUqao7G2QgGHgWbpzb7IPJKkSiFjmOMNui2NoJ8HqcNRoQwDFFYlE7FlWi713/5p/UezQD89cxs/PXMbPz1zFyey2t5Ou+z18pUc7kcJ5xwwiRr58Ybb+SUU06Z8phTTz2VzZs3Uy6XW9tWrVqF1pr99tvvWV3vrlBdnQiK9tHUgXBOEByJi2hGrCKRVg8M3VZEZR9U2s3TAmPNtWK778cHPR6Px/P8Za/2wbjgggv4z//8T771rW/xyCOPcP7557N+/Xo+/OEPA2l4473vfW9r/3POOYfZs2fzgQ98gIcffpjf/va3/N3f/R1//ud/vsMkz+cK1dOFKGgvVUEE6wSHo6E1kRWGY0vNSWsOiSoUIUgNJElinEsYP34kcV5geDwej2ffZa/mYPzZn/0ZAwMDfOELX2DLli0cddRR/OIXv2Dp0qUAbNmyhfXr17f27+jo4MYbb+Sv//qvOfHEE5k9ezbveMc7uPjii/fWJQAwNDREf9BO3bTRVq5mPoTgsDQUjCYWo4WB2LZKVHWxgAoyqylJEIkQxhSG9X0wPB6Px7MPs9eTPD/60Y/y0Y9+dMrXvv3tb0/advjhh8+47N+hoSH6koC6aaetVAcnCBqHo6IMsXMYNA0ZczB0sQg6NZAkSXAuZvx4M+9geDwej2dfZq+3Cv9TIAxDyOex2hDYhLZa6kY4HCUd0lQOsYxNUlWFIqoZIoljRCYKDO9geDwej2dfxguMaSAIApQ2RIUQcHSOpi5FU2A0O3hGIq1JqrptnMBoOhjjFIb1DobH4/F49mG8wJgGwjAEpYjyAUqEjnINAWLlqJoQWgJjbJKqLhSeUkUy0cFojm73eDwej2dfxAuM6UAb+p0iKoRoJVmpqmIETWJ0K3kzlrFJqqrYBlmSZ1pFMlFQWF+m6vF4PJ59GC8wpoFbR2tsS4RGPocSob1URgSG0CTatEIkMYKtj6siCbMc2yTBSTyhimT86HaPx+PxePY1vMCYBl4wqxNRikYYIjjaShWUE4Z1AAhBc0y7CFE9HbymixNzMCTLwXAq7Tqa5mTIlO/n8Xg8Hs9MxwuMaWBJRxtdRmNDQxQYlHVILcYFGgW02wQlgHPUlQalUIXChCqSZpmq1VnDMImxT9EXdet4pFwjcg6Px+PxeGYyXmBMA8YY5hdygCLOB5StI2kkiNHkcYQ2wSCIdTSURhfyKK2nTPJ0Kp3wqoiJnuJg3D1a4Wd9w9xfqj3HV+jxeDwez9PDC4xpIgwCtAg2p0kc5CPLbJOkAiNJMCLgHA2t0jbhMK5VeDMHA1zmYChJSJ4iMIZiC0DVegfD4/F4PDMbLzCmCQkCNIILAxTCrCSmy6RCIGctRgRxloHqE5STNQBjDkYSZzkYglMFALTENJ4iJJrCwvrcDI/H4/HMcLzAmCYkEws60HRpTUccExkDpAJDI2BjGq5Bg35EXCsHg3EORisHA4ifUrpac15geDwej2ffwAuMacJpDQIuczLCOCFWqYDIOYsRwFkaOoB8gLW1cVUkFmfT6hKniggKgCjb1qTpYPgAicfj8XhmOl5gTBNWK0QpksCAOILYUtchCiFnY7QIWEukDSofYN2YwABwSQMBRAVIJkyicQ6GiFDzIRKPx+Px7CN4gTFNJBpEFC4IUDiUUzjSG5y3SSowmg5GIcAmlTTJU6VuhYvriICoEKNzAMTjunnWnOCyRlxPLV/1eDwej2em4QXGNBErcGisMdnsEQ0IBZegEXTWByNWzRBJFaVUy8VwNnMwCNEqzeeI7ZiDMb5yxDsYHo/H45npeIExTSQaBIVVIdo6nAQIUHQJShxaBOUsDW1QhRBrKwCtduFpiERwKiAwmYPhxgsM2/q3z8HweDwez0zHC4xpIlKpwGBkHh2DGpEARCjaGKVAZX0wonFJnsAEBwOaIZLUwUieEiJp4h0Mj8fj8cx0gl3v4tkdYiUICrF5EEhMDpxQlAQFGOvAWWJtoKCxtpoeGASpc2EbiChEhQTNEInzIRKPx+Px7Jt4B2OaiJRCXAhK47ShERZQ1lJwCUopdBKjkHEORjNEEgKC2KRVRdIMkSRuzMGYECLx+sLj8Xg8MxwvMKaDkY3MG3qctsiCCDYIiII8ygptNkYBQdRABOIgRJkxB0MFIaIsOJcleQYEzRDJDhwMn4Ph8Xg8npmOFxjTwcBqlg6spBA7ECEJQqIwj3FCAYtSiiCOAKERpu5ES2CEAaIsYh1OGVCaXFamascLDOdDJB6Px+PZd/ACYzrId+FwBDbrwBkGqVNhhSIWpYSgkQqMOAwQAevqrXbhohziHEIANhnnYIxL8vQ5GB6Px+PZh/ACYzoodOMQjFMooFIsAIogseQ0aBRh1AAEZwwWlYZSbBWCAKcsOIuLErjleuobNwI+ROLxeDyefRcvMKaDfCdOwNj0dlYLBRRQbNTRWqMUmDhCiSBGE5EOQbO2mjkYFmcdUq6hnMOWqtnrvorE4/F4PPsmXmBMB/kurAjGGZQItUIOhaLYqIPRdA70s3D9GgKbgNFI0ANkAiPMjYVI6mlIxDgYii0PlkYZjBOcCPUJfTD2xkV6PB6Px7P7eIExDYjJUVcBIiFahFo+TdJsa9RRxtCzvY9CrUoQx4jRONUJTHQwxDmkljbbGm0I5cTiJGFNtUHNOgTfaMvj8Xg8+w5eYEwDCZYyHSjRqcDIpQ5GW62GQpGv19BJQuAsmABr2oCmg5EmedokRiKLFWFjNQ2NKBezPYonVJCA74Ph8Xg8npmPFxjTQOISqnQBaUvwehiigPZ6DeIYLQ7lEkJrIQiIVREAaystByNuNBAxjCSWOBGM1MjFm9lar7byL/I6/bgsXmF4PB6PZ2bjBcY00LAxNbpQgEao50KUKNqqNXS9gRIIbOpgiA6o1WDTQ9t44Fe/Y2h4CFGOOGoQOUXVOlQCC9QARipsrWxnNE67eHaYTGCIID5M4vF4PJ4ZjBcY00A1iam7dkRplDga2YTU9kYdXaujnUM5h7EJtUrEqntWMbq1TFSvsmXTutTBiBokLv04ukxIOw1yxERxmS2NNGTSGZjWe/pSVY/H4/HMZLzAmAbuGqlyT3E/trZ1IkqIjQalyccRplxDiaDFohJLo5aQ6JCO2W1Y16BSLtNwDeIowolOB6NhUOIoqgZxUmJzlFaXdJoxgeETPT0ej8czk/ECYxrYuvpx3EiJrYUiNnCAoAXCJEFX69SSIWJXxSUWlKZn6UEUDw/ZajawtbaN0UYJmyQ4MYhSaBWgnKNARGKrbK2lg9E6grGPy5eqejwej2cm4wXGNLCkI4eIZjgMGc2HKBFyzmGcoGxMXUokSoFNUFrTuegAKnGF3GzF9nofg9UhEEcSFJEwhyJAiSOnLEosffVhANqNIe0VCs47GB6Px+OZwXiBMQ0UF8yhp1oF51jXORsQwkRwkSOuV1AuRz23CGUTTFsRFxRxCMEsjQqgnJSwzhIVuxBj0CiUOPIqQWEZbpRwIrQZjUn1BXanK/J4PB6PZ+/iBcY0UNh4L4eMDqBFKJvUwVCxQxJHVCsThwdhwwMJ7SwaeWiIYAlQRhH0FkE76nGNuK0bMQajNIgixBESkdgKNesygZEqDJ+D4fF4PJ6ZjBcY08C2oQZzIktoGzjnELGEzqGsg6hBZNpQKHK2i0qlTqNewaq00uTwQ49Ca3DOUi60gwlQCCorE+lUNcRWKNuENq1bH5jPwfB4PB7PTMYLjGlgvVpIKexhbmUQEYvYGO3SkIlJLEiAckJgLTKs2PLk7VhJK0LmLJxLGKb/ruTbcSZAIwTZQLQoKSNiqcdliuMcjGeSgzEUJ/zPlgEer9Sf4ZV7PB6PxzM1wd5ewJ8CAw/8lsp+XSypVnjF0CbA0mUqFI7rYmH/HKpxnrpuo6eU49AnHybYXEIlEbNVN5v5JW3qYFS9wFv/eyWJjnD5Psqb8riehMXcT9Q2xGiwin9ccR1tNcuxj1d5tJLjIdPFSH4BNQ02qGO0EDqFJsCJIlIQ65ggKBHGjh4pobBsDruIbQd3uTx3aU0pp3FBgHaONtPOPClSqCnu3XQf1dAwlNMMtxsiV6HLVaA+iq3VWtevCiEqH479POFfivGk+kjR3x1TaXfj9lTMyi1gfvGA1rbN1cfpa2x8xp+POMfagXXc99sRlB7T1KHOc0D70bQF6WyYhq3xZOUBGra6W+edlZvPkvYjnvH6ni7WWu7rV9gHtmDGlS4/U0KjOfPohdN2Po/H8/zGC4xpQNpCBro66MrV6FCpK2BcnYAEXahQWDeXQAfkA4WdnT4wAxL0+HZZXRG50TaSZBa60YHkt9IILY92Hsj2cC5ahFziqOZh60LD0jXzwCmKJNSkSDXJoUw9taQkfbALgsVB0gbOskCGUQpcVVG3Bk1Co1hkVqRQsUOTILqMsQGhE9S2USgWmQVs77bUpIR1DXrLJXLjlu50QqNtnBsiPFVXTMKNNFg5d8uEbUo9wuFtr6VouqnbUR6p3j4tHUtFHIPJIPGQQ6mJpt0Tg5s4tP01aAyPV2+mYgeexpmfpNYxn1AXnvEanw7OWbbXFE/2V9B6+gRGPvSGpsfjmT68wJgGyqWIUleODVE3W/pnUZc8SXuNBV0jUNRU7BZ0EhFoSz1XJpY8HRs7KDKMdp00FgzgjGWgsAlX66WzMUKbGubutmPor/bQSHIctXkNlXmaTbN7eLIj5tBGH5qEXNcQtWQ/KsqQy+UxQF3nydeLSOc6tuQqWBtikoAD6lsBKHSUWRl1EefqVPIG4xQdehhqo9TDNrrCHhYPlmgvBNieLpTR1Pcb5bEoYW6Qo2cgLcstdLRTL1cwQcCiJek3XxFH/UmL0orcUlBKkWqEVCiYBnT2QVwQFh96aHoMwtbqRgbq25jTvp5TFryGO7Y9xCH9DeabNhYuevUz+nystay47z6OP/y41jd+QXh06H6qSZmu9kcpmCKl0TqhmcVRvSehd6GQHhy8m8jWefHiNnoLc5/R+p4uSZKQ71/FSw6fRxBM33/CWu1CFXo8Hs/TwAuMaaBvzkK2BZpSscj2UUdlsMDaXAcHdG8lp0MK0kcnQlswQkKVwXyeB3tiOqJVHFI7kq62gP52y5pIsH0a1Zujc/5BDIVdFAbqHL5iLZ2jNeovDhncv4ckKVBxo4TSz/bOQYar7SRhhbbZjnnSw7yDF1PYMES9ewuPRjH1cicdUqRnyIBAvSuiN9fBXV2OwboiFzuOa3+AaGPCtsJ+jHQYonrCfrk6NojIm4DOhTUGa4pD5ixlydYhkiThqKOO4qGHHiKXy3HqqScD0Kgl3D+yHoATTz0AbSZ+K7YjDcp/3IouBnQetbi1fag+xPcf/T4J23C5dcRqC3Pq6/j/tR3I7KXLoK13jz+fOI5Ra7Zz5mEnEoZjoZwXVw/k2sevxcp2KsD8riJnHnQmS7uW7vqcj29ka2Uri3ph2azuPV7bnhDHMes64MhFXROux+PxeGYS3hOdBhbaDrrjHI2kk825WbTbAt31HDlTp8tspegUQRCiTTpVNag3ULZAXQVUaRCI0BmH9LoA0Q4kZFthHoTCKbUH6ZISA129bOnpRJQCApQRlKvyKB0Ma0fJWB7rWsntPb9ju7oJ276WmAYjcQ8KRWga5At5AFxiWdpYSXv7IgCUapBXVYwWZjOEKKG/oKmGBqshSWJqtREAjC5gbdqFo/lwc+PGySfRWIcON9Vc+VYjj4mvzSrMYvns5QDcvul2cDGHmA5mmwLY6Jl/SFMwr20eL9//5a2fT1pw0m6JC4DOXJq3UY7Lz8raPB6PZ1/HC4xpYK7qoLsBbQmsyc9ntNzD7FI3bbpOziYYAoq5HAVTSieuxpY0brCYobiKchojDhWUEOVo6Dx1lcfgWKAHeeyERaw84Ig0H0FACNASEiaaqi0SkyNICrRbcMoxahMk6qQ2cjCjcQ9KNKGK0VqjTJ4GRcJ4hEOIUaLIqQYLdBvGBLS5Kt1JgigYKYSI0SgRGrUSAErlW3kRTYFhrW1tS6IxseGmqKVVOhUY4iaPaztx/okYlYYwdBJxUmF+80TT8jlNxeG9h/PK/V/JKYtO4YT5J+z2cR1hBwCj0eiztTSPx+PZp/ECYxpoaEsxigmdgnwDFxry9RwIGJc+oINcggRJmv+YCKIsUKSmilQlxtmEWmEIgGrYCSi67Sh5F6FyJdpVjLEOQRAV0ghyNALNiFpIQ+cw0saskYXE1TmU6sto9J+INBYRJumD0BDRqFVJEtgcHIa1lp7GJooY2sSxMGhDK41CKNgEgFgcGI3DoZIYowzjdUFTYIhIy8WY4GBM1ayjGTKxk0fOd+Q6OH7e8QAc1baIbp3LTpQ8g09n1yyfvZzj5h2Heho5CF25LgDKkXcwPB6PZyp8DsZ0UDQUyxFa2umRtXQnixBpQ8cKJRoTGAI7hBgNClQCsS4TOKjn2nk87KWaF4IkrTCp5Qq0IfTaYcQJkW4wO6hTFgsoHIZEKRQRUU7RcHmchYJLSGxAI44Z1cMEGtroATahnMNJHXHt1EgfjhKPEqgiAUJb0oNWDcSCkfSBHiEQGJxYdJxQCArE1iKA0XpCgqFzDmPMrh2MLEQiAjgZC5lknLTgJJZ0LWHetkehf0O6UWZeY/SOXCrcSlFpL6/E4/F4ZibewZgGOjqL5OM0T0DybQS5BO1CgnqIiEYFhoIr4YKsSZZTKJf2kXA6z6q2JWwoLKZi2gGoFvIoYJYdQhxEusYsHREkDslCJKIVWlUJo1FiFaDEkJMIi6Ua16ioClopOpK2dAy8WEQniDJIkAoMojKaGIPQXpvTcjCUpNcSi4NA4yRBW0vB5ME5rAjGGLTW6KyvRDMvI4l34WDoMUEhUwkQpVjQvgBdHxnbOEU4ZW/TzMEoxV5geDwez1R4gTENLOjuRiWpYIhVL0FbBSMBqhGgRCOhJaCBBCBKIU7hiBAlCAqb5R0M52fjlKKRDxAUs+wwIpDoGm0mIXCCAqzSNJTGUSeflEiaeQskWJUw4so4JXQEnQS1Cs5plLOgEgRDTBsAgS2DJATKkasatNIgoF0mMDIHw2IhdrSHBcQ5EpGWsGj+PRYiGe9gTBYGSqtWHgZTJYE2qQ2N/ftZDpHsCZ1hKjAiG9Gwjb28Go/H45l57HWBcfnll3PggQdSKBQ44YQTuO2223bruN/97ncEQcBxxx337C5wN1jY04WzNbRziBRpFC150ZAYBA0GAlXHBRqUwlkFWJyOsNogkj7Yh/K9VPI5REHoYtpsFYdCiEmUpV0StFOAYI2jIQGhtSRKp+8jBqUiSq6CVY7eXA/GWqwYlHNIJjAim0dQIAk5SR2MIApQpOPgNRZBSMRBmDoYxEJXWMgcDFr9JJp/txyMXeVgQCssMpWD0WK8wJiBIZLQhBSCtMGWD5N4PB7PZPaqwPjBD37AJz7xCT796U+zYsUKXvrSl3LGGWewfv36nR43MjLCe9/7Xl796mfWgGm6mN3VRV0nFOMI7fKU85pQDNgAdIAKHSENbLNToiPNidARidKtL/KJMmybNQsU9NhRlCgQRQ5HTUV0iJATh1ZCnEuwKILEYrUQqxxOBSipU5MGVgmzct1oG2MlQIsDbRExOKeJVT4TGBEGTaDTCa5aaQLSPIsEAZPmYIgVesI2yByMprCY5GDE4xyMHTgULQdjRwIjrkE8rjPoDHQwYKySxCd6ejwez2T2qsC49NJL+eAHP8i5557L8uXLueyyy9h///254oordnrcX/7lX3LOOedw8sknP0cr3TldHV1UWgIjRy2XQ0sANo8oiHMWhR0TGFahnGB1I3MwshHsWjHU1oHViq6kjIjCKUVeHDWVYFDknUUhuDBC0CjrcFlpa0IINECEAkWKQR7jkpbAEJ06GOKESBWAhIJroDG0Om2iCSVBEBwOp8FhIRG6w2JLYDSFxZ44GK1Ezx3lVox3L9ITPc1P5LmhlYfhHQyPx+OZxF6rIomiiHvuuYcLL7xwwvbTTz+d3//+9zs87r/+679Ys2YN//3f/83FF1+8y/dpNBo0GmMx8tHRtG9BHMfEcbyHq59IWy5PRScsiCIa0o4zPWkJZpxDVES1I2FUd2FzCpRCHCAOp2Oc1mm4AnBagRJAyEkdEY3FEDqhrmNIAnLiSJRgwwSHQieCU45I5YkwGIkRhG7Vg3UJRgQnBoVDSLBisCI0KCBiyUuEwuDEAQqNwtBozTGpu4QAyEmIsQ6XJMSZmIjjuFWiGkURcRzTqMXYTDhEjWjKe2wRnLPEjRiJp5ilUepDjxMVEkfIM/ismmuYrs+7SVEXsdYyXBue9nPvjGfrevYW/npmNv56Zi5741qeznvtNYHR39+PtZb58+dP2D5//ny2bt065TGPP/44F154Ibfddttuz2D48pe/zOc///lJ22+44Qba2tqe/sKnwIqQKI1JKjhmYc1sxJUQl+Vc5GKGwm5QWaVJFiIRlRBloYmirZM3ae6DQmi3FaqqSLsYAifUSMAZQucAIQldKjCcw2mhofI4ZTCSICIEZcXGxgakkWCdQSlHbOvUI0ulUqUUaIo2JkeDmoMn1qymuqiKJgbqiBaSOGZd3xb2jxokUYOH77+foTiGgW00tm1lw4YNDAwMEEURfX19FItFRtfkUgEFbBhOyPdMdilmb8uRiwyDQytpFKd4vfwoc0qPt37u25pnsGPbM/6cbrzxxmd8jvGsT9bzePw4o0+MMpgbnNZz7w7TfT17G389Mxt/PTOX5/JaqtXdmzYNM6APxlObG4nIlA2PrLWcc845fP7zn+fQbEjW7nDRRRdxwQUXtH4eHR1l//335/TTT6erq2vPF/4UvvvPv0PHFRJRVII8lmGc04gCFTQgBqWzqpEEtBNQEJm0O6choTfZxlZ1CG1xjTB0WDFUdRuh1CjpBCUBOSegBRdKWn5qHU4JkS6ABBiggGLerNnMayvQNroeCxjl0DkwYZFisYgEPRitKNqIpNDBQcsO5gFZhXKGgtE45wgCQ2FWF8VKhc7iQuYdfhhPDg6zsBhywpL9OPzww3nooYcYHBzk0EMPZd68+dx7/Vj+zH6H9bDg4MlzOmor+rBDdfJHzCZcMFnkqcdAbRtTycsOeCGy5JQ9/mziOObGG2/ktNNOm9bZHU+MPAHrYH7bfM5cdua0nXdXPFvXs7fw1zOz8dczc9kb19KMAuwOe01gzJkzB2PMJLdi+/btk1wNgFKpxN13382KFSv42Mc+BqSJhSJCEATccMMNvOpVr5p0XD6fJ5/PT9oehuG0fiBOgZMKLlHUGzkqIeRdOjZdhRFEpOGPrIpEZwmQdQ0hCiOO+XY9a6IaC8uj6G5BRGHRhAkkYhHJEVqH0kKSc0jTwVAOwdBQRZzSdIhgAsHZBCMK6wxaORraMapCHNAIinSJIy8RJV3A6AhtQaPRCrQ4YoSai9FKUVRFas6hEZxS5HI5wjAkl8ulLchV1lRMj6X1KGWmvMdxLkC0IVB66s8gGgVtINcGUTUd/T4Nn9V0f+az2mZhjKFqq3vlf1TTfT17G389Mxt/PTOX5/Jans777LUkz1wuxwknnDDJ2rnxxhs55ZTJ31a7urp48MEHue+++1p/PvzhD3PYYYdx33338aIXvei5WvqUOA0NFRNYi1KKhkoQZ0AplGng0Gid5hWIU5gsMtAIAFEYseRpsGhgPfOrQ1kZqUJEY6zC4sCFhGJBCXGg0o6a1mKVQws4OnDKUBCFDhKsTQhI8zgUgghYbUkc1EwBJY6CixBdTBeTJZtqRZpIiqPiIrRWFCmgknhCoy2YmOQ5vgcGTN0HIz2omeS5gyqSZpJn25xsXTM7ybOaVElmaKWLx+Px7C32aojkggsu4D3veQ8nnngiJ598Mv/+7//O+vXr+fCHPwyk4Y1Nmzbx3e9+F601Rx111ITj582bR6FQmLR9b+CU0NBRWg4KNFRCu1NIJjCENpRyIAorCp1VWNSNokPS3hNKOZyyabPLTFygILAapUFsSCg1UJZEFzASol2S5W0oAgpoFaQhF2OxdUVAtgZJBYkzlhihmgvQDSEvDRLThsryS5UIgTIoIJIYXIJWkCcPcZw12mLKRlvjK0hgJ1UkTZdjqteTBkSV9N/tc2B4/Yzs5AlQMAUCHZC4hHJUpqfQs7eX5PF4PDOGvSow/uzP/oyBgQG+8IUvsGXLFo466ih+8YtfsHRpOjJ7y5Ytu+yJMVNw2mZ1Gg2MOGrKtpI8VRAhAlqlD0rnFDp7ZiZag2gCsRgE0YJxaUVHWr6qyMcalQdxAYEkoByxDkEMxkVY5dLiE5fDKo3BoYKEJBGUkLkh6fwPUZZEFJJTUIeCi7AmBJG0G6lytKkCgWhAkTgh1AF5chA1nqaDsetGW5NybmrD6d9hEcIsP2OGugNKKTrCDoYbw5TikhcYHo/HM4693snzox/9KGvXrqXRaHDPPffwspe9rPXat7/9bW655ZYdHvu5z32O++6779lf5C4QEVymGIb1MFttP7GxOGsQ7dAmaUYfQKUdsnVaDII1BlwaIlGkDobSqdOBKARF6NJOn9gcgThQltiEgMI4hyMLkagQh8EhaGOxSUwgaWlsWv0qiLFYoJbL3AqxiBa0G0LbKippoBW0uzwFVaC70MvSrv0xopE4Amd32Ghr/BwS2HUfjO1bt3H77bdTKo3rI9EMjxRngc707wwNkcCue2GUBvtZfdedRLXdz7z2eDyePwX2usD4U6CW1JBMMWiblZGabOaISUBLGqYAQOGyMeXKgdMGRGNoOhgOQzo1VdA4pQii7EHtQsKmg2FCBAisw2qXtvi2IUY0iQtBRyRJjEYhKkjPJ+B0gkOIA8GpAEFjdIxxI+n6BASbCgpAtCEf5NPwSRIjNm0VPlWjrZaDoXaRY5F18hwdHiFJkolZydWB9O/irDTRE2Zsoy0YExg76ua55fHH2L52DQMbNzyXy/J4PJ69jhcY00AlruB0JhrEoUQRGyEyDaLCIErbVgMtcQbROn2Yu7Q9OKIIJM29cNq1kkFd5mAECVl8IxgnMNIE0tTBEECRcwZBMZjr4omGZkTBxq42qoUcqWABMQkiisQ0aKjUBQmJEBlFkboagiUgLaNNnMVojUYTAjaJWw5G4oQ/lmoMxMmEHIwwlwqDHSV5qiD9tUsaaSlqkowLgfSvSv/uWgyqKTBmZogEdj1VNcmavNk/gaY+Ho/H83TYI4Hxne98h5///Oetnz/5yU/S09PDKaecwrp166ZtcfsK5bicJWg6tKQPe2sU9VwVF9RBOdKsChBRiE7FhnIq7eQpOg2RCOk5lE3DIyoTGDZN0lQ2IBALOGKTTlzVIlgsgqIr0hhxiIJbgzZ+Or+HB+fOopoPSTCpg2GSdCKriVsCIy8NnKmhUCCCE0eQtucgdg6tINQBIYKLY2zWKnxdvcHqWsSGepQ6GNkcklyx6WrseBaJiJBEqXBoCYxKP5S2gtIwb/mYgyEzM8kTIG/SEujYTS0gkkxYuBnswng8Hs+zwR4JjC996UsUi2lp4x133MG//Mu/8NWvfpU5c+Zw/vnnT+sC9wUqcQVtLE5JOhYdRRJorEpvr1IOmhPKnSYbiJoJjABxaWKmVgLNHAzSfUQpjJCOfZdmkqcQmQCHBiVoa7OunoauRkRHXEUkJrCKggOndHYyEBODCFYn1FUe0HTaIZKAsRCJsmnuBmAlDb8EOiAUcIlNy10Tx3BsUVqTOJngYOSKae7EzpI8rbWtce3NOSZsfTD9e/bBaQ8MPfMdDJ19xnYHAsLGafdWl8zca/B4PJ5ngz2qItmwYQPLli0D4LrrruNtb3sbf/EXf8Gpp57KK17xiulc3z5BOS6jdeZg4EApEq1JJNNvWjIpJ+A0zggGMpciHekeSOpaKJ2g06d8y8Eg+6OcSUMkCFYrYm1ItUsqMGIMgSg6bIU392+hY3ARv+2wPDlbo5E0RBJE6fEqIVI5QNMdD+KCEE2EQ3BiCdLVkohDA4ExGAGxCbaaMHpvP6PH50BrrEzMwWgKjB3lYCijsDZJo0ZkDoYIbFuZbpiflR03kzxn8Ld/k4Vx3A5clqaD0RJRHo/H8zxhjxyMjo4OBgbSZLwbbriB17zmNQAUCgVqtdr0rW4f4eDug2kLOrBKUFmJqTMaR5C6AmrcCHNRSJbkqJxClE4TLZ1FicKQZA5GOknVoTBKp/uKSR2MLOuiHuaz86SVIVYMRlRajeIiQhHyonHKkEVlUNqSC0dJtKLRFBjRABIE6KycFZLmyrFiUQqCIEALKJuAFWIUlVIjFRgIibWtKpJcYRcOhlYkiYVmqW6SwPA6aJQgyMPsVLy2cjBmcBVJU2DYHazRRpmDMYNFksfj8Twb7JGDcdppp3Huuedy/PHHs2rVKl7/+tcDsHLlSg444IDpXN8+wezibDpyRRoMoJ1DAkiMJrbZAzLtYJXmYDhNEgi5iLS/OBonCiOpw6C1QysFonFZLwpI23AjBg0YYkRBI58njARcmoNhMRgUKEdN1RGBghjQqbNiXYhViv3m3MaT+iBq5FEouqN+pK0jLf4QAEsu+6dzgtIapRXKkU051SRaU4oSyKpJosQSNh2MQjMHYwdJnkZPcDCstbD1ofSHecvBZL+W+0KIpFmmO4WD4ZxtCQuXeIHh8XieX+yRg/HNb36Tk08+mb6+Pq655hpmz54NwD333MPZZ589rQvcF2jYBrnQIErQkuZgWG2IVSoQBKHZG9w5TTNykjoYBqfSmSJKFFrZrCFXWqYKWR8Lp0AMCAREWKWoB3kUzYe+IpE0RKKAWNUByItOnQccjeoskqgTo2JiFVCjgBKhIxnBmcyhIH1YBqnSwDmL0mlTKXFpEzABEgXVyLa6ckZJMi7Jc+chEowiSZKWsZNEDeh7NP1h/riurPtAmerOHAwbjSV+egfD4/E839gjB6Onp4d/+Zd/mbR9qrHozwdqSY0gVIgSgmxKahoi0Vn3TBmXuCmtklYsiNI4FIGzRCiMspmTkLYUNyp1OYwYmm6GkQiHIsrlSatRmg6GxogCcdRVHcGRQxOkcRqcaEqbTqWRf4AEQ40iWhx5aRAVu9GMtPpghM2yVpF0/SrtEKZJx9NXUIh1LQejHiV0Zv09mgLDJo6hOKEnMBO6dSqtsInN3BKQRglsnOZcdO83dmPVzK8i2VmSZ5IleIJP8vR4PM8/9sjBuP7667n99ttbP3/zm9/kuOOO45xzzmFoaGjaFrevUE/q5ML04a+zb7JWGwST5lwoUJmDoURhdZa62czBUArj0hBJqKTlYDil0ykjzqFd2vgKUQQkOKWIgvRBblyCygREmoMhxKqBZDkYAWnpKgqsLbKt/4VQD6m4dowkhBJT71iARmdhC0uuaT44S4JKBYIVVCYiKkI6TyUTGI2s5NSEGpN16uxrJPzn+u38YaQy4X4po0jGhUhckj2ItWk16Wr9nO7wTD+iZ41AZWJqKgdjXO8L55M8PR7P84w9Ehh/93d/1+q++OCDD/I3f/M3nHnmmTzxxBNccMEF07rAfYF6UidoFoy41IGw2hBYQ9YRfGySqoAzzU6eWYgEMNmDOxTXahXumrEUBONM2upbHIHEiFIkQZopoSR1MJzSGAlQSDrNVTlClwoMAEsqdtptmbZ6A4tGS4xBqLfNSXM/ABGbOicqbbzVUFmIxApGBKU0FbJ255nAiBObri1n0JnAqFgHTtjSeEqPCJM6GCq7OS6O0jCSfoqhtg9UkTQdjKlyMBIvMDwez/OYPQqRPPnkkxxxxBEAXHPNNbzhDW/gS1/6Evfeey9nnnnmtC5wX6Bma+gsT6E5TdUajXNNB0PSbp6Qzh/J2lIgJi1FVWmIBCBgzMGwaTErojTajomNQGIsiijIBo5Zi2iwaPIurf+IVAIK8pKeUyBrRg5G17KmF4pYhaA0teKctJkXaYhEKUGTXk9DgY2F0W0WKTgwmrJzGCdpUywgSRzOCEGYJoSiFIkIOBh5SoKjqGbZpso6lCaIE9RTBcY+0MnT6B2XqdrxIRI7c6/B4/F4ng32yMHI5XJUq+nwpl//+tecfvrpAPT29k6cK/E8oZ7UCY1CodFimz21EJfHCYhotElQWfdOycIlkjkUgqCzkeQh0hrr3nTdndZoF+BSU4GA1MGIghAA46RV0qolHdce6wRRQt5BiAWlsqRTQat6JnTyVMO5bOk5ijgsYpo5I+JA6SyM44gEGuWEpCa4ehoWqYigsgoTlCKx0nIwlFJorYhFwAmjTxEYjThKm5srlZXGuvQBPcnBmPllqq0cjCnWONHBmLl5JB6Px/NssEcOxkte8hIuuOACTj31VP74xz/ygx/8AIBVq1ax33777eLoP00KYQ6lVPrQbSYvSh7X7C2hmvkLqjV51dFM3BRUdlCo0ooPlMLZNO/CaYVyWWUGLs3BAGKTuhVh4nA5hVUKLSatIsEiyhE4CLPwi1UGSMDEIGkXT6tyJCaPkxhNU/DYsfZeIkRK0iZaImgnoBQVccyyQkFrIq1JEosLXGsOiTaZg2GFhnPUraNgsoqTOAKVzjMxSqHE4pwbExRNWjkYM/fh3KoimSKM4x0Mj8fzfGaPHIx/+Zd/IQgCfvSjH3HFFVewePFiAH75y1/yute9bloXuC9wwvwTeOshZ2F0HiPpPBAg7WXh0r/T2WECFmyzoiTrl6lS2wAA0wqlKMRlIRI02plmL04CiXFKkQSpQGk5GEphCECEx6ICq7Oqj1yWg5GgCagTG0WkQpQonArTSIVLCKT5fg6lVVokK44GKuvSmboWKE01ExvzciFKaax1iDhMLv2V0kYRu2x/mOBiNBoNJGveFWqDEpcJjB2ESMTNWJGxszLVJPI5GB6P5/nLHjkYS5Ys4Wc/+9mk7V/72tee8YL2VcIsZ8G4tKdFokDrEIdGZcmVkxwMFWQdNl1L6hntwDW/yRvApsJBWp0pCMQiShFnDakCm+ZJODRKAhyK7TbkAadZpiHvbDq4TAcE1EiMItZ5NHWsCgCHiE3DK4DDopRGZcPb6olNn++ZYBClqCMYC3PzAWu0JrHpkLSwJTB0KwcD0jyMefk0pNNoNBANgQkItCMRm/bMmORgjPv1lLTB10xjfJKniEwox53oYHiB4fF4nl/skcCANEnvuuuu45FHHkEpxfLlyznrrLMwxuz64D9B8soRmNSpMM5CmEOLSbt1qrTZllKStQqX1NTQQeZeWFyzikQlgEFcgLMGiBGlUS3RIQTEWYgkdTACJ9QUWKVQWQ6Gw1In7cSZayaeKo2hTmw0icqhqCMqACKciyc6GMq1HIxSPckGoQnapcmksYICig5jQGtcloNhwvQcSpMJjB07GCYwGJV++5/SwRgvOFwCJpy+D2yaMOPW6MS1HA2AJBlzMEQczln0U0WUx+Px/ImyRwJj9erVnHnmmWzatInDDjsMEWHVqlXsv//+/PznP+fggw+e7nXOePIqQStFJDHGpZUW5IqopAAmwqk0DKJEcDjQgqgg62Y5Nm010GkoQsS0RIWgMNIMkTTLVMlCJBBYwWZJnipryOWUBSXUSR0MSIVBUWrEpkiiQrSAEIKKwMUEzaoVEZQWVNaDox67TCQ5lHM4pYgVdAA5rVKBkY15b5ao2mzeCnaywKjX66CaDgbEYrN78tQQyTjHYoaWqupxa3TiMIwJiOYcktbr1nmB4fF4njfsked83nnncfDBB7NhwwbuvfdeVqxYwfr16znwwAM577zzpnuNM57K8BDbHnqEfGSpE0E9nQNiTUBQnY22zckeQlk7UOMdjLRSIx1XluZgiALnglaoxKl0kupYiCQVGLExWBMy1L2QRkiaUEqYjmPHAkJdhHyWH5AohSIiMSrr1Uk2kE0hLs7ESSYwlEOp1MGINC0HQ2UORgK0ochrnQ48c6mDoTNhYVulNOmqR57qYOjUwQh0gG7lYDzl4avUmOiYoZUkExwLmZjIOb6KBHyip8fjeX6xRw7Grbfeyp133klvb29r2+zZs/nKV77CqaeeOm2L21fYuuZxBtZtpH20QdkGiEpwSZSWqDrTenCDUDMOwSFKEAxaUldCssEcgWrWphqEIM3dALRk3SxUWkUiSmFNwH2HnMC27tnE+RApaZof6bDJUTUh9QQKMtYZFKCSzTBRAlaFpDWrcdaVUqXNwZrdRkWImj29SRM7LWCVkAPyWqG0xrmJDkbcmmQ2dYgk35zQiuy4TBXSRl6OGe1gKKWQzMEZj50kMGbmNXg8Hs+zwR45GPl8nlKpNGl7uVwml8s940Xta8w/8GBEHIVaRC7OcjBIp4kmQdovREhvtsuSOkWnnStV1nfCTRAYgpMAkbDZDwvt0o9K4TASpx1BtaJS6EA7qOc0VimEIA2XKCFWmprKQiQqzcGwQCUoYiStMOltbGPR0AOYqIRRQVq9IgJ67Jcjbs4iEYdyqRMCEKDIqSxE4gQRaQmMJHMwQkn/0XQwrLVEUQQKjAkItE47kbopOnnCPtHNc0eVJOOTPMELDI/H8/xijwTGG97wBv7iL/6CP/zhD+kwLBHuvPNOPvzhD/OmN71putc442mf1Uuhq4hB0V6NWk2znDHYsIINKygVE4rFkToDWilsluSpsGnip5K0igQQFyAuaI4cQ0k2i0Q5DEkaZlGK9kYFI4LTEBmNIsAphWBxCqpA3iXpMDSlEQXVoJi2NBeh3Q4TuIh8ZTsmm/7qRBBtW63DY5U20BKaI+fT61YiEwRG6mBkrcMzgTErS/qtO0fDuVRcABiFMRqjzLg+GFMIjFap6sx9OLcqSZ5SSjspROIHnnk8nucReyQw/vmf/5mDDz6Yk08+mUKhQKFQ4JRTTmHZsmVcdtll07zEmY9Siln7zUYrwTjSJE8gMQacxpkGJiinVRk67YehdNYCXAAciUoFRoqkVSQSpg24lGqVupI1wZrT2Ep3ZZTjVt1DW62CAJVcFlZBoUiwWhilSr1aJRaD05pEKaqmgHZCKJYge3CHcQWlw8zBSCfDNx+cCY5cIe3ZAekMFQBRijxkSZ5MCJE0HYw2pShk80pGE5smeAJBPgQUBj0mMNQUv477wMCzpoMxPgdDRFohEp2VE/uR7R6P5/nEHo9r//GPf8zq1at55JFHEBGOOOIIli1bNt3r22font+D0QolGpP1nXDGZINHskezU2nOgRKUEZwyrTLVRGVj3SWtGnGSCQzS/InmWVSWozEn2k5uQBFYS2clDVdVcwEqSpNBFRarHGUqdCQNYmWwSlM3hkgXaHMV8q7R6joaJlWU6s3eW3DKorUGa4lxhAVDWt0i2cBThdKQF5UKAxGss60kz2ZwICfQHRjqkWM0sXRl3+KDXPqrp1UmMHaYg7HvhEjG52A4m6Qt14FcsUi9XMIlM/caPB6PZ7rZbYGxqympt9xyS+vfl1566R4vaF/FhEBXDjUM2rksgVJnlSCSug/NwWeZg+G0SQeGYbGkeRPNelXnNNblUUpSpwPJBEj6gHYqrS5ByASGUM1pkDSPApXgtBBRJ+8aOKOJVEAltwirNSZ25F0DSEek5+IKLkvyFBzOOLRKh58lQJDX6VpIR86nLcDSLqJaG5xA4sYcjChTLjlRdAWGbVHMSGJpz/IQVBZKSR2MHXTyhDFXYyY7GFMMPGt28VRKE+TyQMk7GB6P53nFbguMFStW7NZ+4zsZPp9wEqN68+j1McamvSxsoFvtvh2CiEpLPxGUyTp5ptPQSJQaC5EoEDHg0ioSQaFFENWgnnSjXJSWsmZuQXelhAC13FgVSUBMQkJMjBFHTEBNFYlNPn3dWXKuAahsnkmNSAdjIZJsVggJaYVLoVnCStqxVCkSACvkjKYuQuLSFuMAUSvJE3JZv45S4lp5CjpIm5KlfU53IjBaZaozs1U4TD3wrJngacIQneWh+BwMj8fzfGK3BcbNN9/8bK5jn0ckxnRoVNBDIAotCqsN0hyzrkCczsIXklZfZiESJQkJCqWyJEpSB0OsQbRCxKCVICYCSbt1Nh0MhWJOeQglQhwYIpVHC2gcTkU40nbfFkOiAyKdGhyBSx0MlTkmQVIj1mlehBPBaofWmlxO0z2nQFLXSDNEIgqjIEYQJ4QmoE76gDWZM9HI8jVCoD0TGCOJzca0Zw5GQisHY8dVJM0cjJn77b8VIhmX5NlM8AzCsNXd1voqEo/H8zxij1uFeyYiLsFoRdJ1FDYxoKo4YyY4GEgzDCJoBdYYlIB2EYlKH9opCicaxKQOhtJpaavKbPfmmHeTPcRtQhgnoA2juXa0pGEYdNRcXNocSxmSgHSSqXPkXNTK7ghtg5qkM1QFSV0LpQm0JlfURPW0B4cAWlIHIwZIHGEzGdQ5VDNEkgmMwEFXJjBGEzvOwUjdkVYOxlSNtmCsimQGh0haybDjkjzHHIwcKhMY4gWGx+N5HjHzpkfto4gkaC0ognQGCRarNdjsAakEnMLUXdqDImuUBWBsTIwmMRar0wZczqXhFZeJDaUc6CQNs4jGKUiyDpsaKNRT8RHpPKEjTSYlAtIQjIgm0UJSaCBKYZwlJ2mIBEC7OE3ezPpgWJ0KDJ1eHDFkDsbEEIlYIaebIYKxTp6NTCzlUC2BMcHBCLKhaKJaSZ6OKcJrM7yTJ0yd5NlyMHI5TPY5ewfD4/E8n/ACY5oQSTA6ffgGAk5ZrDbgTDrgDNLMTBwKIRCFzb7ZGhu1cjDi0CLK4CQ9NjUrNE4n0OzyKVneglbpIDSgWE/FRCUsoLOcDS1xc3EIioJUma8fxUhCaBtpqEYFqUMCaGUR0hwMq9PyWAMgjiiVF62BZ0ZBgiBWyDcfsFkOiYjQyO6LGedgVK0lyiopTLZNo1DNYWxT/TrqfSfJc2IORnrvTRimbg3ewfB4PM8vvMCYJpzEGATjDIEIVic0wrRUUUgfvsqBSxtfYARsMOZgRFlyrErnuqf5Gk4jSiFoRCdpiCILYygVMFqYjzUaLYpCPbXkh3NFjKhUPBDTMIrRIHMGBCKtabMlCraBAqxqJw4K6TqcTRM0MgdDtRyMdPw8WRWJdpmDoQDrJjgYAHUnE66zoLOZJUCp2RsiNK016Wymu50qj7MVIpn5SZ4THYxxSZ5NAeJnkXg8nucRXmBMEyIJKglRKLSAI0EUWIJ0JgmpeGjmYBgHSTZ+3CQNLDqrFkkFhhMDonFKpf9WDkgFgKBQItRyGqsVSinaajVAUc7lQAK0CCEJVa2yHhtpUmlN5+hwI+ST1GOwqp3YFAFIG4mnORguC5EYpcA5GjpzMEijPUGWgyFWCFoORlNgONAKg0K5tM34rExQjGblmzoLkWCFpv5Jmn3GxrMPhUgmOBhRM8kzN9ZoyzsYHo/neYQXGNOAiCAuRicFjAJjGulTWCkSl0tDJErSSkuVhkjMuBBJYON0jogolGQPeNGIU4hOHQtgLESiICcJVglOp4ImH8WESdqIvBb0oB2EKibWiiAtKMWKpq5D2lyZNltN00JopxGkAsOkNaljORjZuXEurRhJtU+a5BnoNESSuFanTptNTq3Z9NhAg8uGnc0NUzE1nLUK12H60BUrmJbWmCoHY99J8rTjKl2aDkYQhq326V5geDye5xNeYEwDIjad09FIe0zYIEE1B54RptNJAZzCZWPQteissRUEcYRVCps5GCoLkaQORjofBEAph1YNBEUgFmscVqs06dLFFBupwKgHswicRilLrA0mGwXvMFil0KKZX1MYl8eaLqLMwVBi07JVyfIplMYA4hyNZpMtIHAKbdKR7TghzH6NXBbqqDmHGEWg1JjAyDp3jkSpUNBjqiJLSN1BiGQf6OQZZJ/j+BCJTcblYLQcjJkrkjwej2e68QJjGpCsPNHEuXSomLEE2cMmkZDIZaGRxOB01tUTneZbAGESkwBOFNql89mdGBw66wCqSSVKjCZGUITO4pQjMRolmtBa8lHmYISz0oe+FhIMRhIUECtDTEhoi+QSQ862IaqTelAg7WBuU3GB4LAtgYFzRDhQqQDKAUqPVZGE2QO2mYOROhhpGKVZljonExilVvJj5mA4h8mSQ5MpczCyX9EZHCKZstFWNFam2kzydFMqKI/H4/nTxAuMaUCyag1pFEEgDhJ0S2Dk2FYP2VjOIfUQp7NmWipM55AgGJsKDJtVf6DTRluZukDQqeuh4ixDAgKxJMa1QiTGJhTiNKG0GnYTZD00XNrhC4CYgIrqILB5AhGMC0nooha0p7kjxJnoESzNMtX0+EbmTyg0gRUwihiBxKUTVcmEiXPUnYBWhOMcjKbAqMYJVgQdTuFgTJmDsQ802pqqVXg8Lgej+bp3MDwez/MILzCmAZEkLXKIC4hSxIFNW4AD1gVYUVSszgagkeVnGLQFLQ4tDpdoLGlFiCBpgy7Raev1bJtSUdoPA0UgDlGC1QojkLMJYeZgRKYdRQ7RCqc1oVgUQqIMliKCwUi6hsAF1IJ2EIWWOBvInpbZpomakjkYqfPSLMNVZlwfjFaSZ9rrYSwHQyEu7fbZbgztxiDOUnNuzMEQWgIjnkph7AMhkqlbhY8vU/VJnh6P5/mHFxjTgHMJcTVAicZqwSlHqHIAJJI9XEjne1hFNrgsAKcRXFr+aRVW0mmrVrksRKIyByJ1MAJdz2aTQCiO2XGSOhhOEdg0DFKIk3QdYVeab2Gg3aUNuhwBgRNwQeaiBOSdpmra0nLRZt8MBMlCJBqFOEeSORhaUkFDK0TiCERlE0XSdtm1rIokbDob4/MwnKNixwQGCM3+nVOHSP4EkjxbDoYXGB6P5/mDFxjTgEhMVA1QaEbbQ5zWBFl+hZVwbD/tsFmIxKoA1Qp4CJKkHTu1E1w6QSQ7SGW9LwSjaohO8zJChAMrCdakSZ6BS7Ba6GwkKAmIc91pKEULbS5BSEeqG4FEClSNJtKdhFZRMW0oUSiVPcSFTPhMzMEQQKMJrEOZtIoEK4QKUBqbORjVcTkYADbLPZibCxDnqFqHCUzWOVTQNHM4pri5+0CZatDKQZnCwciNz8GYuSLJ4/F4phsvMKYBkYRGNe2BMdoe0tfRhXbNsepNIQFWZQ23aA720tl8D0GSLF/Cpd00naTVIyKa9LEOgdSynhiSNqeSBNFpsmhoE8p5aG8kYNuph+2A0K4aBJKgnUY7leVRKNa1z8apAjmrqAVt4ALSLJD0Ke9Isk6eaR+MWJo5GOl8kbEQiSNwClR6bmtt2gdDKXJZrwvJwkVzwnEOhjFg0hkrmYzZQYik2clz5gqMpzbaEudaVSTewfB4PM9XvMCYBpzLHAxR1AsB9UI7sR3BuZhYRWmipILEOBRJ9hAPEdGZLyCYxGFFg02yKpL0o1Gi6QTak5BZukLR5XEqbTkukiV5ojCJZaQIHVGCSI56rpNIWXrUCEbF4NJk0ARHQ1kaSqFVGvLI2QAVt6OwJCZtwNUMkRiRloPhEAyawJEleWZ9LNIWYYiCyDpqmaBoCoxWomcmMKo2ndSqTJpAqpqNqnYaIpm5D+entgpPknjstXGtwr3A8Hg8zye8wJgGRBKiSoAWaORATACSYF2dqFk1gmADh84EhiiD6JA0O8OhY8FCWkWiNEFtG4XyA7gYQjG0uYh5rk7RhTR0iFaSTljV6fCz0CXEBvKuTJqlUWQ0p1ksg2hVRkRaa63qtBdHolPhM2dEEdmAqouIVS27qmaIJHUwIpdkIRKFcc0y1TREoi2g0nPV4jhN8gTyTxEYs0w6NyURoSqkA03EteahJFM9gPeBEMlTczCaXTy1CdDatIadeYHh8XieT3iBMQ1EjYgkMrh6nUaQjh3P0g9w2iBK4TQkQZo82RIYabonIOjEYkVhnKAx5KJtKImhnFaUaBLmxV0M6cUkSqUdQTOBoSWbI4KQ5Eq0RQ20hIyEeQ5ymzFYrMSIE7QkVFUCAtakI+K7ygqLJgpGUVnXT2djRCkCBLEJ1cHtoBQBIUYcoiBRYMsDSD1K22UrRT2xLYGRa35zd80W42NdP4esZA5GKltEGZJkihyFfaCT51OnqcZRHUjDI0BrXLsXGH+6OOdoNBq73tHjeR7hBcY0UBuNSKIGpjqEwxHkcuhMYSRBiFLpTJGGznIcsqRIpQCd9vk0mYMxWGhQi0cg64pJuTPNe1CGvNWsDw8kVumAsNAmWJ2WthajGiaJiXWDjkYNxCBBF3OTPjpUhJA6B9Yl5OI6yjqcUbQZzeJCG7kgQHJljHM4cdhGmVqpjLIudTDiiNCEzHPdFBLQsWPJ1hLxQ/fA7/5AV70CCFvrjSzsM97BSK/FOUe70aAU/XGC0mkOhsIgykw9znxfCJGMm0VSGR7i8Tt/B0C+oyN9PRMYNklaTpLnTwdrLffffz933HEHW7du3dvL8XhmDMGud/Hsisqjj6DXr2ZhbSsvr4AKAyoMEege8kXFUO4wIom5q1sxagKsM/TEHbTnhik1EpwSxDliEeraoKolIm0pugBdz6M6DVoLg7KQNTnhEJWGVZyNKBUVNRPRGa/n2K134HoSZllLXnVSIOS67pNoa2uwKSwyHAQU8ttZZO8i32UZdPB7nSe/zXJ0vYwOtpLT8xhRRTbmetkiZcLGCsojIaMczsL8bDTgBNQjg3SOVOkPNhFVE3KJxtjt3P+7DUTdsyn2LqFRXUDp0S1sHR1mZW8HW3VMPGzo5Qm2/+Eu5vR3QbmKzRvW1gJWbdjEBu6nuy/h6IXzsYMJ0eAQc5JeRgeKdIZ99NVGeXRggJ6euQQ6LbdNajGVjWXsobNoxKuol4YhWIzRmpOOPJjFs7sAaMSWX9z9OIOlNAwUasUR80ICniSXq9Lb24vWAZ2dx7BhpMBAucELls4izNqax/EQIyP3tTq35gsL6eo8qhUi6du0jTtuuYliR51iRwcHv+CF1GqbKI2uQlQVJW2IOOJ4hHL5ETo7jyAMZwHgRLhjuEwpq9XVCjq1pm97lQWFkBOWzMLoKWa17CZDlYhabFnUU9zjczzbWCes215mv1lFCs1pu0+DaN06kv5+isccgwrDXR/wDIkSx30bhmFkE5XhYQAee+wxjjrqqGl9H3GO7WufoGfBIvJtbdN67t3BlqLWGKTpplx5nFp1bfqD0nR1Hk0+P+/ZebOnSblcZnh4mCiKSJKExYsX097eDqTzpzY9uhKbJBTaO2jr6aFj1uy0b9E4RIRVQ6uoJlWOm3vcpNf/1PECYxoYfOAhclFMdzDIct1GIoYBNcKAjpAgYGt4MFVtqQRp/oUWRTkwFMIqgSvjlKCdI4gUXY0C1USITITNxr8LBZxJ+J0OiCLdqvMQccTtjqHj6ix8oszC8mwa+QLzc0/yCEuBHBvzSzGhMKpz1HJCtS1kWXI3gR4BGtQbBUgiBrcZ5hITqoRB00tf0Eup0Edb8ARtItynD6G/PeG1/SGPz86xzVXp695O5+zb2CYHsmrweOpxkRV0QCLM3vQEGwZGOLDWz++3GpLhHCJCEGxj3qwH2TC0hva+V9Ndh1Ihx7okYIB+8v05Ovo16x8ukZcC2kUMRXO52RhmDa8hiDcRuYShfD+zu/ZHKYXeUiU/GrGlXKa/cBvihKot40ZG6Vt5DycsncfqR9bxqH2AzQNDrc9NXI3S8GoO7d0IQLU6i0JHJ39Ys4lVoy8CYNNwjTcdu4jAaAYGb6daeaJ1fKn0MG3FpRhlECesfXADnaXZzFqwkCNeeTyj5T9QHngUEUdSeBgdH8Bg/x2UKisQcVhbY+7c1wCwvh7x++Fy69wjow3Wrhuh0UgoaM3pW0Z5zRHzWdj99AWCdcL/3rOBWuR4/ykH0N327D9894THtpW46bEBjt2/m1cdPv9pHRtv2cLIz34GTmisWkXn615HMGvWs7TSlFse284Dq9bSVtvGEYu66ejooFQq8cgjj0ztxu0AK8J124ZIBJZ3FDi0rUDBjJnLmx96hFU33sa8pQdy+BmvwrQ/d59fMlSndtd2eoZy035u5xr0bb8emdABd5SFC98y7e/1dLHWsmLFiglh21KpxAte8AKUUoz2bWf9Q/dPOOawU17G7MX7t34eqA3w242/ZUtlCwAL2xeyoH3Bc3MBMwQvMKaBg1/3Erbc+D0G2g+g/YjXsLZcZWP9ZoLKWnRbL8uG5tAo9jOnUSInNToT6LQBWzs7GYrrVAqGdoR5W2BhETZISKWjQWFU0acjotkhceIoldtA0oFqKIdVilyxxHCxAI0QVcnTPZBwaP9WTNsv2TRvPpV5FUzSQ1eylMd7F1Gng43JUpYMryNXgKRYo2YaRLmYXKNKrDUN2giSgCNkNdVCjkTBAfH9nLVhA2uil7BJFlBpGOpdQywJ5pHoPI3Geh7ZdjgkOXqeXEcJoS3Xyfp2gwRCUVVYGJVJ8oM4rZFixMbOkLwL6DVF5kXzcHEnsyNNMXaMJlVynUVyoWK04TigIqzbsoFkP0UhyFEIYtb1PUp39zzmmPRb3VxGqYbpWPkuGmzeVqHhQu7bHnF/uZ3OjU/SVlzDQb01hvvn0thmiQtC9wFzGB3tZfu2UeyaDSRGk2sXJNSsG6jy8we3cOZRc6hV1wHQ03Mi5coqkniURmMbWmvKQyWiJEFpQ/cBS/j2fZ9hQb6NY2YtJpebCwgufIKh4TwmSB8Q1lZZvXo1g4OD1Hrm0tgSMa+jQLEQsHl9iQ4HLjQkImwvNfjBXRt4zfL5zJcRatu3ENVqhE/9pu4srLgKSlsZGa2zet0w4QlvptJYBMBjA2UeGEwoJxYHtGnNOxf20hNO7/8KqqMRj965hSTKEn6LAUe8ZBFBTk/6FqdW/5r5IysYrqaibqgSTzrfznC1GqPX/yqz1hRJ/wDDP/xful5/Jo9093LXSIW3zp9F706ucSBKuHb7EEd1FHlxT8cu33P19hIPrusjHtpEI9AceOCBLFq0iHvvvZdyuczIyAjV6hMMj9zGvLmn8/Ajv6Jef4IF8xdgTI7e3pcQrI6pP/wI5WWH8GTvAiQMWV9v8Bs1ylvnz2JpMf1vffvKR6hv3c5g5Kj0HE64qIPC4b2o3XC0XDWmvmoIV09oO24eurDje1AeqrNmRR8LDuqmPFgnqlsWFtI5SEG8Z9+8XaVCvG07uQMPmPS5V6vrEHEEQSdtbQcyOvoASTKy0/NF0QD9/TchOBYtfDtKTYzyixWqD/Shc5r8wT3oQoAtRTRWD4NRFI+es1vrbroWSikWLVrEli1bGB0dZWhoiN7eXqJ66oLmCkVMGFIrjbLl8S1sWa3IFQM6erdxzw8vZ+TY/WFxLzpKGPrND+h84l70YS9h9LBXsumxh1n+0leSb+9Io+bj7k+ttpEkGaFdz0c/8EPcwqMZ7EioVFalwzXFks8voLv71N26nr2FFxjTwNxj30D34afxy+uv58zjTyeqVbn4yYcY7qyxX1cXC6ovI5cYFgx/B7GKwG6nUyJ0oYyii03z8iwuWXpsmq9gVS/b5/dyWKmfmihuZwFhLqFXa2r1NiCdmx4GFbQW4qTAT9WLOblYIV/bSiEOmVteR2dlK5v1Ruq9Ql98Kip6PbFuZ6S0lMqoYX4k0NVPVEyQ0RgVwVDQRd7FHGjX0ZuU2Z5L243vb9cQb4fOoYdRCzqxVtFWK9HX04MxeUbr7XSF23Gjs5lTGiBnHd0diygZQBd5Ufs6DiwOE7v7Wec62dY+j6QnZFu5QAe9LA5z5Ow8inXBSZ3tKmI4p3n1q+bx2LVr6KpquqvwqOrghKMPobHqXoarJerSYD97GA7osGUaMoJgWdg9i80AhQ42qm6c62NJ4UGO3n8V8+aG/GFTJ/0uTzIactxxH2bduu3c88ebMG41XabK2zryRPPbuW7LEBue3MSdQ6vYr1DAqjw9+78Y6+qU4oeoN7Zigv0Z6SshQKGjg5X997A5HqaaxBy39BweHt1KEB9GEDyBVkU6OpdRLj1KFNXZuHEjIsLaDdtxUcCcWUtICFhSyHPI/A4eahOcg4Nriie3l/ntqu0cvGEF5fWj3Pern7Fo2aHst/woBrdVWf/gBtrbCtTWRczpKpKUBmjUGjx6x+9RR52O0ZYHB9sY6krDD5IkDI2MsHpkgKNyhnDRQlCK2v33Uzz2OEzHmB1shxuYzhwqmJy2JdYSb95MMHcuulAAYKSvSq0yRGDaUcrQqMaMDgxTTq6lrbiEuXNPTw+OqqjN99BTfZL11RIA1Wj3E3pFhNKNN+LKZUxPD11veD3lm24i3ryFwTv/wK0nvYSGczxWqXPyToTDzYOjDMUJ95equxQYlUbCrx/ZjjQqIEKiC+y///5orTn88MO5++67iaKISuUxbFJhdHQ1w8MrARgtjdDd1U258hiFlXXs8DD13/+eg2LH6IkvJD70MIaThNXVBkuLeUSEofXrwDlq5UFEhGhTmXBBO0FvYdLabDnClWPQinq5gqyrIUnqeTbWjFA8cvakY4a3pXkjI30B/RtKbHtilJ75RURgZHOZJQsLaNkzgTF8y62MPrqKhW89i/yBB054rVpN3cD2jkPp6jw6ExhpxdtUoYbR0fsZHLydUjSCE8fcOcPkcr0Tr7/UIOlPH/7xtirB7CJJX5Vm6lPhcNccTr1T4qxRXi6X49BDD0UpxcaNG1m3bh29vb3YKKJRS+ia18usBYu574YHGNxWYt7SiOpoxMDa2zGVOvtts7S19xDfcg0dagAKs5A1d9BXPJB6uUT/po38qn0OncbwZwt7s/vyJFu3/QzEUR4eZtZwP7XRexg95JjW+ipxhXpSo1rdiDERIq9lMFZsbWRzsYAOo1sidW+x15M8L7/8cg488EAKhQInnHACt9122w73/b//+z9OO+005s6dS1dXFyeffDK/+tWvnsPV7hilx26lMYa0ybZGB0UU7YgEBAgRMQ0JiGweF+dQIjil2LBfQKUYoJWQmA5U/iCKxpEzESZOGKz00Gc7cbUEcQlGReTNCEYUA4MHkLgcIz3z6Fu8H8PLu1jWtZCljQUc94SwsJEg7f2Ergo0iIpFNGAkQkmIVRAlls35brYX5gKOw8yDhDLEVjsbQZNzFbYEdayBdhNQyAd0JhWsEwbqvcSNdjpsQk8yTE4ltLWFHFlPOGwoZlnV0eEiNseGoSJszWk6tg5QrG7EOaHaKEIYohuKMHYIMaO5CrPaLPeuLDOiqxglaIFN2yy3bBE2VmIqNUNlqI4rxQQSEUTZyHgt1GupLVlxmmpUJVTDLCtuoqdLI1KgVOug7ApsrnRx7eYnkQWLMaYrrenRZQpK0bW5yut6A5at2ox6YA13PbmZa9c9xKrHV1LIp1Zno7EVJYrKSA2HUOzo5OHBx6luy7N5u+H+oU2sGVnDZqdJ6i+mu/dtdLQfBsDgUPo/01wuRxQLUivRGNhEZWsFW444fEEX+cAQhpqjOutU1z7KlvWb+OP6HLY+h0ZV2LL6MVbffScrb72DtffdxqY1T/K/W2Zx5ZollIsH4YD+Up3OvuvoVb9gayl9mBzSVuDAJ1cTrXmC7X+8i9INNzDy459QvukmaveuoHbffQC4ekL13u1U7t5G/bFB7MgIjdWrJySrlm+5hZHrfszAlVcy8pOf0HjiCcqlDZRLj5CftZ7uuWlYp17rwyYVyuXHcC5zKepj31gbtUr6mUW7H15orHqcaN16VBjQdUYaFmk/+WQA7reKRjbNd2CcaNle3c6PVv2IjaU0NLa21uDJWloBMppYKsnO3/+mR7dTiyzdxUyomZAoK8UuFtNrFREaje3p/amMheUq5UMREZK4gi2NAmA7OjBRg/0fup+Te1JR15+tt1YaJapUAUh0jSiXHiNT9NWXxFH56Q1Ub7yZLX9YxR9/dytbRjZjutLwRryljC1HE46xScwjt9/Mw7/9DQ/f/iDD2yvYxNI5u0Ahp4kalifWlYnrO70lO+SRh9fy4MYRtqzfNnGtYqlmuRftbQdhTHtru3O1p56GUnklAwO34iTh8aFVrBp6jHK9b/I9iMfui1gh3j4mLp76+ngG64PUkrH3HS8wgJaAHOofZGDdNspDFfrXl+jfWGOkz1CvBsT1sePrW9PrXWQ7WfrAvSyyG2joBBCISiSV9Pe+f2SEoThhfb1B3Trq9c1s2/bzNPldB0htkFptPVIdINDt9Mw5nSc4gN9XcqwsDSEIRj/J1uEHuXrzAD/vG+bnfcP8om+Yu0YqU17rc8leFRg/+MEP+MQnPsGnP/1pVqxYwUtf+lLOOOMM1q9fP+X+v/3tbznttNP4xS9+wT333MMrX/lK3vjGN7JixYrneOU7R2uNIbUWUyUepMPNAJ39j9US4jCtQV8ozepZneRlFhvzR9ImXSgT0hOWaDdlwkCzQA1QlDogYCJEOVTcRr08FxQYSSev2sBh5nRg8l24RHPIetjPGQKbgEoot3dQqmk2lHNsj0NGE4VgqZh2RsMu8oUaXXqYWDVYZfdj0PUioqnOKRMWC+RybRQ6OpgVxuSTiM6RGF0qpnNKGkJBYmponIvQgDWGYiCIODZ39JCrFJFY0GxEnEXiEKdzqEgRJgI6xnZvoDu3hvs2rSNJLG1SxziN6Rtm64bNDJfngUDBGqxz5JMYlWgSOtFaqJZHcFGZ0UqFob5BuqqKUBZQLOQZHWyjEQEoVAT3D2zk2m2DxCpNBlXt0vqfck+lhEJ4LFzFarcGrYtsGNlAPp/mCESN7QxuHE4rRLQjancMVgYJYoOuBGx7cBSxwmYV8bPOiH9deweSGYdDg+n/ABYvXkw4Z0n2uxNTd0LSVyMXWUKlqI4M8/i9d3FEscLAxu1siDVRoZ35B6XJhI1qlcpQ+hDLd4yCdlQlZN32hNHYkFiL29YHiaVef4TEOjoDQ8fIMAD1WbOINm2i9uCDNNalYSA70E/cX6N85xaSwfTp4ioJ5VtvZfSX11O7+24A4m3bqT/8SPo77IRo3XpGf/FLaqMD6b00o9QDRV+UEDXS/wGLOBqN7IHTGG39dxPX0xyUWmSxWWmzJAmjN9xA/bHHpvxvzTav+9DDCOak9rcKQ2KluC8Y+/Y2EI8JjNXDq9le3c5jQ4/hRLhlsDThnFuyPiYiwi2Do6wYrbZeExGe7E8/txP27yIwGrShVE/PHwRNU9hRb6QPkUomMBSaKGqjXC5jR4fTznJG03jDGwHI1ev0ZsmtzfWO9m1HmoJLFOXq+uy+TCEwRoeR8giqPsyIbKTWFrNpwRDtL1xAOL8NEdJQwTjiRgPJRFipv0R5cJAg5zj85IUcvKSTjrYA64RSWSNT9vIfozLcYGjr2ENNRGgMpfdgZGDi+9brm3CugbGWfLWB1gEmSEOdSVLmqTTq6ReGYvvh1FQnIjBQ3TT5HmQhuWBOkbaj5xAuaKP9BeNCQ1N08xusD/KDx37A9U9e39oWRakQa4YgC4UCcztmE20s8/jtKylvS9foYk0SBYCia3YFbSR1tfrS3/9CJaazsREUrF5+JBFFJE5ISv0ADI+O/f731frYuvUniFja2g5k6ZJz6c4fiNZ58rk55Ion8OP1d7JqdBNWt9FnltAbzeLgzQ/x4NqV1J2j0xgOKOY5oJhnfm7v51rtVYFx6aWX8sEPfpBzzz2X5cuXc9lll7H//vtzxRVXTLn/ZZddxic/+UlOOukkDjnkEL70pS9xyCGH8NOf/vQ5XvnOUU0HQ0CTQymFQ6PEZSPawRKQKINRWY8IFDEBbDmSajIPrSBUBQIRZnf109tTZ1E4jBWTtg/Xaa6BRN3k/v/s/Umwrll6lQk+7977a/7/P/1t/Lp7eLhHJynUZEoICkGRUAVCBaKsZglVVmUyzJhgMMDQCAZlBgyKkcyY5AArDNOgDKWSskRKsiRSkYhICUnRR8gj3D28v37bc0//d1+zu7cG+zvX3RUhEKSCKKNim127957zt1+z99rrXWu9uSodThUUIZF4JBVv3/kECUN1Zrm5jlSxNETbaMMQhK03rELFJhpCVjozpxK40Z6TY8Wpn9MZxzJ/pIRs7Q8MdWnBNrMW42DuexZXAyGWqHSyohlMGOnwUwO0iDWQrWetC0iOLNA0V0DERMhDgzXluHmpOFvMuUJK6qcG6hzYSQHGAbl3TD84qmBwlRA1YBNosGg+INuabuMRTQxq0CwcsWXHvcT8jR/l6pWPPt2B1zFh+4FhfMLVkDi/WtAPimnKRG/7nsfVXV6r74K7xCBcDRdU1RHG1OQcePzW2wDMDxzHpoAmpnPBhce9s+B3JSOyYQhXDDmSkrJalV3zzRs32ebyfu1hTaynvjGbQFhdcfHwAVHghoksNqUU865tUGOJ7efowyv4viyClV0xa0tX3AdnHefeYRzMrKBnHZk1q+0pM2OYTc8JL75EePiQ4ZVX0EnUFs8vGF45R0PGtFOOR0ikZZkQt1/4AuHJCdt/WxjH5ge+n8P/2/8VqRyoMm6nidN0fG0YeLMbOOveXziG4dH0j/cZDN+tOduMhJSflkn8u+8yvv4G3ee/8G3vNZ12mtJ8QIToHK+0OwwKs4lZvAiRPJ3z651qFzpe2fSc+kBrDJ+cl5LDNc18FRNfXG759fMVcQI83QR+RGCnMtTWgDFsxvJ5jTEYY4CRa51n3xcAI6YGGpbLJelqiWrG7u0z1gUIOZRDzagq26kr8dXDB+836RHYrB4A+dsCjLwux9JUkdXBV7n3iUvOjzaICM0nDhCBcNo/BYwAeTrfxlaIaVHN9BOzohcDhzctn6t/k8/PP8+/ffCbvHH5xtO8lw+OFDLf/Nxj3vzSCcOkocnbjjyxQePmw7vp7VQemR/fQ17+72Dc4GwpTcX4YcAHRRAKgN0nT40kryaWEmB1dsL9V14mlp0D4gzVnQXzH7mFuzFDXKmLfDsG4/H2MarK8faYMZX3uWYwrgFGvBy4cd5AVq6GFevzci2nbBn7RNU0VE0ip4HcbQh9ucYatdAPVKbi0Z2PsZ16U4Wrwr6s1+9/19PVa+Q80jTPcPv2X8SYhoW7zf7+j7GYf4LXHnyePvYcNAflu6hSnz5g0Aq5/zUkJ/5Ptw/4r+8c8V/fOeK/Otr9lu/6n3p81zQY3nu+/OUv83f+zt/50M9/6qd+it/+7d/+A71Gzpn1es3R0dHv+5hxHD8UgLOaEGMI4elF9Icxrl8rhPA0glsFRB2aFSsFYCATCFBb2rPLdXT41LY8Gdo00lFTy4ykID4Sm4zRYQrnKsmgKopJlibVtKKIlmCvaAynGL48u80fP3IcnAdk1WNnAQECFYhy6DquYo1mJRklyIzZuKDe/BDLLcSbV9BGRnmGrC3OwfKg1IFnYsgWchBCn6lSVUqbBnJ21CmyZcRSoSlCzqwqiCpI2CW1Hhd6UtoicU7uq8L6iJBRTtwhsZ+hJA7zEuEmM43MFZ7ZRK7mis2OnVgRqy0ER04VNrTkRU0YPBElSo2thTQ7RTafRPIOq2UPRil7SsGtAqvqIbvdSBUt205JouScWC5PeO/0i9RD5IW9XU66S866c2JMWHeDcXuf5ck9VGF+NONxuAe5LBLJQue37F/ucWuReXHnZSo/56r7cd45Bx8jTdPgorCZ1hBDoiOVOvToOXnzNbxxyHyHi7vv8lLoeb2pCASOr1osW2J4kxBfxNkDVpeXrMYFq27G+TbhncN+dI82X9KfdYy3oN/cxfjnaLstuV6w3HbkFMndlu50yaZ37N8akdsdUjmaT9+g//IJOiix25JzggyX/+JfkMcBcY7mj/5RdGeH7CryODJ2HVmVzJq1JjQr627LwUFZcLbdfXZ2fgzZnKMpg8LZ5RVvdnvc3m1YbgdaC/29+6ScyNvNt71f49CX34t5+vsR+MpsB42RP7Hb8tmrLWNMvPvP/98sHj+iWb7NR9Ka8U9FPudW5JT5o3tzKhHeSJkH3UDYaVkOnpxKD57HXc+dpuJyM5BSYqdxeD9SGRgQrjYDYb8sfCKCyEgMhtQI3XYDquzuHrJZN4QQ2a4umacZbrFgq0q0DlHl9bce8/IbV3z0pQOe3Ow5u/s2moXK1gRJDF3HuLjEjXuY33M8wtUVqhk1AT19g7T437AZpuNWg7kzIzzc0L19wWz3FgBD35NSRqzDtTvockkMkfGyI25HHnPMuTljsD0vn7zMK8tXiR+NfOrgUx9675O7K/wEsjbLHltDuLwgpIRqZrhaPT0/qsp6/SYpelpfkQjkzRnInJQTw3hFXX/4u/nQkXKiC56gjlozV93x09d8+8tfZHN5wVXzmOdnn8Sa/KHrJU/3cxgCOtMPzdkn65Onrp+Hy4e8sPsCfd+Tc2lpMF52dF86oVZL62r6MNCttmRVYhCCj1RtA5Lw44Z8dYVGxTSCiUrqR6q2JhghpVNEL9m9/BqxTmztR8ghgjEs+zW7mqjr50kJUgqY7uppBlBaH5N2b/DHn/nj/Ku7/wrnt+T1KU9kn2Zc8cf6u9yyz/yhrmvfbvyHvP53DWCcnZ2RUuKZZz5sR3vmmWf+wGE1P/dzP8d2u+Uv/+W//Ps+5h/+w3/I3//7f/9bfv5rv/ZrzL8DnvLPfOYzaM5szjf0i46Lky1sz6kVPuI9akBFCKkgapFCPZS/lOwzVQrYFKmyhQw2RMJOoDaBlFxJ/5RCxRmFOUINoJAxZARDYgvkRgAhxohLJe47iEPJHLDmONyiVkjGES5+mL3tLag8QSJ2s4c5CqiMLP1z7HEM+0tyisTlkjTLZATfCSSLqpI1EKKjEk+nA7M8Z9xuuffeA44PErowpLBAbEs3PqKWAck7xD7hNYAoQTLDOPD1ywVHY0+zPYF8RKwcn2aPfWZ8s1vjc2Y2WgY2BHYJCfyV54oNBxtPn4QxRjbuCQ/2T7j/5ISd+gZDYmo3b8kp0j1c8jgP7K4yRy6x3ni++NUvsrOpOb38Gt3oEGo+ed5yL11wOUZ+6X/476l4E4n3WS4XDGx452LAjHPqOLJLzSOz4V54lx+4eo6bcg/jVwSN/PMvfpnHK8Pt7cjYv8nF3QuemAPqoefdd8+5351TyZKvfvELnC4Dq9kubzU11TuPyAni/gIvNa+89S4f2b8gDRXbYST6j3J2dUbXvsTQtyy7gWAtO/GCflyy6RvOl4khnfO7v/Pfcesbr3PysR9gtV7xx46PsV3P6fGKmGvOl+fsVK+RZy1Ptl/nmUezwky8/gpCJrsKM/Vc6T7+cfrf+A0AFt98DdluOMsjkRn+/nu8ET/F3oXwDm8ybt+kXKp3Cd7w/MXn2RkfkxROHt3jSdhle6X86mcecnsG+7/zO7hN2S2e/8t/CfbD+Rg73/gGzePHbEUYTovm4TTDg6sl8+i599l/zaN2n1VSvvTVr/H8esnD+IhRR65++4u8En+EJMIL45rTILw23+GuKK1f8cQ43qyKNuCXXuv5aPYcd/BbJ6e4ak19d5+zK88pA/+6v+Leflm4Tk9PAc/du09omszFRaKqO9Ybw2b9AOfWxHvnrO+t6b3yuXrO0XqN3ax441//W67q22zHC37p7svcfv0NdmPNorrBsl9x9uQM6b/B6vwx61en1N0AYW150T/g1sWIr09YL9/jUT+jq2YcvnOIiFCNhpsnDdFlTh9NO/XNitU7b2LcPmFdEfpAOF3xb//lZ9lbV3yzfodu6DkI+6zuLjkzF2zf3fLp6tNPz4EqbN6ryJPT5MHyNer9TP34mCenZ0Us6kcuf+VXpjlvham+QpUi8cGAcMKj01+h21lh7XukFEnpwYfOs6u+jJEVT8bI3fiEO80FJ2dfpXurvOblq18jx0Q7vM3JzgmcHLF56/2y2NFpRdNbrs5fpV+kp3M1wJfHL3OVrwD45Xd/mY9XH+fq6oq+7zk+PuZhfpvdZYWvM0/6U8IQyFcj2+GCdTjhydXImE5xp29hTKA9u4CrNWZIvHvyOs/qJfEGrF7/XTbbx+yypdKB4Jf05vt4++B5ctMy09cYeJcYDTlfgCrf9+RLyNQm4dhueXP3OX7r3m/xrn+X57cP+IaHvqqx3Yo7n/tFfuWtM/gOZ210Xffvf9A0vusukm+nFv6DhJH8wi/8An/v7/09fvmXf5nbt3//YJa/+3f/Lj/7sz/79P+r1YoXXniBn/qpn2Jvb+8//oP/nhFC4DOf+Qx//s//eZxzPLo4ZRGP+PgLP8nZibDjDPahQwioGKACyYWPkCncE3BS0agS+hVVAmsV5xOxTlQWNJnSwn16gkM53LngMC8QGpIYVArAiFL6fAiQcsZc1x/VkKxlx40EGhqBqPuoX2A18+A2vLP/g9w4fUyjEVMFtvGgxJJXGYmwbxusEzQIOVQYrcp5s4mkbXl/k0GFubOkUTB0VIPlQg9xKWC5TyvlYp3tOAItbtvjrVJXNdQNEcvM5ALArKMVB0GYidCZGqHCVolRE1ZqDtoD5PYL2PcuGU1N07ZI1ZMjVFXDOjtUA9a19KZid8zsmDntzi5ts8aKpW4a/thP/BjxvZF3vvIFtmkHG+ATP/qT/O6rn2XbtOzaDj3fJ1UPOTjM3Kx3kY/O2Pc3md3fkGPPfNdymJWDytHO1nROoWmYPf8Cm5ffxCyO+D/85J+je+L46vEFjks+dvAcx48vMMFw67lH7IabxPmcRZ5hmwZjM+ZgF7/2rG4ccLR3xOYc4twwuxFYr+bM63Id2KEiZscP397g0jPsbRbo7BPU7ZIfet5gK0s7n7GoK3aqGp3BMz/0YwzrkZ3+ght3nqF67g4/+l89x/bfPERjYIyfQkxm96d/ms2v/ipmscP+/+X/jFQVOSc+9/KXGXQkryzN3pw7H32B5/KzND5w55lbfPKT7+98n3v2J2i/fkpezXntzbfZXTSETYvOKv7Yn/hhPn1YcXn37tPH/9E/82ewv+eeXYvgd3ZY/Ok/Q/tDPwjAN9Yd93/t3/DRseen/9yfw3aRV84u2D3+FN+XRp4c3Gbn5Tdxt27y0ic/iRHDS1Lz8K1T3I7lpWd2+JPPHfFgDFydFwr7U7sz/tzRLl+7d8X/8lu/xtGe4cXbL+Ie97Rygx/65Ef5yU+XeehLX/oSX//6XZ5//kUODh2vvXbMfFbz4ov/JTs7f45XX32LnccDz730EQ7+d3+W7fMv0b97l5e6FfrSx7nPLuPc8fFbkfqNb9DkhqOD2/gYqZuOmzdnfN+nf4zZDxQW4t3fPeP84Zbnx5odecI471maI3781h6Pj17kz/7gn2XmZqSNp//CE6S2LP5UsS1fPHrAGxbE3OLs4SGX6YKdgwV/5OOfRrrI8mbmm195yP7pEX/hx/4Un+1+k4PmgJ/+/p9+eg6WJz1vysnT/z/7iX2e//4DNl/8Er/5zVIKaxcz/vc//dOoKl99+P/hjfPn+MHmiO+bFX3KJz/xY1ztGi4vf4vF/FPcuvUXPnSeHz48I8Qlz7Y/yvhoYD8Est3hL/6Rv0hOiS/2hZmOJx30a37oR/4Ehz/84jTfKeP/+N8TryzVf/GjyMef/9BcffLaCbdiOZYf2f0IP/2xn+aVV17h/PycT33qUxx1c8J7K6oXdqne+SZnD08IcUMzzyyOXmA1H7ioBj5ibnA03kK6JUPYZ/8jB7zkd6mO36W+fcCnb+1jjncwvkHzgqODfV6UyOmzd+DoFrfHB3yycdw4+tPs7v4IhA7zO994egxOV29x+dFP8Re+7y+gd5UX3jxhhxv8ls748+kuP3J0k//ihz4FN7/v37lW/a8dqw/oRv5947sGMG7evIm19lvYipOTk29hNX7v+MVf/EX+2l/7a/zzf/7P+cmf/Ml/52ObpqFpvtWqU1XVt2YI/CGM69e1zrFIu6g4xGRqa0sN2EjpTaKm2PYnyykUBsPhcCEiWcBU1CnjfEJNprYKWDKCynVZBapsmElZhKOU31siUQr1CUVRrShVilApuXY47dFcfp9yiyAY27M+XJWup27B7rgkzRMBV3qmVgIhY8cIi8Ag5yzlFpJMoSU14XMD2hOIJSysu2JTK1L3jH7B53Ze4mbc8im+jnVbVDJqMzaCEWG0mXmKqCg9Dk2lz0oSoZkAU6MGbx05CYN6gqswUahjjeCIuaajppLMrO7oAmgSzmNhcara0VPBOCKd4gNoTogVsgrJJoyxPJlSP1FDanc4ZM5WI09O1uws79A++012DjYcHb7APX/C7dmzPKc3OM3HZKP0ucO5QOM6rnH/enWJIIxVze5uw8m7HhHDfN6SMGRNzKySQ8SaDeK2jP2MNiVcnXG1Q/BcElmaCroaYQC7IqaMSYG2SqSY2DJHtw+o9g6Qdk6SGlFImyvaoUNEsNst0TlczuRskN1DdHsFw4htKuq6Zmwr0spjpcI0wuJTn6I5PETaGXZiAldnl6Qp/j4FQ1qOnDzcoC9mxAgp+6edZwFSOsWGDVhDUjCxLyFGfWI5JDhblsfnWBrvxfgt96zJGWss1Wz2fr3cOox1zCkT3DOzhtcUruoGi2GYGWZiyjmVRMqGrzy8whkHPqHrwL0vPSF/6gAzBV5dJKWqKtYxgEDbQB96msphtGKYfg9Q1xWIRxEER84leXc236NtW0QazMYjs0R94wZRDDqbUY1bxnWHcQu8S1yen/HMmFg0u8yODrDnZ6TYISg5rKiqAhJ8l7HGoF1ExNDPLWY0HHUXnNz6OB7PXrWHbWA0FlF5+lkNYK0ha42YqX0BSh4ylbHEeUKMocktd+wzWGtZxzXfuPgGB+0BH9v/GOf3z8r7WyX4UBo0VhVpsy2MaQ7Uo8UBV9uvcbl5A4yh53msmRar1NM2H5muj+Fb52aJWGNJxoCbIdEgOtJrT50M1hqMdewd7XP+4AEP3n2V2z/2yfJcvyWGK1Laxb7569gbfwqAYXyDq8u3GVP/tCHh+XiOc46UEt2TR6wXM24d/ADJWFxd0bQNmku6qhEBdQxxoLppOd9ccRAHzPoCUUP7yU9iXnlEHjNVvcONOOKlYqV7XOqCRR5Z6AVVvyLZZxiyxxhDXS/4nXev6C8f8lNiEGNRTdR+gzXCol2wh7I7bojNbe4vXmDbJCRF3MMvwJ0f/I6yGP8h6+Z3TeRZ1zU//uM//pSmuh6f+cxn+JN/8k/+vs/7hV/4Bf7qX/2r/LN/9s/4S3/pL32nP+Z/9LiOj762yVmd6uolUQWlCISsKnJdIgGMWExKGM0oDouUSVQjrrQtJU+edINitOg7WgxGIUwAQ1AC7zfakqREUaqYMAq5cSCelCyCkrSZwl48wVSI6wnWcLitISWClqZtmAyqVDGCWZPMwHnVYdRwWG1BIZiKpI6Ekkjk7pK7siTWVyxll7gdOPUtGiowAbUDp1tBx4QRIVilSZmdasNec0lMpZFYFqGhfJ95EpwpF/qGSDRF91Any4yKpeyiCLUJGDMy1zmalGUOgGJnFaEpi632mbTNE+Ar522IHaqZVXfdvt6wDZ7D2RLJPRerSJX2eeGT389LP/L9tLs1IQdcbWhzRZ0dMQVGHbHt+dSVdiop9CsEQ5i3bOPIcluEafN5S8hK1kgtCTd+BJszxkWiLUDHtBNTJKAx8ci0bPodyLsYI8Q8YGJgtwIkM5iWbTRYqxjbPJ1I+/MnGKCOAQmhaABEyKsVunNAjkLue6Qqx0NqU7Q0apB2EiXevPk0KwOK40GsZWfRMNstj9mGiJpCVafYw/mb2K4sKsPmLsRyfKOCi8N0rJWXHywJDx+B38D9L8DpN8nfhpp9KvL8wKTXpYxYwywnNARu1A7NiUtboc4QJowTE4QUeO90S5iyItoEfjXy2McPiSFPfRGJXnaTeK9SNuOGxpUFYDN8MLtjQMhotqgeIiTEQFXNkOWS9iuvwdkVWQN2f58xK7FtsSJcPbqkO1uzXnm2D+6Sg2fe7jB/5gYgxLHMI/oBPcOwmZxpffn7yf4BADv9FS56+jCB5CnDRJOik2g1Ta+TYmFGy2sm4ljmra12GANNbrHRctQe4ZPnV979FT7z3mfo7r3K/Ov/De3wDm+1L/P1s29wviqsxHi55Hw456w/Y+MHlsdf4fLyd+hzZjX/E8TwgY3fuMG5by/yVNWnIs8hpaciT6OBs/4EP10X9WzGc8/9QHm54QNOlHGN2Im9DRnz6r9gt3/IavVVHl29wjA+4qA5oDIVPnkuhgu61ZLVg3s8efM1wnTOxQmuduSkaE5E3xPGgE8Bs4Cl6zF48uYKkrD4vh9AgyePCXGWnRHOh4Z3ly0xV4RsyJo5uCwi8ZwDPivrAb783iWPj0/oQoKdWyQxmJxpwkBta25sigvlbH6L0Szob3yETIT18YecWd/t8V11kfzsz/4s/+Sf/BP+6T/9p7z22mv87b/9t7l37x5//a//daCUN37mZ37m6eN/4Rd+gZ/5mZ/h537u5/iJn/gJjo+POT4+Zrn8d6e/fTfG9cLuJ4GO8R2qAlMJIyPkXHbjfICNsFhsKsBBxWCNYDVR+4ia0ns1q0HJBRAohJSpVBFVPKY4VkhkJnEpUgAGiSqG8tpN0XLYPLUa16KgtzIQbI24nmgsR32LUSXQlAZtdmrOlhOWEVQYxaA5s5DIzI5YEbyZlfbtuYOckNkV1WLNSItJGfFb+nEHCKj1pChoBkQINqNZ+P6DL/Lpm58jmUQmkY3FiAWEmQqNqQBlpYngpACM6DiQfba6IBtozIANNQfhDj5nBi0KlaoRct2CKDlFzHpqRy9FaLoel7xx9R5j0ukcGc7O32GfgR80K36gWnKrV3ZX+8T7G8L6iqQJseAQGq0IYWQ0AdteICooEVWKXVMMOMPppmOdEggsFi0+QRpX1OM5XDRUaYFxDrtrMA7qw0MQRQXaHEkIj6QCLf1qUs6YGMo1QyTamk2mlLOkedrh1k820sYPSIikxQKMwW82bCtLTpC7HuykFaoMGiKq8jRM6/eO1ekJWifcbsbVgojSRUBW2LTE+TN0fcz8okyOfv3u0+emDDa/v6C/drzCP3wEl3eBDN05uvx2uQcTwPiAJe/K95wM5wz9eQEYlUNj4nS5YnX3bXRaaFOGR8uObR+onWGnceyq4MfEEzJhfB80eM1chsRVXz5j7TLd2D11kazHDwKMsuCJHBBCDeQC8EwNx8fINmE2fSnV7e0x5kxqGgxweXXCurtgu3lI/eRrhLymmVdU2xWkQI6QUiRP+hc/pKfNBHUoc83jJrNpdoi9sL86pYvT57Ef2NVeA4x4Df7M012v5kwM5bW63GMmBiMOiWcXz+KTZxM2xBxZvvZ5TPYcNI+5qk7JmnnjydvFlfHkXXwq4Dmknif3/2cU5bz6Ybrm08ThA0DCb3CuuB5i2n4oPlzVcx1mMeSI4qYyM1xsH76fqjmb47hOyY1FjAwwrBCjUC/QvZcA2Bvuk/PIle8Zh2MOmx1uz0uJ67g7ZnN+xmXdcuFauslVI9bg6oqUMt53bC4esD57nZgitImxztAticETXc3+Rz85nbOMpoCTGWuz4KRv0ZTY5Bko3Fi+w2HlMAT6nHnrrICpOm2JSaHdJ7b7aFTckyUWy9Gq2Lwf7XwUcLjKka71SdeA8v8HxncVYPyVv/JX+Ef/6B/xD/7BP+BHf/RH+Y3f+A1+5Vd+hRdfLLWzx48ffygT4x//439MjJG/+Tf/Js8+++zTP3/rb/2t79ZX+H2HmexxY7oGGFtASiDXZFtNuWRjiEDRbUohVTOlpTvgjMFopgoBtRkRKfZHKYuSqlKfrdjvVxiU0TgyYIgICWMdTgVJQpJEFSNGldRUJMCkwnbkPAEMRoKpwHVEY9jrW0xUolblg9pSrjApYildWsdcESVQo+zaDrFKokZRvPZECZjDEUQZzAFzHZiFLSszR0wEMkIon0NLG3jJntZ2WAFtQmkwZuzTHbhRYU/Kv9c5kSo3lYAcTXQMMkNN+T4uWObOMBLwuQCMurZUtS3q8pRoNoEsikwMyWcvfpv/dvVLdHbg9nLFTj+yXQ1UFMaHvXvo87+J4wYmg+9WT+17tbHU6hjDQDY9Vb0tYVzJlCyCoeedJxWrwXK66tigSG3ZaWt8iuQUqE0inD3GpQrndslmRrvvcLtzNikRRNgPCc2GPgMYmrkhakZSwoYRq4FoarKJWKsE29KayMf4OjmdoCjNOGCCJ+3vgwgXfsn9i28y+p7sA6RrhsC+z2A03wowck6szk/h9lvEWw8RSYhJ9Em5Mf46s/A2kpdoVmaxhpzQ7qzsTE1FzEKde+y0yF2seu699x70l1Q3ys42P/rmt95o34bBeO3yHfo8st2eoCGw7yx26AnjyJOLU9I066UkHC9HHPC//eRNnj+csZcghMQpGf8hVgJOfOBqYrSaKtP5jnpiMPoxcbqe2C4tu2cxu8W+LQlrwUiNbDtMD8RIrkGcY8xKalrISu43GJSP26+Q+oCqINtHhNe+hFyeI2rwoy/OA3jKXpAiKQhZM6cucBL2OL9vsW8/egowMPKUOb+2uZYOv5BCYTCMKYA6hNL5dxu3iBUabYg+c2dxh5gjGz/ZNK9KborYNaPt8Gnkar3izYs3eXT8FgBj06La4zc9SeZctj9enjt8YKc9bkrYlpQOyym9b2vNebKeimGIAURoqn0Azi8fME4i4GY2x1C+o1ghTlkWjGvEZHAtungWAJtHNAeWoQcyTTx52ifk0foRF6slX7rxEX57cYPV+qq8jhVcU5FjJscRxJBCT8gBmkTVtnT9MTEH/GyXg8UN5Lppn++opOXcHbKOjhQTAw2g3F69wc18imigS5m3TqZrLG0IKUOzj292ietIc7bm9OG7zKZU1/cWz6M4WpPI00aV+B+ZivYdGN/1JM+/8Tf+Bnfv3mUcR7785S/zp//0n376u5//+Z/ns5/97NP/f/azny304O/58/M///P/6T/4v2eYCU2qTEjcb1GRid42ZBVytu+7SACrIFhcShiVAhSMwZGpfGAUgxFQLRoMRdEETi2zmDCqeDEwAZBaIyoVRgUTIUkoAANFa1dKAikBmaQFEBgZ8VKD9QQntMnQdhYvbQFGoiBhek4kq+Bzw2gCWzNjx/WIUYLWZdchJdnUziMgXHGIZMVq5JsHzxCtoiaXhm8yECnC30qmkgAZqoCSCsC47j2gyu4EBlY5o01FJmOzIEPCywxMSSvdsSO7bU+2AyMJRWicoXFCNkJKyrwfSChjVIaYeDKcsuo7bF7y4uk5Hzs+ofMBJ4bTsSVIgqpn9vwBQtEXQEkSrcVSY2hZcWt+QYUjjzt0CSLC+tLzeF3z7qOas83ABsXUlp2mYYyRnJVGBD8MON9R1zeJOkOM0OWLp5kM0Q+Y7oo8dKi11LuWjCIxYtOIaiSbCpU0AYyGQ97jiMdYdwFkmnFEYiTu7SPWMuYeQsdIImdFhzLRS2UgFoBhZt8KMLaXl6Q4YOpMNpYsHcaC1CtcukJcRijJpZaKhjnG98S4RnduExRqHamsYETwm47XrtbYeYO7VeKt8+M3vuV9nzIYzqGa6ULHu+vHYAQXRzRGjAj72/I9zmazp7v2iGGMCYvwsZsLbu407MUMUUkC5xMrsTvdy0/GwHIYobdU5zW9HzCmaC7eOdvy//zNd3i87FGdci/YIQQLJKwpDIZu1kyXNtGUa2bMmdQ2xJSQYWC3OeMZ8wQbCtup+QqpDLWWXithDOiUL3ENMMSPaBYCmdAYgt8pmpLLDV24ZlTkQ2USgBwDOUvJ1kGwriwKISQGO5Y5wRnq3JDGxJ3FHUIObOMW4ztSX8ohPi755vpVToczYkz8m1d+ldGPqAjr3R2yeuJmLIvqhHLEr0nXMZvjChGDmxI9Pxi2dV0eMaZhmHIqDmZ30JA4fecttm8XZqtqWkiCtXVxiV3HE4wlfA7XoBPDYfJI1sCVnzorh8fcrMt7P1w95N2gZCNEY1huJ8DoDK4u4CCngHWOnD3JBsRC1c5YdY/JOZNm+7S2xbQT8PUdguG0vsGYDCEqOt8jZ6UdHnLr+BeR7DnfetZjOT513E4AY5dlrtCk7OSB1fF7DPefMJwOXEkN6mgkk8w1wHg/luG7Pb7rAOM/1yEfWAgBNHSoGsQYVAxZpDAYOllVKdEMRgRXyAmygp0YjCYEBlsASfGeTKINoMp2Yj0So3GljCKZGo9KBRgERXSgnhiMUNUkBAmp6BAmBkNsmRQUGGpPA8w3FUlssXUKOAIxJ7ImsgpRKxbbY25+7QHWZ4yBqK5EIhuBtqKypahzITdBYT2b86g5wudAIpMxIJmoCio408HUZZY6kTWjxmLEPAVjFYZIZkxgZw2BhGTI28zIDLVgdcBSSk8ZJZgARmnVsaiVJBbNUPuEClSVwafEJmzpx4F23IIodUqMYcQI9MOcnC3ZZHQ6Z3lq4Y6CFc/86Bu8NDthx26wI+TNTYImokL2HhC23nLee7Yo0lj2mgafSo29RQgxYYcVxlRQHWGspdM4gdJM5zdU0WP7nmAM1ayATkkRyakwVHVpagZKkJqFniI5ISQ0DrQpYjWT6hqahqSpUOTOEUMgT/1BpLZoTOUa/jai6dXpCUikmc1JKigj9dzSNifkFMFlRPsSwoalzhXGD6Q8wM4dQir3yo4NLBpH3Kx4Nzb8zs4nePDiTxXx6/IMtucfet8PajBOTn6VL7/+/2DICTUGG4fpWJdEVoCzWUuaWJmYhJgTDmic4cZOTRNhd9IfnE5A5KWpn8PDbsTHAMua6tEM3Rp88uzOatZDwMfMo8uerMtpDlgQvAFJWJtLMNtqjZ3m/ygDMStBC4OxHbdUYeTFg9dps8PEChGLj+e8u7lL0jABjPg0IOs61Er8UMB+VSYPm3ewYqHzbLuL9+el6zLJVFZJE/MhxmCMPBW1xpDopOyE53aGwRDHxF69hzXFki7rY8L0OZbDI4IG2lkpW9rLAlya3ZuMTUtWT9p6On0/EK0OW/w1wEgB4vh+meQDOoxrBqMAjPKZjubPoSHT6xXbKS20qsscVlUVGCE8BRgTg2FrdHp/qz1JM6s44tweB1VLEwobc3L5mLttXeZwgeUUECe2ADHNmZwDxlUkDeQJKNZNy9idlWTUnSM0g20soBA7wHDa3CRrxidLNavYUiEZ9i8fYbTnbDM+BUFN2pTNRLvHk20BlIvUsXx8FxQGbxi8Bxy1ZNL1ZvZ7DMZ//uNag8F00nXcoJgPlEggq31qU0UFq4ox1wBDSKJYY3AkquALg2FKiUSZNFkKVixWHI5QGAyFRKJlRKhRMZMg1BcNBuBdTRLBaCqh5rkpr2niFAQGoQq4DPOuovKR9jJRjQkjnlEjSiaqIVFxa/UEq4mj01W5uXFkzaS2g50ltc30zBnzjNFWjNax1TnZJEYpRR0FIhN4MD2ltX1G6oBKQowrOhAFi1BJARiiQF0AhlFh3GQQB1ZxeIxOSZQoSSIZpY6WeZWIxpJzqfxkgcpZOjzrwaPJM/c9YhWTYRw8ItD4lpQNyaSnIO+6t4ZBELfFSWLMynFf0Z7+l8jqDmSh94rVwO5wyThkTsfwtESy3zaMKZEztGIKwEgBEzqSqXC1YZsSaIl8j5P1WGJiJGHbEuQmxmFSJIqjrvoS45YqvIE5p0jOCBFrodGEBYIxmKYhkiFnct0Qhp68vQYYpqR8qvm2GozV6RMg0czn5FwAcLVzDrbUwsVFRPqJwXDYMGJCYVmYHdJNk+qO8TTOsOguSQiv7v8w/+LNil9v/hh5jHDyytP31Jyf7uSTjKw2r/NkU4K51Ah1CowTA3MwxaJftDM2Q+ZsVdFHS84RB9TWcHOnoQ6Zwz7jc+bRVN58cVYWpQebkRATNSBkWNV0fmBRO3zM+Jg536yBsZQxmTGOipAxNiE40nqFHScGSjqG6xCltmXdbzk0p8yrERdmjGmOMY5+PGWbt3RxiYjgB18UqsAw9RYxfiRnYWsD6iMuN4hr0KysHr/Fo02xi143q7t3eY9feuuXWI5LYjCIGGxlMK4A+BgSnSm7+0VVSlRpTIgIO9UOZ/0Zx+fffAowVlOqpmsN+80BbhlobMv84DnGukY0EjYD22mBlxypYsdlPuWCkqTJuMFOQs+Uvj2DcZ3Cut/ewQQQRi66AjprV65LV7eIQPQfBBgKrubaOGnUc2/9mLP+gp35i8xtRfZPOGgOON1sWJkeO8W+L6ceOeIM5euWvB+RIohNZihzsHO027Ho43aOCGNCKsG4CDGRzIzz5rCUjj2oFTo3wwgsrk6R1LHsAorj47cW1HFDTJnk5jxZl+O8SAPd+TGCMJiG0A+IWmoyUSbNyfcYjP/8x7UGAy2KY3yPqJSfiyFRSiQGRaa6p5nAgstTKieKEYvVTO0DoylKf9Wi0EgULYIRQcTiciAYWwCCZBo8ZAfGTjkb/RQXriTrSkJkTkgyqJabKbvMtVMlux4jQttXzNYbCIa2j1R5JJsMkgnZQRYW4wYBdq46nCYqFaIokMhHK5wonewTtMKmTE+D1YookWAKINBcEjRNFpx00zFJ2KlEUhrIyRRKBhVClDxpOxxBQhG9DmXCbKowhZFNuzLNZDJqFFHDvolEa4k5I0lJxoFxjATW3QiqLHxPnnZ9qfeFzQgtMQuj9qQ0hR1pqVmbrKRqQFS58BXvdDtId5sqG0wyjCMswpLnlu9xc3XM4y7jp5rxftviYyCrMsMQTIPJGRnWZONwjWFQijgwZ/JU+lI1DJpIOkI19cPIgWwstevJAhod0Wwx6ieAkbEuUZOn0pqglSWJlrj3ekbww9OGXFLZpwBDfg/AiKHj9NGrKIF6tiDlEhfuGkhi2OR9sBGjIzkrBosZe4wfUI1ou8cmN6gWgOGM8NxwwZ+N7/Gp554nj4HH5g55iHDyGqjih4jfvL9T68MDPne/42sPn8VKjVj7IYCxf1l28edty5OzhrP6kKUvKbONLcB9r3XMFWqfeTR4TlIiZuWjbY1BWPaBPkRqU5wuQT1fuvcV7m5eRgGfMufbTckCU0eMuUhEJGFMhDFBylg/AYzUsXrnTVBwsxmbYWCuG6yxDJtnieow1qDDFjWJnD1Bc7GCxsJ09U9LJOXvtYnoemDuZkhT2IDX3vsqv/TWL3ExXDwV7b5x9jqPNo94r3tAigYRwVXF7ilAiIntVMvZmUoHceqJYsUyppGuP8cHT9ZMN54Xd1lrqG3Nj7ef5rnFR0izXbRdYCQRtj3rPFl5wxZFuZBHXLkrIiP49bdlMNJ1TLi4p6LRNu7R0mAlcD6eowpu6j1TTS6nDzIYZ8uWzcag+bp0nXhndZ8uDkUbI0JKW27Pb/OkH4hsmO3tA0KXIiGMYKVUCVXJbJHZPUz7iMTAjdkNdnKNTWV+MTuHRJ8xFVgX0KT07XOEti0dcVPRy+hUknJDR+i3+AyH8znVxUi4uGCzCZxtAhutUGtwosj2BEHoTdkEVFrsxekaYHxP5Pmf/3gfYGQIZbHE2ClEzJCApO79ZmeAzVp2EteNnigMhtWMi6l42EV4Py48l7KKWhBLlSNRhIkALwBDHWrtRJv2WFWqVMoinW2xeGyqigVVEtFKEX0pqAmkVGNiTRUmQJSVeViitmSG+tSwO47A1H9DDTe3l8UjjmJiZD0rAKdjl6yGxXZLjMVWu3IQJSGY0klWMikZWlcYDKsJqRIiAZHCAHU5YHkfYCjKEDNeEqJK8o7aRj55+3XaZj0BDCWb6zyNjAKtLNm4c7xsSdqTbYWxjlECwxCoQ6TJgcKUCrlPJYMj1KRqS3ZrtnFL59OkeldsVlR6klF8tDht8GbEZQuhIo5Ck3uMQJsGVpsyKcwqy6yuJoAhtGIJ4nA5TTZiQzWz9CqguUxkCCYWRmsUSMFDXQCGzUUUW1U9GSEFh9rL4t+/7j/RKm1OOM14FbITsipjDKhryCkynJ8U4PRBDcbvARjH93+D9fJ1Qj7GzSqIDeqF1aNz+kvHO/n7udc2iEZyAsFgxw7j+9Lsrt5low2KclhFaiP4LNxJa/7InV2yf0hnepJ30F1w8dZ7vPzrD/jGbzwsTL8R1v17fO5ezf3VDebmEGcdVU7vA4zJuXLZtoy9IMYRtDAYM2MIYcX9+/+UG3oXyUobp1YEITG3hqPa4UNi4zONUaRSBukYQ+Dhecny8TFxuemxttzjfd9jTI01GYjkTVnwJAMq5O05y1/7bwur0bZsxwGbPGiFDRbNxVeWx4CaESOJbhxZLhPHJ5kHr13QLafdfQylGrt9xO27bzB3c2xTQsn8xN6c9WdkRlQTq8kqvPKrIvCkMBjWFRAfY6anALjdtiz66bqRmLgCStNI7wf62BMZcZrLNRp75lsBtcT5Arezg5CJ24H1lLtzMxdxpTcWbE0i/r79SK4ZjDQtV4JQb+e00mLEc5mvICmVnQDGJEKOY9kkpH7N/ZM9VpeK7xO4GSqZlS9uLpns7qqZ4/PEexuPzwOHix1cVeERhmGDOEPoteSaVFflk9iOxMjMzXiuuomIITmhtg3RpwIwqoCmzLq6ibV10XaowftAbboiSQkJGzuyWo4OW+LJBRoTy8uRL//OPfyY8Ts7OOeohjNyFjrbMjs+4Qe/+BX0siORUPL3GIz/fxjmaYlEYdyW/iSmxghcW1U1T46EKdzGqgKlRIJQwrTUYDVhcsZjSq+PqUSSJCMZaimlA5sTESFgyFIARs4WNcUO6/IIKM2kxO7dHNGIpIYsBrF+2q0XkCEqhDyHNMN5JYVFAQjDJZhyMfvYsD/0qNFSasRya3U+WSlzeYxzgGHLfimDJIvzCavC0tnCPIhQGWWUTMxKY4bCuuRC++NGRA2iwir6UjdXIUpCUTo/4k1CVCA6jnYvOGyv2FlcItmVSd6UCTLYzEO9zxv+dzip3yLJUFTuJLAVXgIpBHa3gexKCJgAfojcz3tUOidS2JBHl2dcbBK9j6iW86GmI0nCR4fRmsEGKrX0/QGaoZEBZ6HKgXVfyiy7taOqKkJMqAqNccTop5wUR9RIu1gwqsHkWLQpCCY1qAoD4P2I1GCtw+aEGkvlBjIQxwrMJTklbM5lx9MoOyg2ZzxKsMXqm5LF2RZV6C6Pydvt0xKJ5m91kVydlK6WdrZCTSKlirzOECsuHh3xbrrFe/WMJKURnohg+jUmBrIGLn79d7h5fFwse3WkIRHF0Ikr4kMRMolenuHhyQ5vfeE+OWVCH1iNLTjDo8tHjNcsVHZs+0A3RoZhw6YfmE1MjDeCpMjMbYpgOSUaA9vtG8S4QeMSkZ6jsYDQzkdEhNu1w/vENmZqgZ2dBj/rSZJZT0yKj5n14CcHqGUYBkQczmXQTF6v0ZQwVQ3i2M+X7K0/x41HL+NtwifheOcGr509Rx9LWY5sSCgGjzjwm8QwBM6vMu+9fMbF4w5XW2r1JT9lWLI4O6fOmaNnXyqi340naWLZPeRi+ZusNq/jp/7rK7/mbDVysVxhK0PVlBJkjImOqUTSFAYjTY3CggbaFEkKy2xZhgGVzEfbm1SNYUgD4fKKmDNhtsPe0T5GMrEbWedSIvmoCUCaHGvXAOODDMYHSiTXDcimvdjx9pg337tLKy3CyEb6AjBMee1q0swEP0LoSaH0bUIsw9qjdgairGIpZUXNRecE/O7xFRmFuOWl3QWubhiNoe/XiDWEQclpQFzJ/FGJJAZa13LbHYIIqRJqqlIi0YirI4hlE+Y440jGENUQfE9jPHFU+tXILA8kKjwwywUYdzRcXi3pLiJxd44VockditDblmfeu8fh6Rm8eY46R86BdX/GF4+/yNtXb/8BVqrv7PgewPgOjQ8yGOK3xY5q6nLARUhScjAKF1FoS5eVRAnaUpjEeaZkaEoJzuIDGgyk7G5rihe/hHllrtunzTSAmLITVphrLBR/DIhaetfiTERTSxYB8UR7zY4IohV5Ag7zoPjxJmE4pA1L1BSFuU81+30PolzuHRDFcrC9IJuL6XWUNKUmbtgno2xSxWzwVAjLyhEk0ZnAtlmzNRmxIwYlqyUPZbLQOuC0HLsxhSIyIxDdmq55yOfTr9KZvoCSVDFrepxEjE0QZzRVQNXQqiMby5VeUGmEXBq/qUIwipiGnggps7ctgtBrgBH6yHnf4E1LVEgo2+ESzTUhaymXxIyanqiJGB21tHQ6Uqll2d9As9IyYg3UydMNiljDrjVUVYWfbIPVlADpMohYokayMfhsqL3H5HKNSKpAhahCFwK2yVSVw0623qouk6jva8SUDp4mlEU+1Im5lnTXrLCpKpRiXa7sgojh7PyE3HWTyDOCyoc7lwLdahLZzRIhX6GpJvtMO/sIfZgxRIO1RbOTp0Ar4wPkSBx6+ncf0Gy2mJzYtYFdpm6m1Q4kwRgBMo/yczx4vAspMN+r0ZS46FsiGx6tSgBcEsNmTKSQWQ+B1y8v+W/eesBGoc6ZIDCvtxgbsbaULJwk+v5+CYmLCxxrDgaPKqxDIqly4CzeJ3xSFvU5u+0ZwQwkTfQhTbR3RjXSJYtiGMexlC4ryHcv2Pyrz5CHHmlbtC6774dj4oVHv433l3ipebJ7C0tgi2BUIJZEG9GAMxU5ZHJK7Mw64piIIdHuVNhc7M2jUTRUyLji+R/8cSJQ9YkQPevtO6jJbP0VZsq/Wa06xrHoi2IO2LowDDFm1tMitzubFn1fwuz6OOD6TErCYxpGvwMIn957kaq1oNBfnJGyEuYLDm/cKK0DhoBmS2sMt7QDSXhTg61LSJT/QNhW+lYGI2gJRjvbnrI+66bysGcQj3P19YSJaz/AYIxrQjRgXZk7toFs50TJ9DEAhj70iJkRUuaiK9b7RnsWtaOqG7wxDMMGrJAiUJ0U558ISEaSpzUzbrsDxAjRCbVU+CFAGDCVgjEMgynOHidFwzV21HkkqSH6RJ0GEo5tysy1OH90d1GcPFqR67ro03TAVDVds0PT90XUvUyoqdDsWXenfPH4i7x6/uofcLX6zo3vAYzv0JApEllRjC8Xi7HNtSaQLIaczdMSiQA2Zx7nGXFK/yxzgMGaAiSilgTHTIkZz1oWvgJmBJsh4PFiMGT2Utnl9lJR5cxsEmbW0aMq9HZWijWpLUlxdgRbjC9ZhSo7YhyRpNQRUCGlFqMBF5dAYTgOhxEEHt+8zWZngSWyvzkjSylNOE1U2bFlj4gQo+FoSFhNXLqGbBKXJvCwOqN3gdp1SBb6GLmQVQEqdcAiiAo5R4ImNG/BjmQTySHSSXmeqGPWrCeHTsJhS9fUXPND6SO8mA4I6iFF9uJtktqizgeyrRmIkBN7XYmFju46yCgwpIql1KTp7D7ZdvxPJ89zNezR+zCJ78rCk3NNJTPW6pFkWQ43sSnibMRZpc6RbshgYNdZrLWEfA0rDarF4aBqqa422Ic1u2NDlWLRYBhTSk0iRKnos2JqqCuLpEg2ji01SYUxeVQyMTny0AJCbKC2liYV9mXbXivsMyG3JIR+u+T05KIEbcVCrUn9ezQYY9kNmwp8uiCnumRoVJaunmP6gdpOtuopf8GmCDngt8WKN2hFlSMzRg6l1Nmvml3CEKgKncZp3kVj5rk7Pd//J57FaKaPFSvf83hV3FlqKoaQisMoK4/WK/IwcCmGmRFGZ6hNLFZJowVgMDKMj8jeMMguWRTLGU6LNufh4JkZgw+ZkJTDnbdRc5dMIEkieEFJ+DgBjOhADd57VJVKFNYD8fiMdLXENA1mVpEUbBrQ9RVHjz/HVhyb2RwjkdEIRkGDkARqSezYAywWJKHhAWHwaFLqxmBTRHNkEyYRbeo4+sQPotYiCeLyin58AibTxwGJGY3KsMpomhRaw5a6daDCdrnkvbuvkEJgb14ARk4F3JxvBhYhkZLBhzu048e4MfwIz9aH7O/tgmbG5RUxK3G24Jkbh4hVQk7ICEeVY5G6csykAtt8C4ORUk/Okfuvfp2Lh0WgGhQ2YUM7VCRvwFrUKNENVLZBp3CwarJRB18ARkqmWFSNMPaRpHOCRKIWy7qIMOTMaggwuZmSicydoapqvDGMfgMCbw9vcjZ79emsrZKxOVBpzaFZsOd2mdcLfD/yta++zLC6wFjAWHwfcQimhqCGPPZYk0AbcspUaSCro0+ZmW4REXqpKROgJRqHpESlI2Is25192q5HYsAsI1ls0emMa7rBMHOz/5Al6zsyvgcwvkPjgwyG8QWNG1fUzUJJ6XyfwSjDpsmCGouuIFQW1OAmJ0pSQ5ETXDd4z4UZqVxp3Z7By5IkgkhmhxEQNqalUmhjRCVTx7KbH1yLkQi5JRgLZixpmVrsly5XRFtaabukqBoiDWqValyjQIgtB/2IoKzmc85u30Ss4Wh5OdlpMyYnXJ7TsyABLiRe6EdQuHQtWUqviZgcXbXG1l3ZBUXPNgeCUXKdSk6ICkkTiakcgsXEPYhKb0YkDOx1W3bqUpYSk7AoFYZ5WhSggcVGwzgmKixrajpaIBJjZMwBUeVoUwDd8qgqOgSfGHJFZzxZBVHlyTozJMfK7zD4gE0jaCZmcK6ltjW9BkKqGHVewIHN7NQRq4nUdcjyd9mliETjta1ZZVqcDIph3ntS5WijxeZcTLdi6JyhdhBMTZ8NrilZKSLCqd3j4XiLR/0RgS0RwzoeYCZtZGgzVTujDQHNiStXAEZWWAWHGoMkz+b8CY99IOei3biuWV8PP06ZJVZBBE2OlCJqLX0zx/UDdkpjfTUMvKcDJkZ0HAjB41NmSDUuRaqh42gS8l1Uu4xXS44ev8ne6oQ1FTlldmdbqtpycOQA5Wxjebw2JJmjdgIYxpIVtpsNOox4hbkBrQIZV0qQxlLrQKWnaI4sxwNcc4veGUYbuOVHKoW3u5HWGrxPxJyZ2YFBtYTACfgkJI1T+S+wCcUYnXMuLbenzAntRvJmg2lbbFvmh5wzMSnPPvwCvbt2OCjBFQs7vpRIKoE2z2jtHlkSp0/u07/zP9L0b2NlxGoJO+t8pDIVu5XHWEfaneFyzeLhyDg+AauMKUIM+DOPRANGEQP90JdeQwreR7a5Y9hu2J3vAUrKSj90rPrEYQoYDAMLRjKL8Dz7ueHG3iHWe4IfiQqxmfGRgyNSI6ScydvEUWWZxy1IsdU/LZH4DcbMyNkwbDznj97h/isvc+/lN1BVQtYS8HWRWW+2XPUjMQWy7XGmQSeNyDXAKAzGkngNMCbX3Xo7J0g5l0hhFdZxZNUHQBAtQvlXT77C/e1joiTq7cvE1Tmvh6+i7oJYEnvAKDYVgIEPvNg+z+3mFv0wEMeM75eU+rgj9Z4qg2uLi7DvldqCaotmxaSAkBk1M9OizRilJhcBHzHXiA9U6rFuYjDGEQkeyRbtM1k9V8s1X3lzly+8aYo757s4vgcwvkPDTn5yYln0AFxVGooJlDCibKZiRuE1bC51X5NjUcrXFk2OyqQigFSKBkNNYQM1IWpQV56fVZHUkRAaFfamneAgB1RZqGIkmYxNCZcrgmlL4mcqSHeswNsap4kmDlh1bIwhZ8VlQ1JDsAaMsPBXSM7kfg1E1Ajbuub05g0wwsF2PbldwOSEcESVZkjKOM3cGYvQdGsrvI2oGMZkyGbDreoRViM+VoToSBPAcCoYVSKlxwmqiFgkz5AouO0Vsl2y352xJ/3Tnh3iAlYt8zwrFjyTWQwVkqDCMmpFUEcIkdW4IqfMTp+ZJUdywmq/ZGg4BprmIeo2RC1A8Twuea/9PCu2JN+TTt8sO7hoqU3DfD5nNIEhO0JucSkCyk47UKURCYHtENkdLxljsY8CXMdN1saSsqEOieAqbC4WSavF/RGyYFxFNpYhO0xb0X7kBdzhbS7tLtYktqklmzUJwyYc4MbiWoq1Us3nNDGgMbCsW1SEK1+TFLJYUk68dXbO/+v+E16bTTuiDwAMVSX6cn3bqoiQYyyhQCOBrp5jg8fmwEkOvJI6/vVwjtleoKvHJFGCM3RaY5Ni12sWq3IMrqod/NVlaegXRjYqqBeaKcjq5k1Dzp7LfpfeVyQzI5uKMZaws6RKGjryOOBz0U5UJpCxKJaM4Yfar3CY/gdUI+fjcxhjCE2FN8rRGKgyvN2PtCJ4X8oljY1scsAZIZPx0ZBz4GBWE2JkPTpELCklcg7YeA0wBvJ2g5m12Lok9V7kBSdpH9OtiS2AFht5ZUuMnE8ELFYdecjMq332959BU0/XndEv36CK2ymAL9OPicpUVKsT7v7i/x2rjpvDs9x6MEdXA2/FGcuU0SESrgIkg6tlauKl6HaEDFETSWDstuy1u6hASgVgpO3APJfJaGtmvLq7i5eag8s5N3YOcbGkW462BWO4s3sAszI/xXXHYeWYhwIwBqlRW5NJMBbdxcWDzPnDDQ++WZJbo/eEIeJVWQ5L9sbSXG9NYhxHVIdSOo4lR+e3+si73VhcJOOamARsYTAA1quWQRKrGDmdRMBLP7Lqy/woNOSsfPPxV7m3eUTdvY7bfJXLl3+Zxp4iAUK2GJlPG7tIpTU6DIixSG1hiByeF6ZOjKCmJnc9lSqmNuRMKbdgMbYpa4DPGCJDVqq8xRrDqDU4KcFhg0VSaTtp64aoNaIKwSNSkTeh3A+rwpjfXMz+QJ3Jv5PjewDjOzTMddfIzRIj4Jo5xlYTlhCSdaidlaRKhWsHgmieNBgZ39QQLVWRnTOt1lOJpLRkF4RsKTtHSmv3hKVVx76kaZdxgypb6phJZJqUmac5O/JRLAmTpsZUFXhb4XKmiRskNdxt5nR+Kk2oIVvDml1O/B52DMzWJUFuM2+IJPpmTrKUtM5YBJhWMpZb7Kd9dn1RkOyLZeETiUxnpoTTXDN3l7h6Qy2RITTEYIlGyXXEUFjtTBGPigoGB+q4edHRrJakHKHtaTROjhswJmLUsMgzaj/iui37fobTSelOifBexcyFgmblaKU4caznFrNSBpvZuXPObvOAdvchaQKFV/6CdvMYN14gbMh6CTkxJENlaha7c0Yb6NWQmSGxLO574ZwZI3X2LAfLbh4YvEdIWFFi2bbQ2IoYlXkQRldhsrI/P+fZo3sYzSRvMK4misWnCjGGIbec6y7R2JL+mWrUbEuKqN/F9VP2Qp1LF9IYGdYrTkxDwhbWzfSoJFL2vL5cojFxVjtWVYOm969zVU/0BRDM5s8WB5IHT+ZN/4DLxQKjioSOh9mTY+bucsXm9D3UD2QJXP3wjzBojVVlLiOzKaL7ShaEvjhujGZGDeRgqCgAY95mKlkzpAq33aFtQI0jpIwVR1QlDQM6DPisVHQYhYjD6B5ZhP36kvM8sgojl+MBAPszGKyy6yNOlatQtBoxJbJCYyNdTFgR1Aoxg0hmf1YxxsRqtIgUDc169EjQQr2HQN5usXVdrIsidLbim+NHMMuR5c6iXFVZSMYU4bX3ZDlkR/8URhdAZr67z83dfUQT47hCuku0ZHiSLwfigzXpm+8Qf/c1bjyoETWkYc3GH/GNMOfYC3mZqcSBg2wSu3u77HphcRGxQQgakWzQ3tM0VQEYWen6LbH3NBiUmuPFHl85usFnj56nOq+50RzhYodfb1hPKeZzJ8jMooBfrtl5+ID4b/816nuiqQhSPWUw1mc9oW9QVc7u352usci48Qwpse7XzFOLs5a4V0/2+2Lf1ZA585Eza3g8BlZ9NwEMC66eQq9gs6noKQBjmGLPj7stfUgkyRhtS3knT6VtEwg58ujdr7FjLyFAHytcMwGMFHC5IY++BJXVlp1eaQawWpWALlNj+g6XBaopDj0K2BrrmuLOGhPZbyY30RZnhSE7sAZFuNxUbEPCOcPVcIfZZSntmpzIEfIqEJNnvSmM4vfd2flfs4T9oYzvAYzv0HhaItkuMQj1bA8z9c4QodSLf69NNWUkB2yKZGBsSomkytc5GRmxRYCpWi4sEKJNUz8TpQkZpURVO1Esho3dpUqWOgaSSVRTyqOaOc/mO9h8DTCKCr9KiZtPVjRXkfl4xUG3RHNJ7AR44J/j/vgMl5sbLNZF57FazElkUMfYlu9Z96XhmtNMbxeQHbd8iT7fNY69cSSosK4qbO7Z7TzWLRHXYUXxY0P0FclmzO6aRkaMlsUrS8ZmQ50r5sPI7asS9R01I02P0zRxRYqxHpMaZslRec/ucsk8VrSxoQs1qhZRxaTMq74iRuForTgcm5kjGsg2U897yJmqWk1plULvtwiB2g/kWJVdZ470SWiqmqZpGW2Y+mtW4AuIbM3A3EZ20oAZAs9qT+e3GMlUkuhWZWdV2wYbM1UGLyUO+9b+A452nzC3a3IQsqmIrsJrhWomrK447hx17Xl+5z63Fk+I1ZqgMMaW/X4fow5vYT3sIyHg/ci5m5GBWjrm9ZZkYONmbLdLiJFk4EE7K4FX04ixpxsjVzFjZnfI0RWHhyrDvGWz2MWQCd05lxqLkNK0LFfn5BjwRrm8cZOVXQBCmzrqUCzPnZkTgy8LuYGcBlzy2NRDThAju/WSIRvM4DjcS4grC3s+viDGSB56ct8Tc8bFCyTBkOa0WiE243JE/JZHQyaOLQbhxkwYbS5djDOTS6mkyYpRRDJdDBgRrOyQNVPbyLy2+JhYDRYRy/Em8q8eZN69OkACKIk8eiwerCHYCu8s3eC4WrUkZ6k10OZQXEvOYkYPchPMDpU9ojGl7j+3FZlUQsVWp+TcE7JHTrfk7GjokcuKNpV7MY0dY5gz6EjQTBqUvWoPXCYQ2d3bZZEMeQpai5JALW5UcgqoQM7K2dUGE0cqBJEZfVUo/LN6xis07K1nyHZNHD3r7cTcmoCZ1wV8Xl1Rfe63i/Ddb0m2xpuqiDxz4uStJ6BzQhcYJyutamLceC7GFTFEKhzGWVjMsBgqk1gNXQEYIZAYIQUebXtyP5VIbM38sC3i5mDZUsSzlSldkB+vM1EzWEW0JeZMZsRay6wuwGRcP6KSHg1Cnw1VtVNKwCniUoX6EWMsxjqaCJrKvR4lcdKvMN2G/p23GC/OIA2EETRXWGsBg44BYs/V8hKT1lRWGKhRAz5E7p3CZrtlmw95cvUCh+9kMAbRRPQJXY0lqCt6Zi7w0tHuH9Zy9h89vgcwvkPjqU01J4xAPdt/KvyEAjCYUjefukiSYnOPix5FGStHRqhVQEsHU3G5xNUiiE4AY2rjLloir0vOJYVKQ9jIgjoLrU9EyVQpkwBvLc/kO7Sx2NDqzQaTlGaZ+Mh7S+rNSJV67qzPMApjmuPDbLIOZk5Wz7K7TYgYVou26CKypWtLjduOBSjNFTZmBrnijjfsIFhRjro1IcNV1SAS2dURTIfI1PG1n5FTyfDQKlHZTSmRSKGRm9SwE2YsfNGOrOY1va2Qpp9A2cRg2EgVdzA5E3JPF68QDRxloRIlY3EojSaiGUlR2O8SVgzdzBCdUu17DGUHu1ttC3OkQs9YNFgm0a4aajI5Z8ZsmFVzalcRXGSjhk1cIKGUVhaLxLyG3TzwXL+mjh3d0BWAEUf6szM0eF6Ud7g9HGMJ+JTBjpOeARo6VC3RlayTpI6IInnLBTXPHdzn2Z1HvLB/H1mcM0qPo+bG+DxVOKI3wjurlrNNIpDZVDVBpVyHlDLeVbMD/YZPbHxhm2zF3VVZOJIqv31yzMkYWCbhzSBUfBTjW5JklrNdQtNQMbAdH3LNws33nymR5wqjKOtxy3lzhCA0qaOJIwbLIDNiHIuLRIRD3uEF82+gvyq9fULASUefLQRhd664ypBTQodQGnkNHRICooGdy7scDRt8aqnJWJswWiykj3tog2XXWXbOjnnpK1/CjT3tVMPejJGUEqbKbCWjKtTGYsxOSYa1gbayhJQYo5Bw3OszF6rcXe+wPhdOciKHwOP1Bb1zbG2LzEpc/5N4AKLcHs5ZhLEkUdoKEz3JNCQ7A5R9uwfJkuKcrc0MooyXF2jqiXELVEjdMP/Uc0jvyjVvR8iR0FXcXwXWwaDRMTMtY2p41Le8erphZipWlSHnzMZmepnTSkO3Oi82T+DBeXE+NFhEZnhbmibiPJ+vLKtHAdevIHr8JP6tzIjMa5Ja4pNH7G8vAcUmTzIVo0JyhhgS6+MzRBf0Vz0pekTMUwbjdLhCY6ZOC7wxRKmwYnA2s+k29GNgNfSk9Ttod8aJj3TrJTEamq3FbjzN3CJYVrlonJypcMax7Fq6FKkl0QZLzkrMHiMGa4tw1g9XNGlAIngSUi/AKCYlXK7RcUSspcpNCatLijASgXUMjKfvkq4uGHPAmEz2hhwczpUO0SYkKhPQNJJzjyWx9bBeXnB/49leRjRETrpnyeKo+wGnhnHWkAPkq5GzrgDhO7s982r+h7uo/UeM7wGM79B4ymBI6VXxIQaDwkKUpUaeOktcyrjQYVJEhckyKli1WKb8AqPTc7VkREwAQwRMsjTeIOpKT5PpvdZ2hypDExJZElUqzIKXEs2yN+5RR8UMA0kMLig7246umTPWFiHiNDPmGp9qHGAl433NziYChtWimQKsLMO81AbtmBFNzDWztjNQx36A55khJBbdKarCqqpRgaaKmOYU2XmEdYFFtpAMOVuSSRgzljAhESps+bcaWrGoWPra0qNoM2DzdempUJx12MPkzBA3dOGMRjccxQUvHL6H1WKta3IC3ZAVWg8WQ3CGIEJ1NCI5E7OwsBuyCpskhdotflzmq7KbUs1sdMGiPsI4w2gCpzSYlMip9Ddo58rCFSfNE19D6Oh8h2iiypFRM5WOLGTDvh+Z6Yr97RnG9bw8/xE+t/8TiE2kbAhVQ62JmEsn3WWIRBWOmiV7GrDB4EXoUlVKR0OFyRWDC7xzcYEZB1o3QpNLhkNSQnJsmpZgHLbbcPONUw5WCTHCq1dbQs784vEFv3v+hHozcOPeJeeXS+q7P8yz6UVUlGWzR6oc++mcbbqY7HaG2WLBtmBUMoHNsOW0OShlvrGnDRscDqVm9B5jwEhmrqcYFbRfPgUYXVhxni7xYcPeIuOqClWmpn9gug2zYaSynsZ3mAy1KmIEaxM5n7GNJ1x6qMfMnjM0L3+N2eU5s7NHDGPi1Ec2Yyy2YZcZjq/Qi56FdWQKa+TMiDWCNYXdOR0a+qQYIhd9y8W54zwrW1XCuGJjHBvbInVpOPe4vgVGuePPmMWx7LRt0VpFMydTygaVOubdIcGCNYAV1ssVqgNx8EhskDRD7S6SIqNdMsw8FuXisuLdc8fr2wU5Vzzu5jxePUufDafrga+1wq8+M+PxvOarz+3yzf3vQ2XB9uKc69ZKjy8Gah0ofrga72qyKAfVBQnl19YbZpPVM+QSCSiM2HlLUsFeXlDp1HV2ukd9VpIxbK5GTNxQDxfE84ek1HPzxZdQTVxedvzWO+dcbsGPCy68YUwWawRnEl0YOV72EEfuuIG5SaQUeLULRO+oO5Au4mzGvfUNthMLV9mKxjZcdjP6GGmXHTdWA4t+/RRgtJqYs4eGRN0X+3JE8LbcyyYnJBjyOGLEUKUpQ4aA4BFTEXDodkmdIqlyWJfQAJoc1iqKwcRMI57Kb9hu13TLS1brgWEcebg7gyGCOpb+JmocbhxwwbDdnaNJ8KslZ0tPmgDG91wk/xmPpwwGYIF6tveUwRAgmRLJq2qvUy1wObMYrzAKd5485IdfeQ06MNlhyLicSi4D8lS3oRjC5DIxaliMFRlb1NFa3ARru4tVaHwmmlwCvVTZcMHGRky2tEnpyWQESbDfb7mc7+GdAZdxQMw1XoswtbWB1kfqkFAxbHfKBJiMo5+3IIobI6KJRmBjGzRXtCHzUTPDSELDJVUcGYySrVDXkaq+Ks+tN9xsV5Atmi113uLop/ZmUE/NyxRDLYWr8aYETknblWyHzuA0Y2zE5RkmKz6uMd0jqhg58IccVhtcVTI9bM6E2JdeIEFwWibKCNQHxYp7Ue8z1IoR5TybAvJ0Sg7JmSpFIoa3d3+QB/OPYq2wMoFLsbg4kJMhCzxxPeJGcorc74Sh27DeLJEUsBnWqcFqIIthHss1MvMbpBq4dIdEawlN6aPi6waXAkkdaObclyvqZrPEirLq9xlTw5hb6hTB1wiGNm751P0vccNfMdaGvnEImTopSZWLvQg28szqDGve4+Ym4IyhHyJfWG55OHgO3n2Xj795yo3zjsM3Tuk2toS/mYZVs4MYYd+/TR07WoRndE6Kno2UOHzVQD+sWTWHhOzIwwhhTY2lNo4xeKwRGu1IWclA6tNTgHHRn5PIxLzEScZWpdmWxyECVYq4sacyCZc8ZGFuPNkYrBuRPJA1shqXuJjZsZZqsymR9f2GYYi83Q1cjBFyppaR8eQKNpF5hCg1WRVrRiAXCyxwPFYkBBs9W18zxBoFemto2RKyYeNKx9+Zbjmf7SNWeXY4ZRY9AozOTZH9u6gREksISqt1ydeoS7n1ajsgXshDmW1MXYHZKyJo3xPr4nhZbyu8ZoZkeGuY89amLSm3kshReU3LRmVZG65aV4Kp3D7r87PSIAg4WwaaPLDrLEnnZONIwP+Ru9TG8zAFgpujFOu0jR0p9ZjFjJTADgPtx55DKgdGyCEw5kQ0wnY5MhvuctS9TO46CJfMn1kRY8ejJxveOV3S+5om74BrGUpyP85lvMs8Wm8hjvyAWfER5yEOfN3PiGPNXSc8yJHw5itcvfEO5nQNWXFSkbNj61uGnLCDZx4s9dgTcqSiBOIlgYSn2YyIWpK1bLluLAdhCOjokSBARZLEle2ASDJC3lpi6JjFQLIGazMxGLLPOFtyeCQmGjtS+xW9H0lSYVxFf+MmxozEbBnS8+QMUQz12FMFQ2gsqWk53/aE9UBtPbvVSGu/tWfQf+rxPYDxHRr2uhwipfmOdc1T0CEi6NQVNFECsgDqGLmsepZzy63zE6rgkS2YZYl+dimhHwAYZbqden4IT9uvZxVk6tIHsJ2ospJlUQJ3bUplYjUem8CYRLKGKIINkbmPJCzJKskpTpWZs4ymODOerU/Y67ZYe4uuPeS6PXYUS7coyNnFUNgPA4OpCGqpY3FtCYmBNfNhw2gTuEwWQU0gawnmeu7mexySqEcwKWJ1oDZbar/GaXEJXAMMVIjGsnUJrXtsUsZuB1GLNQkbWyRlxrjGmStC2uLU8UKcEQ4j7eIKScq+PqBOiSpPW2wMi1mCKpODIQZh42pqA+cRyMWT4CtB6kgeM54GM4tsbM+76/d4nBOXdWYetqRkiTZzZgfOWDJyyTIHXr93yutf+Tx+GEh+Qa9F+JVUaFNDlIarPNA1hU4VQF0mZWGsG1z2RK0ISbgMBsjsNluMUQap6KVhS0tNQLIDtdQKznnmacVJY7loHFX2VAq2XrGuyw7taHtOdvcgw46CjZl7m4Ef+J+/zKf+zVeoFXbqmnaZ6X3G58jczFjXc4xkbHpAReB5MdTSMm6XbExJjMRk4uaMvpozaoXNCZMGZtbSqC0AQ5Ra+6IhQTgZDfgNGgLLbo3XSNaRy/UKsXVxYFmDFUOdMrnrcCZSpQFJgjNaNDy2p06Go3GX5y5Gjk5HFj4j/UC0ihs7ZknJqpyMAcmZvXHDVVOui3mA+JSVXBPCGmeLK6yjIqL47Lk0NU/0Bj7VjCbTOcdGazaygzFAXWLf9+KGRfYsYkYQelfcHGp3SuaJPkb9Ga2OLOINGlO0U+tuxIQjst8Agm0acnOrMH1xRF3RdAx9ycmxCo9jyXc4arbszLYEH3gQMxm4bC1Zyv04mAXbywvEFJvq5SZS54C9/KPsXv4QqkILfGI255YOpOBJVYMiJFNjuktyHjFtRcoG50dmP/QpzGyOMcLl5i3ePPka73ZXLFNgL7zBOEayBmx9QTf+LlfDim6MMHYYtdTrJ4SHbzAeD6BKVRm2uWNzfozkgU+aNR91ARN6LqLwujtgbaATZXmxZtPcYlO1VOtE/fCccQzEXJFCwITEPBqqMBJzwupIrSOjzagk3JBoU0u2ljWljYAVZewGdByhz2Rr6Y3n9liRMARRQqjJyTMfRzJgXC6aqTEVx6EqJimShNafEoAkNfPDQy529qnXS9ph5Hg5J6bI4xsR6wdsMiRjGOvEcpiTe6WVAX39lNXjx9+Rte0/ZHwPYHyHxvslEqGZ7ZefyfsMxtTggqyWO90xz20f4zQzmEzlt0RrGKqabAwy1rQ+4XJGRacsDVBRskyt2ymTnaiStQAYzcXSGs2MKOBUqHJxpJhUcgl8LG1ErY0EY4gZ2uBxWvQhMu0ORIt9a5tqVIQd6XkhbHHuRczsJQBq3xERunmxg9ZhRFwkmTkZ6FJxl+gEMPq8YTFsGSXRucjb2ZFyQfM5VzQS+L4bx+RgylbFRNrmilbilIehKI5aDXNtUbVs52Pxu4eaHEuTqpkBjRDVo9mDCL0/gbDLzvA8P3jjVT5263Wek/e4rU94Ni9xOJIINlh2W1AR/GVN9I4glkodl5MjpFGDb5Xnup7ZeccYZnQofR65t+rpVbmsE4uwJiUhGqVEMQhOtizdBV89PmGIgRgSovZpl9iYYRYrhux5kAYG4xAEESVbGNRwr93jbLbHIDWb2IIk5lWHtZEsQrRCZxo6nWOZ+hSkCofBuQHVjmArohFUIuKUXA8sk2UcDc4PyJN3UV1SZYOLyuXrj7jxlS8y3ypx0dDUNYe9wCYyRMXKPle5ZR43oCucRm6KwaaKcPqIjTHo1FdlcfJ19rtzRlqMKiZ3PG8veCm+RYgBlzYTlV4cLqOP75dIvCcYj6bE3bMlXelvhzeCq1ucCAwbnJQmfSRQ64j0WNvxrN/nTn/IQRhoQkZWPadSkUym6re0pacfp+OU7jpc0VsFNTSDsLM8YBFrsvkm6/XXsYwIhl4Mkj2LvCJE5dTs0RnL1azlYXPIe+lZxjSnMgVcq8JuWuOA+RRGtqwg6BaROUkEZSSuP0+mw6rljrxETU0/JiyJHFckEtE6As+gYqhzoK48CUsYigbJqbBKjq3AjoGEw+fE1ihLH7lsC0845MDKNkU0q56LjSecRxa+wsV9Kn/I3rqUEJIEDumJPuCrWWH+pMIOV6TUQ1uBKnWIRL/CzOdl9396in10wcWDK+4+3uOdy4bl1Rlopt2JLPtMZwwhBureY7OhCSOkRHrvipASdS1sj1/m8Ku/wu76ATPJzJ1wOy4hRP6X3UO+sisMBnxfHBZ9JRgP7nKLvvIKbvTINgOJm7NTjhYrbsspnxx+G9WOzy9WrMxINShOa8Q6Vjpg6tI/zvcDuevZriIXqUZRmgyJPYr5fI7NiZ3lJftXHmlL5lEMFnEVQuIi3uTty0+TLta8lfY41l22IfP2eSRebXBZWFPTxw33554geWLDdziVxMZX9FeZ1SOPu3/FO7/9m6UM9V0c3wMY36FhP1Aiaef708/e12DkyZOdMTQ5sIilPmyS58ZFaT98/9lnGQ9L8yiXU3GZTGzF/5e9/2q2btvO87Cn9TDSDGuu8OWd98kHBwATDijTpCxZtlilKlX5b/jX+Hf4wuUru2xZsmmyGCCCAIhwwj47fnHlmUboqelirA1CZVmschkHVeTpl9+30pxjjtFbb+19n/dbfIYyJ46ikMQ+UDhnOJNqIuFwxs8PXIU6P4xTHmKiYwTFgiu8qp5z1Jo6BcQabCk4F4lWZ3Gl8UylBqN4lEf5gIgiVY0tgo1HosButUJFqdKEMRClm8cco6HPZc6kIHFnDjh9zehGshV2LhN0joqftk+xWXBtIj9EtBcbMGbk/PEdBkPSghrBioA0KA5XbzEmo9NiBtOooZFZcDXkHrTMwsi+ZwiFHNZYkxCBhXuH0cx5SLP+wlt8rFguE9lYwl1DiUIQR1UMuwek+3lqwCQ+Oo74KZG3hcEoMRuO45oMjH7kmfuGWiayLWRn2MiChoRK5o929/TTQMkttigFxUompxpbHIHEZApB5wLDUCh+zowZfc3b1SPu7IY+14hk1tURyZn2dcS6SMATtMHKMIPaisfi8HYk2nlkUBCiL5w+umfAcRMqQrDk0VD9+Tvc3Z9iE8iQCF++ZJy29FVF/+kTjHWshhl2VFBcvUaKYTNdgQQciYUqlIa0v2dvzbd3AhfDLc9KzYjDa8/z+k/57fqP+F76NxD3mNIDyjG1RAUNEaY9JQamkog2oFp4fXfP1f5zNGeKgPcV1JbL+og1cR45MVv7RhtwdqAp4Ijs/T1Fj5RxZOcqQLHTEQl7hunIXUxIzizHe66bNVvXcT2u+BkrijvBmJs5+j0fqa9fsZnecpJ3fHD5Ft9HjtqSgX3dgBQmKtJYYY4TbTlgSuIkb3Fi6NI84hqdo4hiaCjGoDox5S23bk+RiBXHI/OMKSuq4/z3kyiuph+WRAWbZ1HwIVfYGCkakAK7bDiqgjS0ydN5pZruWf3snzKlO7IoosK9qVhdrViOynZIqCa64PHGolKx2Vl8TIQc8MMNfX9kcDVFlYxDjvfkMtCES4qAzYHD9Rtk0c5dpCmRi9DpEpHE3d4y2nbWRDUt//atR9qZd1LHgo+GynjE1uyD0Kc8J8yme0QL69uvUL/GOcNH4R3fD3eglreV8IdNIYb5gHGcCfu4YtCbG373T/4N/i5xvnjJs4svWNYzLbfSO97Ye35Z9/yyzthJZ0GntWx1mOPYUca+Z9j37KbMG63YJZAwgHoKhmAqPOBKpJkK1LOuKAdLNgZI3MkFEU9vHZnZQbI99mwuf0nVb9FqNeeYcMs4RkIlBF8zmBP+JHYMKZOGhA2J89t73stzOOTf5PpNgfHXtMy3oC35KwWG+Xc21XE5cVxuGWyeuxAiLPqe+rBj0Q8kY3hzfkF2FkqN1YzLswbjW8fIX4pEVR8e1RaKzGFoD+CdqB4RiLbFKjR55lBImZNFp4dixIiSfE3CUaeAdeBSxpuJ4OeCJGpDUo+zCdTjJo+xCSpDEx02HwmasaMwLJaICM24ZpLZeeKDkIPhJLVzaFfu+dt//ppl+IZ/8uia/3ZzM2++KuSpJYcG8UrpBJ1qimTEDpxu5hl10EIyGSNCMR1Ghe+0f8HCjdixJj50MCoDUgpjHgjdHA5W34ONllhucbPGk9rdgWbOQsKKELxjIZ66csSqI93XMAhJLF7g8EC2fFxqHu0SrspkhNKXmb6nhik27IzB1ffYmChZ0ObIlR24KT0tPYXMyxx5OQzE1DHDWjNWAugCQeiNMqEk5i6VSCEai6FgrOV7h4pONw/fX1hUA+uvj5x9vuN02DNoQ9IaJz1ZE2SHxeN8YHRzxHQRJZ0Galc45o7B1IgWQp61GSZecn0svH17YH93RUgj28qA77DO4VKDxDLbheuKR5Pj8fg1QqbVjBMQ7dASOTykAhvNdDLSSUsRx9K9o7VbjAimgMQ92h8gKoFqhrFF4HjN1O+IpRBswGA46A3b6Q/QhxyLqm4YVdkGoeSBhCHiwDr6ytPYAUfCE9m6HRNXxHEgPIQDFs344zX9tOcmRciJatpz7U+4t2d8YU4RUbKrkDKSdGJVbiml0DLyw/tf8f7xHc1uopcOo5nJ+7nLiFBC4XJ6wtjUKLDSPdYILTPpMRtDshXgyMaSSo/mieQh2B3WCp6aXAoHc6RIQg2YusOYR6hzmDJhUuJQPDZFFvUBK0JCuRleclBDFxzOZVbHt+SUCemOohnUYEPLnok2ZEZVVDNdcjMjQ2pE4fHbBfEmYg6XlJw4VguKVaKx6HFLufxT2vEtQ+UpKvTvvoKuIZfZwRNKw6P1J4gDKxuuVGaAoBG2fUIaQcyRNsU55dYa7PKCtx8/JfgGNBGrhKji9rfs3/0Yf/gONik/2N/wv7pJIBDTQEozzCrYGRPuVou5/2sT1U2gdfvZrXffEjTQlx2jTFg8vbFIUKriEWvZ6wgeDEI43DEMc7TAYC3HaEgpIZIQrYkIBpnToUUQqzgppOQoeXYEZvWIwnbd4GyamS7TCDHgwgTGYlTJZcRsj4QK/uL9D/kX7/+IP10/I5dCo4FnJwfeP/Uszs7/2ve5f9/6TYHx17T+qoukeygwzLcoYCBXws3FW7IVDk0HolRT5PTqElsKb88fE6yhiEVLg9WMzRkjaR6xPDgkVOZiAvShc/FgarDz5pdxM3vAdniF9tsORk5IVkZjyDisKMXPhLk6BqwruJCoXE9wM0HTBqUUi/Uz5lvCglWqcWZJEysKAckD1R6OqxPECKsEg/EPEfKJVzLytfZ8nY784GVmeQffef05t/XEVduBm/MbGCtKnLsllcuk/RqVDGaiKTWIMuqcaToXGJ6LcsA082m3CRXH1GAeeCCURMgTpatILjDF49zNEYN7CNNyskdUaaPQSkDrwOIh/GkKHdlY2u0cOpd1IBXBquHUCs/vMqaFLFAOmbbMAXdZHUfrqLlFi5CLBd+TS+KYJiZzT6q/5hbLMUdyaTEYrBkxtmC1nW3ARLKdNTs+gqrMIXY2URnlw2NilAV9qnECT9pEcxfQGuocOeYFyzjgZOAYbtHkEXVoPRBcYWtfc5SfkZYFh2U7rhmsx6BM+SE8LR2YhogLBe5vCcYQqwbVGlmskeIwIbHVPcF7Puyhi9cIhdUDUE5ltltGhJ1rEFW8ORLEYq3BamJMjlteQBFMGiAVykM4Vx9rJEO/v+F2e0VWoXeZIIVEIpQJ1TuMZFy9ICn44YikkWBnX1Wpl2zrisbMcd6meIwmerlhCNPs9tI5rXhxOGAL3MQJKQniSF89Ibtzgjp+OAkbcdi4IOSRNu34zy6+5vvLS3xMnOY9NmYOpmPvWoKzoMJCDpgYoCj71RpFWJUD1oKjwqWIKZmpblBxRAO5jEAiM4u0jRgMFkrhzh5RC8U5jNuwqjdkX1G0sCoDvTpMDpzYkaWdmRw5ZaY8B/FNVWERtyCwd44Se/zQUqtw6W/xbk/WgkjCZ49GGNrZQl4NhrvLFYv7K0zJHOsONZCsQw635Ff/Ckrg4B2Jwu7yFdr4GZdXDIEG0QrvF4DjfnfOOP4WoTji/TQLvSXSxUydyjwuahaM9Rn92QaJI9HPzwLpI+rWGHvOIn6XaSd0ZSZh2nDA2nu+c/H/xmg/C0SNI3ZLhvFI3hcqO6Ae8t2CqJlYRoINBHFEcYxRcEVwtiaJUtx8HUJ/zzTOAYNJFK/M5GUSaMtk6ofAy3nEbU3CGiVnR84Kmsk6F7bGFvZNRTaOkuacpSqOD6PRGermrn/J5cLw+bMnBK05NCvaKmNM4YSR2gim+42L5D/Y9e04xDUtzs1irNrOp89KZzsnMFe31tHX88ZitGCK8urRkzkYTAyYCpMLpoCT6S9HJCpQRL4NESRlhyhktUjdI27kaB1fbGpu6w0WpU3fjkgKUpTeWfrDG8REWheRolQ54nlo2bpI9LMISZISxWLqOUrd6IK6OJxb08WKYhI+DZTsSM5RvKVNhdFUJBWKBL7xO74xPXJ8R5WEUR2Pdlc4KUi1QE0iq+COnhJnmbx3hfFwglIQE6lp5pMCkerBClfE8kJ3FD93N+pYc188onaOeZdZtLVLJ7w1cGCLjQG1mRahloDaGT1YJ8OivaM9u6Vt5vdrjI7sPc1eKQV6RnKGKnlaH3l2m7H13Lkoh8wi36HiEakoTqj1MF8bcagkvJtn+iIFLwd6Ixw1UcRQ2YQxBSsJVxaYYuklzpsTYCcDRQhS4VzEqrIahZEFh1yDyZz4LdU+o7WhTpHvH1/xX9z8c071lvt8B6nC4khtIJt5M40c6RcFV4QpV/Qyf55G9cSoZBkxYcImpRl2TM6QmpqUPG55PruIpp6t7pm858Mh4sqOZISlztqfIA1Ngb1v+aK5YDQ1lZ/mKG7jcGTG6Om5QKOCJixKMX4GXBWHFGW/O3Jze0VBiT6xrw5c5FNO0xrPFsjogxbAHAckBaJ1KEKpOg7tTOmkzKd0p4WdueQYR4xxSJnTchfHHTYL+xzxU88khaF5n5qKR5Pwg9HxO6EipxeMuceFAWMyl80jxlzPo7fUM5qKq+6E6CwZwzpsWb074q6UY70AUVZ6wJq5iKzDhCmFULUzRt+aWUMkeYZSMUP00FkjcrAjkUTxFmc3SFKCb8lkTmLkiMHkyLkmFvZBFJ4MJlkKiV3eYs3cxey9R3Lig9uAaubKWLATHsX4gC8esuHYOHbLWWFwPS5YjW+wOdP7GrWeZBzNtKWkI3d+ybaeXQ13V1dzgeMcmgWjHSUrlbeAUvqnxLJhd/uCyhwRMSQyVck0UYmloO2CnBeYQSAFjNW504pSssM0S2yusMcPSOJQZ/D7Gyp/ACnkh8TeLjvykClhQkJPPRzJjYHRzXHzJZJtJBhDwXLIglVlrfPzKDvmgeV0zzgm1HpWPnJCnGMYJCO0ZDsX09g53PB1N/AHH16z1UQsMMdZPog9JXPdrBilwmvAxImiBoPg2xOihWq/57Nnzzk6RxFQV7PoZr6QHdNMF+9+w8H4D3bV6zVqDNWT53/Jg6+M49M08n4a4UF9rg+O8snVTM18uku+pm9nYWYRg1rBlhlSZMtsjRKdRy0FoTyIPqNYbFZUhWIE192zqyqSNVy3p9gCizT3OEzOSFb2xhGnW8p4oPaJKkWqFKhL4Pu7LxAvTA8kOxvnuaprZiBXlhYwJOdZpSVKoA6zCyQ5h1aWNiRGUxNVqEskSQI58uj+BtWaKIXN7khtI7UtZDNDGmVylPCQ7mmUFM9QMkikokFQxhKp8xyphhEec0up5vyVKjWYuzuI1Rx7bQKJxD6v2DqHaibnHkygVkvzUGAo0GRDbUZGW1E3CRWlT47kPWYo+ODR1Q3rxT119HSlZzkptp6Ftzep4bp6j3t7DsWTrcWVI1aVqbQPtkZlJQWvSh0houxMQUWofUJFsC5hywKT7XyacvMJvB0iFIjGY31mMyYkFAat2GkNUujCNSYXxCW6MtKNc3bJp/1XHOxATvPmpItZryBm5rLsKyWUBbkYJrEUN5MMrqVmNBHKO0y+o50mkrWkuiZnh1uczcK+acteeybneTIlJPdEZ1jkWcg4mIouGQZTc8maYCqcCyQKSQWrcypokhUlKeahwEimQlCGbJCiHI4928MWBYpPjP5ATYOo4TxnVDPBzpkSrj+iMRCtnz+vVcfgp5kTEytscVSlMJo9u9hjZEayJym0hz0U6LVw0t+xqzwijhrPZu6Ic1oMPp8R+jlf5pgNwzQ7gJIYFqWnCpG+WlKsgQKbY6C9G5h8TcLjNdHJgBElF6imuYgf2gUojKVQ7FwMFh1ngaSWh8Tgwna5JVYj2Tsqd4ogTL6laIHgmJgTli9ioDZzsafR44qnaGIKt2BgXD/mUHd0Cc5uXjNReFtFVBKVFCodEdMAhsl5xkbRkriLkSbvsCWgGKblBiuCSYlcAi/NghtfURQO2z2ZND8jiuDzkqLgvFAZh80d0SjD4QKnGSuF5GZNUjsWhpRwyyXCksXN3HWU1jOcdGA85TjgNo7CiMYanw3qDe3uFrEJsTKb3VV4nCryEMl5wjQZCYX+siVJZjCZUAJiEknmwnDQufu7Zo1SCDJ3MEo6ME2JrODLREPAMM5dVzW09gzzMMhWA2+biWILb/xIyvO4U4vgdD5YvGtPODB3rpexR12D+gW2XhCNcrV+j75qGWxBUKxTDrJmyp7cK1fbyB+8Hf76N7p/z/pNgfHXtBbrDfyj/5LVb/3uX/6bsZ6GQq0K3zIxpKaSQm0Kue24f/qIfrlh9lnMGgt1c2dDACkZkbndbJg7GPog9kxm/joFVAridky+AoSDX+BUWYZ/J/KULAyuIwOSe4zz2FSoYkCd8GJ8hYow1XPr7v3uHacItj1iYiG5mmI9KpZFbqFAlfNcYHiHeksdM72piKpUugOEzf4zXE4czIYskcUYOEkTrUSymXUaREt+yEgxQJYOHuyXtfGIKL1ONHmmeq7NDm8TWebWjs+Wbn/ATQ1FIbhEsI5iLcfGomRKPCI2sIyJjh41mYLQFsVr4mg6qnqmEfbZkWqPjnOEevET3kVWRlkcjzgH6oSiyt50cwGIIfpuFpPlecOIxZGKwQo4G+n6wnLMoImjFrIteBtBBGMy1rQYgUwhPnTF3pOv+NB+ThKDrR4KjKLsoyFhcW6iGXZzl8lDx4Q/CKjhNN7TtgdinB9MUvOQ1jjH8B18YQiruXi1hvlXKjeNZxTFpAPN2GMVjsvFrBMoFlev0aKkfstkIsfazuLl6BiNZVEUijBQ4bQim5qtPaGYDufASCDisaKgE0lW5Ayz7QOymU9jueT5Hti+4bC9QoHoI8Ud+d7wgn94/zGnUalL4aizK6nLRyQr0VY0viP6Gmu3c+GZPCULq2xJpmefDhjx8/1nFHc8kpISSmEVdxyammWpqRAchsSc1LvSC0zJ+BDQUpB+mt0DYunKgE+J3i9QA6IRPbbUU+RQdRS1rOMe4+a7PhedUzJV6dsFqLIfJzCB4Ctc7rGqWJ0hckYhR0NqEupqXLVExDDVc4v8OK1J1lFJYTnO6axOFIcgeUEWxQ63IEpcnXJ0FatQWPZHdhK5qSoShVoKtU6INATTosaSXUFLoI8zunwVehRhWJ5TmYIUQ7SOuxD4hf0ev+w+ZjoEigaStZRkqeODDqIu1OJxpSUYJRUD2/N5fOAtjVnRBhhiYHF6guqS1fVhtg21NcO6ptiKtN/hF4lR35CLwaZEaSzt7gZjIzjDZObn6XmqyFMgOpCVZUqPGIYLWJzOWrBS8CYTxVHUMkrB5JFVXszjQ6NYseR4IAyRMI74/TWeBHKYixwsrX3Ewp3yo+mCFWuiLRhRtjaScmI0FUUtqzxQMzHZird2hWjhcboFW1HqNcYX+m7Bu7P358iB3TWmFIwKr9jQp4Y4zmOz/qFz/je5flNg/DWtD9qKH56s+P2/woP/VoNhBYzMF9/S8XB4nDNKqjmCWoVZOY6i1uAeOhiSE1blYQOTeUN+EHUmMcyHE3lgYUTiA3ho6zqsCouozFCphJaZxJdFIY6omdkZPgTEwfPpijFW7JqO9tENj5/+gh+vX6E+YvIc2JaNJRrBYnmSzqlSohRDdJbiHT4GBlOTitLoDdhbHt29RIDPzt5nqAtGCk+2RxYmkMWQgoEH3LIWi5YKaoOOHtVMbfwsSs0Bm+YH7IW9BFe4YwHJY0RYFcHF9mGDGgi+InjLvjWAkuMRYwNdTCxLT3GFnbS0ueA0M/kOazOJxFg8yVsYCp70EGNfOKsi9SHgatguHDE+aGqSUGtmrE4wmrExIigpzSdbD0gwuAxVKfhUiMUzNrcUU1ABY2oqYxE/h0MH60CUx81LTs0Nm+oOYzOLKVLEMQRDEWFR7fC7EdRgGplD1Q5w684wmnnevSPEh+j1as7hUjWICL0tjGk5CxGNxZu5yL01K6bUIuNEM/Y4NWzX61nfkw3WryhFycOWbC13TUbJNHFBwrLIOqd0yhydDcKtdCRjqW2Lt0cmEbRN+NURo0LInvIgap1k1jElTSzzKxb7zwj7q7mT1R15nJZ8FB5xERecRPg0ee72MyhtmQZsUZJd0PmOwThq7jEIEj1SlFU2JD+S0kCVYXQtqRja40Q3RIIqderZNw0n2bMUmdlTWhARWl0jZOo0h7+5PlDUEGtHW2ZrcPA1WBBNlKNlwnFwHSis8pHK6ez8ykoz9TO7olkAypGC2ES0FaaM+FKQao+YiBODM1vGVtB6jdhZ2D25mozhOm0oYmjJ+FE4kOms4rAIG7IOSI4YcaSmwwNdNHTjREwdO1NxtNCitBpAGyq75qRYmpwIZmJS6DlnFXeAMranOJm7BKMq133F1iy5qc64mTpSHkgCFKEJK4oqLAtWLU4rkgiBAvs1mgxJTmjtkpaOMSe60zXLfaI6jLOhrvGEhUNNTd7d4/IdicxIoSoTDYW27wk28QvXcMAhKNVeIAvJW8zGE6WmJMH4duZ2FAGjOGnRYhhEcBJZRD/HJ0jBGEMIR0qYONRH3i4u8WkE2VMYyTg6e8GTuKLpDywOPWoFVwpbE4g5cjBzXMMiB57GK4rCpbTYHOnSgIibR8h25NWj9xE1bHZbJhI2BkoxHBbrWcw6WZzJdKvfhJ39B7tqY/ivHm/4zuLf0dRMNbf8vXNs/Ac89z9gYV4AMMOzBJOOTHlPMZDFzMAbO+dDiILJGfNw46qZC4ss84lcDTOlE0hqKRRiPc8170yHU0ebYUY2JzKe6BxBlDJlSvYIMtMPRWnZ8TI8o6+XdJtrbFGeVwNOIi7N6YjJwr6as0VfxOfUKaEI0VUUazFpZBRPKEqjPZv4CptHsqv5/KLjfmmxKOf3RxYSyeLok51TL9WQoycUw9SNHPKMga6MIpIZCEgYOVSWP3nvObfdir20s3YD2BiBXIMq2Q5EWzM5z7abQ9tyPCJ2okmJtkyoU+7Mki7PWR+z/UQZUmGySjFCSWCIZBQrwoWdsIeI98p26YlB2LULNAp1VqJb4E2AOF/fIPOGbRRc1IcCI2G1QLSMze3cUTJQzApU2IqQgTkUcsKXjCTlsXuLqRPNpGQMY5i5KIvqQL2fAIPbBAwFPXj++fKnoJnOD1R5zpdwdja9qpkfBnsVgs5dE3WGys3V7046xrTA9AP1NFCJ425zSi6Kae4ZpjeUlHHDkWZxQd8MCBOLskKLoUORAgGLuhow3NkKiS3t4e/yd9yKvgRCtBQb8Dkw5g4Ks64nzeONWMBzgJQZyzz2mfzAj6cXgKMwdy/ezzVz1taI5ZZIIUgFYriMUMtunp3HBqKwKEq2I5RAnWG/mDt71TjSxkIuhVImjpXnxO1np0uZQDOIoabFlgmTCsNhgiMkW3FbPyM3njPdsJYV0Vn0dItlz2RqRlOBQlsCzkKRQtRCNw5zYVXPBchRM8ZmgnWYNLtfDh5GPFYs42AYa3jb7vl/2X/CL+RLgjcMxnJdZhBeqwmXlD0ZL7BQiyl+dqegpHaFmkSn0GVLKZnqGIhiuKkqKi20OdHkjvN4yt/aOdqYObqehGMbn7Ga5gTSoekAIYjlECK7oXsokOGleUw/3JNVIQltWKKqyImQiuKKRRBicz+zfHZPcE6oJePEUqygznF2fw+pkLxFTSa0DrU1JQyY/Tdcm5rP/JE+3fG0P1Jl5VBlJqsEmQWqzbGZgWDdBaaeabg5GTwN/qGIQArr8ggphiygEmiixQATBSuGKfZoHFE7P7Oz7hFzIDPMhN1xxBxv5vdZe7RYttVElMR/O11wY+cCeqGR96a3BDXctR2LeEAQUrXE2Ug2kXfrZxjg8fUlW2txMVKKcmgW87M3OrpyZLH+jQbjP/glIg/z7Tmy/ezFBzx+8T5Gas7te3g7dzgUsGLweYJcKGLI2IcOxkOBAUieUd/mWxyGQhYBySQ7T/kAtAjBGPDzKOZoa1Rr6lwopsxtQxzJOgY7z7VT8IgKlgQyc0LJHtMVrIt0CqcmsMiG+iGK+Vhl7l1AFJ6mNU2cC5jJ1SBCLBYphZwLXkaackuRyKFZcGwnbpYtIp7FvqczM6dgp57JCVNwTPcncwvXR4ZUzRgjUzB2JFKwYeD2xHDbLPnvz39ExJPD3B3aVILJ9XwatyPJVmzrjvvOIgqhjIid5hOmZrDCwbQ0JbP3C5yfA86mrIzVNIPNjCHrrNVoBc5jDxTyiRK9YU9L3zQzxKdkol9QyYSJUFQY3RzF7oPB+plq6lRRk6kHQ6yOJPVMCbKcoFLY2oGEog6W1f18jbJiyLSLexhrshhCTCQs67LDTpnYOoa6JhfHcdxQtOGtX4NTWr2jyCw1NsaQzRwNd0gtJc8t9GIMlVqMzFCgK3NKjpHl1FPhuTtZE5vAcnnDIU+kfGBdKp74xxSjGJ1oSz3DuZjFiJMWqod2nYvnnNz+bcgLlsBSW7LO0eBNOTJMNSbHuUBKHkWYdG6rj7pmomDIPM4rNqXDsSZTsDoTZM/ljE2BUzUcpPCmyhzHn3E7/YpWBowa0tSgWWm0UOwEMbKvhKldMNWKy4GT/oArhbvTc1pxWEm0Bao08vj+HevjniYZyEpWQ9ANJ4dA9gsiNal5zmlpaMWinYHlQLd6i1Yw2pl66UOctQZAKoXlMGJViA9jjqQRdUIEbOqRkvh8vCDgMOKIo2UQ2Nc77swd/8z89/yTzS/4qms40CGiNJqxU+EIfKdU/NfTCZtUMLs3dPsbimuIkllgaJMliFJvdwyl4bKxKIV1MGymM5IIlRo2UblaRHppuD5+Fxk7FDPfA2LpqXl3f2A8LPBqSMbx0j+hP9yRU8JpjctLsipubRjyNH++xTNuPocYMdsNxs5dW0cmV0KfImfxLZIt2TqwE1ki2nWU2MP+nsE2FAo73fLh/R7J86h0sDO/Jqlnu1O8W88/v3qgGRdBjGHTnwKFJAWkoS4PjjKbaFLAqhDUklJhGMMchuc8rjgmGcDsgcwuTpRXf8JuumagJ5iEjtC7xKtO+ItSc2s3oLBMEy/Gd0zFse8aaiaw8+HUloGbxpNMSx0Dy/6AYqhDImniWLd4LeRkWKVrnl/+X2dB29/g+k2B8WtY3xYYYi2Lkw3taoV50GA4/+/mZEYclSpehaPMmNnMPAt3s3AcmxNSCqtBOXmIQ585GnMyhzyckMkQraM4hzcQXMUgHXUsZClUaUTFEF3NmwfSaErVgztEKQbUGHxpaZqewdSoFpDMMjvqaX5Nx0o5uAgakVKzyPNHanANRQyjq/HDhIuR7AJNPqImMviGvk1cn3QE21H3Ge8TRSz7IvS+xmVDzhbVwvrwjjL2HMvcxfD1kdFaJA7kaq52rqtT7qpHhFjNtj+nuFCDFoqZSMZzXTp2lSVZw1EiRiYqTajOr9eYuSW/q1Z4HxBN5FQY/Wx/Td5S4vz1C1GakFCj9BtPNhWv2ickUVaDhaBk6+jIuDR3GbIb0QymGKTKVHbuhBSTsMHPVt7xjJdmw96cE+2exGeImRkondsiKqRh/tx07RE1e0ax5JAoGE6GHhFlv1mRsPS6YggN1aTcue6BpTKiCLYIeMNoDePoCNOSbArG6pxUmT21JFQNr+sLbH9H2w80WF62nuPFFSZ27MLAKPcAZBPxuUF0oikNrfIg0Cz8yv0cp5dchMf8+PARFE8UxZjIqS6YzNxNseWW5ng58zeMkktDxnLQhm3/lF1ZIlKYqpYfXn9M1ERwa1SFLCNJAs/tEq8GI5nLGm6cENI9Nv4bahexWEr02AQOwESkRA4erDqGruaifMH/5ur/jtfEZ88/RhePaQ8DJ5d7To497N7w6O6S7758Qzd6TGk5P/yI77sPQOxcpJsL6jxhTJo1SzZh+8RqsePYtiDgY8GYQraWmBOLvseoEl0NKKd3lyx+NXHx9Q3dN7doLiQRvAt48eQgRMmoD3R0dKVhMoV/e9FAEVZuxKGYqTABj4vFITyNAU3j7KgiMYnQqdCWGUHd7I+kUvOuAig80jW1tkwywwKXRbhtBq7dMyItyzCgIvRNg+CIxXG7y6Rjy9kYQQ29aXhziOScaMoKKQsSStUJU5keBOye3t2hZEyBUhpQcDlRXOL29desxjtMdqhz9FXP1foNZVlT4kDe7ShuQdHEqD1Pdz0ThmJgcHm+37PhPiiWBl9HIp4oZoaMIZwMJ7N+SwHrqIpQRDh4paJnOS1JfUeMiZwCkz3hcfMdvpu+g6vWfNNd87KKvNy9Ybv7jEzktpsQI5ztLFV03DWFo5sYzfzMWqaRNk1oPpLsjtofsXVgUR+pyp5fLZ+gyfDs5h3ZONqQH0YkCarA83g7u/2MMK0+/Eut39/U+k2B8WtY5qHA4C9JnoJxc5ve/ZXEO2McSwMNhclUs0OEglrBx/n7bM74WL51O0FKzOkiGRVFjcXpjP8OpiJZS22VydYMpsXnPAvT4hwznm3NZbckipCTfWBsRDLC5Fq6EqirkaNtZhZBhkdxYDkWRIXeZyY/z3AL0KSZTNe7lmwtg62pxhEXE8kfaKeMU2FfNWQXuF/OsWXLQ08jE4rhUAqTa7A6czkWxyNduKG7uSKnigBQTVx9csL/4/sXbFs/vxZjuLQvCIf5pmqsUE8PwBA3zSItY0jWsW890ShGBqAAniSOE5NRyRzcEucTwqx/KH6iCOTKkuMcjlYXRzXNwJ79siMbx7tmQ7SFD653aGjwuXDGbIfMCsX1aJ6FqGaVqUVm27KB7+oFn9523DUrnK0YpaEg3GRDLROVTGzMLYJy3J9xnzYUsazPfsn9OLHa7ygIy8NxLmYWMzK+Lysm8Sz2A72pwCoi4QHwA+oNV3ZJSQ0Oz1L3iFeygE+GRiKmGG50SX3/GpsKtTpKvWPnPDKtISeiPSIyYY9bSoHumPBZODEVxsBXmkmaaMuRx9Njogh3zRWX3c+BwjkdgziMh8X9l9jSI1IoxuFVKEWJ6tmNFbtpwlkw6/epUkWvkc9WHYLBlcLRbWlsYeHOMWRuum4GMeWJ7+gNtc0YHCSLzXnGlgPBjw8sf4vUgmjhbH/Pb2+/waeK6Ne8//krXACM8Hk9nxC7KfA7P79mOZ6Tk8XalpYKxWBY4zUiPpO1ZriryMcZktY/ftBlJQUzb24xK00M1DEiYhiN0ub7WeitBZlGZuJ9oXIBr448QdAM3RVPm7f8Z/H3ULFctp5EZulmTUdJlhwjawxWDZscURGKs5i0xxWDK5ksE9kvqY8jKTmu61m3dKEbpMCNdyQjnEY4VAeIDff2hCGCiuVY1xSpsCZzmU4pAqcmscw9RQ1fD55SMo2ssGlBQHGVMOaJJIXRZN5Jx589W/HF2ZqSFkyquOmGYiL7yy9pxj02OYp1GIkkw8zXyAPhdkdxHZmMlsjicGD/YFPOPqNZqYpwp4IUA0sYbcWEQ03AKHR5NfNm4IFsbMhiua8N1k4sU0eSCmxBy4S4jsauWeqCTjq+pxbUw21i7w9cnzu+Op8A5Wzv2OqabCKH5jAD9IrOTrtsKHLJuv4S393h/ERrjkQ3sV3WlOx4cXdJdI4mRCT1GDKj88RS4VPmG9nwr9PH///cxv5/Wr8pMH4N61ub6rdZJIjB+VknUNmK+TIIiqMl86ydRwwPW+NsU00G0dleWo8PAj2BkANXfmLiOKeLip2jygtzgWEM3kJynp4amxJZMq5EbCmMtuLQreZZcJyR4PP5tibaikf+CqOFbTojTB2UwKfbd6zHufyZ3Eg2I2igCNTZ4u2AWgjOE5zHjxM+JbAjXUg4Fe6qFrWZsTJYO+BzYhP2ZLHstDC6dtac9Jl2GKDK+GlAhgpV2K2E7z3+l1w8+mOulg0HV+F1IlHxWfuUkg0ini7MLgS1gYJllEzGsFs0iAMp48MJqSJJxTMMofIkY7E2MqsfhEYCxSjFO3L/kJcyNfjx4SJ5A6bmuj0nm8zq/g4XlGUcsGZBKTNltZHtnJyoQmnm4rOJ8El+zvfsCX/v+D5D2tHmQlBFt+/Y3SvOJIoRVuyo6Iljxbvji1m8t3gL93/KyXBLFQOLw0DvlrgmoRiOuiZ7YXm3J4gl21nzoyVQRCnek4yh0jXnPtH5nqIjA5k6ZSpJ2AIHHCVtZ1eM9zgzsDcLdPsemiqSmxA3InHg/c8+Y/P6hpMbOJOWKMpr5sLXqWGVZm3BV/aar96OHGOmxpHzE4SKbrwBq6hV8uNA19yhWRHxhNSwJ+KMItUSo0JPZl8mjFoWpeGb+jXFBtbu+byRNy0qmRd6w38RCh+WJUUriG4WLj7knIzVhCBogcqkORRriPx0+xkvrivaweJiQdVwe7riz9/b8PWTJ0xVTeNOWI4bUgS1nqU08wYjDrvKqIWca4a3K3b9KYd6QVlkRBSfCpPU7MJjjmnFUH1ElscU0xFtxnDEnyXGVYWWwBSh7W/QFPB4SnREzbjpjGZ7Cv4l67RhkoatHbG7AyYJRKXKhYqCfbAFd6bFiJB0pCqGRZy490fUrWinSE6JW2tZFEOtnoDyhycOg3AxCsvjAMXQ25qUKgqGaC3JeYxJ3ORTUqU8a4SFGVG1XNGRc6Qxa0yumQBXWbJMTAZenz7hT5Y/5Xrp+dXZBffyjOgfMVCIJXHcX2FjxJa5wLg/XPDF7YdMtaWUnqkP8whYE2jC9Af2zs6Ou7JEsqFzheX7O2xJVFWgFEdQS3EHRAu+eGxYUAqInT+7GcvWK0GOtKlGnMG1BiRh/JLKdix0QWdeccY3fJyUup87H188sXxxeiBRWO89JS8wWnDN1Zz+Wwo+BYYs/KD7Jf+w+Te01Z6qGTlprhg/6KmWe56Ed3gveJPm8DQdaOKAiDJ0S9oSOLgWl799OP3Nrd8UGL+GJd++y9/mkxiDf3CUeOsYygV92lC0piqJRW140gy8Z2/xMp8wxLo5CCoX3PRgMRQwKXPlI1nig5vEIDlDUYKpiMZR+cJkHYN4fMqUEhHNmKwM1jFVFZPxaFZcTkTruZclKpbn1SvQwu30lBgarN4jqWCLw4giOs6YWwYKgsfw/c2/4YcX/xqzjETr8X3E54CakUVIVGq5XlSIKLXx9B04DazDkSyOoyrJKElqNm+3SJw7K9kPVFtLFM/YBWrf0+QjVieyZp5MrxAx/MXpM8bscMVTPVDIis+YOPGf/+q/4Xe/OrDvWsRBnQ/YbCm5pY6P+GD7Ed/4n0KXsZooydBaS4dSiCBK6g1aBILDTwpVRquMaMVd8xgVgf4SYp7j0c0SVfsw7hopD8R3bZVsPD53/CA9AQptqammG1oV1AfuPv5znm6+nO2NLlFpoimep4cLvv/2GZv+EUsiHy0d/6V9wnfjSLNPHN0S2ySMwJETsjec3N2SxRGcnV1GOaEouTMYPAuxfDTeYevIU31JjhO+RLxmbCpMdc3Oz+mitso0SbmPJ/jSQarJboJqxB2vePr1Z+R4pO0951rz0kJSwWSP1Q5fHEkjr65HjsVyyXyyre2HkGpgTzQFlpn8/MDp+39BUUtRZcoNWROVTRS7JGjFUQ0xbrHqWOSGy+oN2UZqv+FMKoJfs0kv+PG0wpvETs6JuQMUl2dwmcuF/ABq29BjjHLXLLFj5Hl6y1IPnG5HRFqSEUavLMw9e5MZmpaT6j1MNg+ncIMXR63z76i6/WxTDh1mEkbjuK4eYV1hGQ+ICnf7U26n92ZHBYY2RObIdI+JPan29PWePzq95yonqjKiqSDFkoqiRWgPH+KuLnh7eMcH41NO7TnH+kCbv7XlQhuVWaJtMCWwNiuakshkvDq6NHFdHcBtaKaJ3O8ZQ8apYovhtUm8a2c2z9lkODk0mIek59vqHB8zo49sl3uMzdymUwTl06XineJzIqH0ybDgFFHDVBw397f0MvKvPzjh9ckpqcDm/g4ZhKv1TxB3xrj4hK3ZM4bIaJ5CesrV+IRXd5+yG0/4Os7wuOCWqNmjm3eoGdnGiexgrR/y5PBDfr//e5x3mc3jW54+uaJuJnI2RHUk3wNxdrRMC7IKahOaHUUdwSmv7J46NcjUQqUIEe8exl1qMGIRTTRBuNBMmzZM3YJ9o2QyLhrWqWKZAkevBMlYLZQp8jPzHJcM06HlZljzdrggV4X7tiULfNJ/QfYVOMvz/prExHo8YAR27RJjCmtz5BNz9Wva4f6/r98UGL+G9a0Gg2YDT34E/rHmyQABAABJREFU7//0rxQYniwnDPmMIhU+J+racF7uaGyiI2BQxDlMEVzKVOPM3Udm+BVYnCoJATGzy0BhlIYonpVJDM4yYDEF6mnOahAxuOqep/YX3LYtUmYGxugrblkjXjiTe1ThPp1RgsfnHTHUlLLEl4JPEz5nRhnmgDMf8DohpnD24iW2G/HHCZsnfMrUmnDFcdU5RApLhOPC4STRhpFiPDFnogT8mGi3IzJWxKYjNpFqUO7NBlvd0emO5eFIQ89S9nTmGp8Sk3Fc+jVWT6jFIxSSSVTxLaZMbIbMrm3xPtJID6llHL5HlToaCezdhtgssCWRomHhlLZ4EgNIIR09WgxeHSYZqBTjC0PakP357FpJbzHTSEVkNKegEIwhmUAuQpUqpK748/d/l68/+cd8df6U+86RVDgns5RE9/RX3LlZnCeSacyemM9pwhpXDFVQqv4ZZ6Xmo7OKx6bm946BVBy9X2DdRGUDOzlFRVgd7sgYgrOzTifEhwJDECr+dnzJqiiDM5zqFevh3TzyyJmqREwVZ3ZBHvF+pB5uyPkewaKpZagS78TTHwdK3hPyARuF57unfPEAElqlx3T5fO6IhNdsM0S1vKGf+SDpBaYosRoJVtGqAEJd35DEIKVwKIYLKp42Lx6gT7BVxzTsMdnii0Vs4sbsyQIr/5gT+xEtCz4dn1AVuJEnlNSgmiHX871VwLiJk5z4ffOvaZm4bk4ZQouxEz9Z/BPOh2usaUhi6V1kWR85lIHoKyq3QsvILo3clS0mFzppEFuwi6tZbBxb7JgYfcWNf4QAK92hBt4cfzRzG3TitP+Cs+PreRxma9CJvmnpXSbmzI090Kb52pCVRMSnBY1UQOb+sKaiopaadaukOM5WdlXWeRb0RgqiiTOzpJUaNTVeoUsTV9WW0a2oQmRx3CLHkcEJGcPn7QnbWljGeTNdx9NZY2X2TDIhqUdsYjp/SfSZXheAZ3vxmP3qEY/GO0QKY67xskJQpgjb/ZY/P7vgrnVUJfPjL/6If/xn/wKZDIeqY9duwLSI2zBxZKoKd6unvLn89KHbK7yLhrSKHGoh20vEBoo7cKWZD/0pCz1jonCWz3iU/yH/7NF/il1D3QzkDKEYSlVAElYNNizJReefk2vAUSwM1Y5jaUiTJeR5zOq8ATU4VWocyik6CZUUNu6aEoUkFZMkhIH3wi1dyEQsUQITmX/WCpcrxZvEy+MTPrv+mFFX+OWWW7NiLIaPjl9iRBBfs8k7Pu6+5GTaYQzslivAsMhHFtXf/Pb+N/8X/EewzF+KPA386L+Gj/8hlZ8LjMp5rJ3/P8t8Y+ECTme7ZzIyMwq8R4pgUsZMcb5wBkws1FHnvAKdGeLuIeUzP4iWng97qpI52pY8FRbDEUvGWgNmQqzlTbsgq7LsD1y2J9y5Db6CTTlQsqGvKkwU3BjQkIiywGvGaKQKiV6mh9b5gNWRZDLRO07ff8Uq7nB5oh4LCyNE5+j9rFo9L4VD5/AmUk8zbCm5muKOXLx7w0TFaC8I7Qm5CdiU2bHA+js28ZpUK+ISdZ4oxlDbHcUl3vkzUllgaahlZlk4mcBkjMJYd7xYjPOJODympDNA8d03RCvQWEwSymRYeQDHaMc5zbavIQtLV9jrKUOz5FEV2GTPuVEa7OxvGL/BSSSyIDkPdcT7iKZZPHlff8K2e8zKrNk1Df/6+Yo/e3TGs5h5/OhLrBvQOBKMJxeQfaHpTynjhkEOfFPteeUsahJlccMKz3mMjGZDrgRvJzKZy/o5AC5PqAqjme0rMs4FhrZwWgJ/d/waWxyTEbIc+cfV/5ly9jnkRJOnGWTmKtQcCH7CD1ti6HEy0EyX/Gn8gNvcsEuR+wZ27h4pQt6fMEhFE5Rnx8Kj8RyfhEt7w7012FO44UgssJUVpAXWJtQYqBKhJMZmwEpCyexsmVVHzSlWKqwYkjjscCROI74YuuL4yr3DZUOof8BJWPBon/FbIZaPEK1IuUVn8Q45z8U3dmJVEu+bHSvTIyj7rmJ5esv3u0v+werndJXHaEPKNWtjOJhrovMIShsVnW65j68QdVTGQrXnrtpRNMzi3kkJznLtz7FF2XBLNg27eEZ+ANK1JfD48M1cYDhLzBvetktSAWLmaEcWNQ9E3sjyOND2FbWpSHagN8q+WJpwRuct2p1QLOSkPA52bvWPe8iRThqeuhe07gKnBfKRo5+JuKe65dPd17zfD9zbwE1VcTAVFOGkj3zdeYb1+4w2AtcUs8dPl5xur3ECdycjwXXk9owf7Tb80L3P+XiPYQ45yzREMikpn5cTXm5OKSXx43fv+L2vAtXU8+zmgEmF+8YhGAwnZJtg/Yb9e1/xo8WvOGku2euRrwJMi5F3zSU6BZCE2D1jcaxdBznzpf0KY+DR9B3OpjO+7D5Bde6wxWJJdURsxKjBJA+xJstILhVJZw2Tuh1/Xq95ZRa87fPcdaoMCQNhi2imlI/ph1MEy6IbqJsjrQ/crUYGs2UZ7zhPE83o6MvI6yqx6/bYzRu66huu9+fE7NhcHNHKEGQmn56PlzzrL6ly5PHFjk9Pv+Zx+xYB3nZnswA9j8Th/texvf3PLvc3/Qf8x7AeJBh/qcWAubAAaJz/dyJQX2GsIbdzC7M3Sw62ocmGYteYrNiUMeEBjy2gBdxYCMbhhresxmtavcd+vCP7mvVX3/Do5S0vzn7Itjnhdv8aFwKxngO1klkSqZmqDaSMne55szphcayo6sSiHMgJJpeZwo6gENSjWKwUahnp4kQz3CG0ON+TNfNqeoKZDpyYO1brK7rpyGp6zSJXUGqKmzjzPT+obxiSxdhCMwViqWBas+nfkbJy3zzCLx+xqi7hJNAOjjrf4eWIyT37qqHYgqiyzhM3CXZry9Wm4vblRyyaayRBzZa75oS+D2iJfBgs510gayHENQ7PUN3wNN+y1wtMMyF5wenwhFN5QSn3/KH/GZIyOdacDTXnxnOpP2XTvKU9/pKdnGIksw4B79/n0f3PqJ49pQmnfFTDT77+Qw4390znlpOLmj/afISXUz65PtLbnj9fWO6bc37sPJebmrNJeXqY8BcHbsMC7Z7xf/GFY3XKbjHyJOz5kooX1TtGC71c8kGa+MackBRCDxzWDCxwZeap6GiZvGdpIjIMxIVCU/je+I5QGnp3wbA+sFj9go/kivC+wdw2NGWkbg6YBWi956bacHa/JInhTu7ZxCPPzT0TmXrs+eLM05/f8OJqxO49T1/+Hs+OhrO+YlU/YluN3Nc73qyPPKkajjeJ6zBxYR8Ryydk9+fENKPaD3YEMnpyR9nV3JiK97TQO4e6wGb9it8eRoZJOJ82ZLmg04rX/oaT/Sn3px1NCJyEiRQ7/Nay3kBM3awdSo5tP+dtOBmobEJMTdccmDYG9+gWn1eosZyYEZ5/zvbd7zL2pzw+PGJtRpo24TWRx8i2CYBw9IqKkvwec5vowsCQM211gqFjf/6CFLfYKnNwT7DR4bTHlESblRfTPUYTN1XmZPOIvp54Nl1jC4x+oCrnlBLQVNEmId3DxoL58IrajNip5ry/YKigv9izflVIWC5KhYoQ444xHTi18OP6Ff+yfUJkpOgtrW5ZhntWObMoe2L7jNt0yzEumOySwTv+Tx/NwW1fqGOdb/nRUeesHQ3YotSj5WtdEe2CR7Lg05vMk+x443sORpgw/MVuT5v/mL+IHW/252hRnl1ecp4mnt/UvFpnPnp3y5fPW6rlPTSFKkTi8mOCfoMgtHHg905/xZ+NHe/25+zde3zl1/wqOa6k5ifuazZ5iwvKdfwL/ujsM54tJn6Lj/jJ9pz/26rm4/gr1reR+v6KJ/09bx4/Jz8Uny4uUdkScSQxNDZw2ybePFmytT/gF5p5suyxfs1gFeUdn/aBoks0vyDra6Td051m/uj5f8LBvuLv//wrNn3L9iRTRObfpcq5z2gyvD62jPs9XRV4fH7FvtowhY5T2TK2lk/vX/LHy0+wbcZr4cJe8gv9Pq+qc4JYVuz41b/8P/CD/+X/7te0y/1Pr990MH4N6y9tqn/l3a4eRiS1NRhjZornYo358H3y+0+opBBsh/FQ1JLNCUSLnSLyIHTPDrIKtmQGcVRxnvOu1tckmYj0nIyv6OLE4/03DL5wYybcsSd6T5EttyaT9YLMEjUeTQd26YyBisYnbOqJySClZ5A5GfVdu+BqtcAx0NqJJifsOFIk4X2PzxWlt9y/O0ERXDNyHQ58OS2wuTC4iuwGfrS64rHtWXQG8WVG3g7C8ljj9wOHumFqVtyWcxKB/nnh9aan0rdUZWA/NWyrNcUKCzmiOMwAvTa8vYCmG7mfatLkcDqydkcG6xllw28Pe0qdOERHTp6inkomKnVU4Y6uiZy4c1bDpyTZUOt7TBVYChJr/HGJV+HsJNO0G5b9c8bpQ+riOd/eIMWyDJ7vHSJNaVg3P6YtDUYVNwrfrH+CFMez1YEf3bxl8/KfEcpANganC37e/JDDXQtOqboDZVnhrSGJcBWVvW356uQFd7ohAL1MPF5/gaSJYGrqKrEuFZv4iL91N1BFKDQ0W5hMjRjFH+exmvOZE030WrGuFiyXr+jNRJMCplHyWaHOgUUKDLbhqhs5eEedKnxyvJIj35jIe7KlfX5k97jl6w8qwuqeShMmfoA9fEQ1XXBfeW5kiY+OrTkwuUJ0hmQLl3nODEFP+WxZsasjoQvcdAPX7UBeKZQ50yQmz9E4zk6+5JH5hmft15xcXFO99wVNCbRlTiGt1bH1hb3sCXLFkBytbln1ezSuyBguR+Vm62dhn+9RUbZmyc/OP6R+/5riBPYv0Fe/Q9oP4Ceq5z/jPidqVZ5nqOWaYi3XocfEgFDAzMyaTg3rAaoY+XjvWJ7+mF/+6O9STl+wGt5nVdw8GiyJQwhoMbhiOSkFo5HbJpKtY8cpUWpsKeyaAGrphohVAetBat6X53z46oJz+Yy0uEKrPSZ25P4F6g/QjCysQ4ygYcsx7qgkIrnCuDnldalf0JaIhAloaMKE2oZ7b/HbO4q9J1SOSZSSFYPl9WamByeBlFeoqdDScD9tKLnmB/enyBHq2BIe/y6VtdjieJsje7sDW5CsrMOR09sb8vEWl+co+Tru+T5/jvNK2RwpecfWD1TNxMm4R68CI4knF/+WafUr/o/tUz6XFS9XT3h59hGf+e/giIz2SLn6BUkMP1+9Yu8jJjvODxt+uf0x4d5j0kQdJrqpgEZsnsPwlsOeRQ4YC8Z4vtqc86G84iO2FJ9ACqsUeJa/4rn9A3r/BqdnwDMyHWYhfLNZsVt8xC/f/z3S+u/StX+fvv4BrhjqmDHDKS8Pf4fP3/4+v7z6XdZhz4cnr2ls5CgrKI4mDByrhjv5EDt0dFVPYzIn9o4klsv6nNdyCkk5iQdK/g0H4z/49W2B8ZedCuAnL56y6Tp+69mz2bZqBGk67O9/yvDkhMoafrBRxAlFDdm2mMmQe4eEmZ2QnRCykmJhiABK2wS68yN3eclOO84v3nBmKmZp0Z4IdP0tf3H+z7hpvsFgmOM0HWodqQ7k7JHS4EwglxnO0+iB0dUEY/h/Pvn7/Hc/fME//e53ef3oMcE7jpvTGVtcDWyOjrPXgbQzZAymTjw+JNpR2WP4VfWErtnzRBUXWpZliXRgyLj9jFS+d6BGmLoThlAx9muy9eRHb4jVG7Im8iQc3JIiwqm7Y6w6xuOCMTXce085OTK1gaFvScZxcn7N+OmHDM8+4iN/Rb25JThLCJasQmsVsTXGFCqxkCz9EIk2E2xLW58j0iM4xpsltgROH/2c0IxMGHacsyg1H+1GROd8gCf7AVMKN9WKxeqnvPnumj/90QWfp+8jSfhPhs94/NHP+WZ9jQ9HQkkcpOFHn73lsXtJsJbRVDSLQK0jv3fzr/jk539GezxSsHzVvsfr/JxVe2CzfEV8EBVuqolN7dDU8SxaUDsHqR1repmTSX1QQgQxhZXJXJnnPLUzVvvzqwb3xrKyPZwmdDTYu4aBwnW1pxRYpXOqbFFR9iaQSsunnx746rc2hGrkyjCr46VDguFl4xic8M7Nm+heeoSGrTxm8p4+XWHCwJRO+LJh1i64iBNFjRLO9pT5qMeUKlKtdO0tJk3cbN/jUDZkFF9v0fIdSvoRwXsmA+/WI+Mycb1YkpvIoj9QHRtGhW3OhNBiUJwZSKawtx2X/YdEZyhhSfz6e6QpsP8MDqlw104c2i132mCkZ9KvuLIDr8MOHxKV74hZeZZO+cnk+eh4xflNRtsL/pvvfMwXm4Ys8P3rA5/cVPPIMh+xCXzK2FLRZEuwkUIkeI/kln79jAIc7YCGgtvN6cqpbdHNOdZYXIm8Oa7ZX3xG/OBfEP0dijJYT20FpBAk41JPX3aIgXv7lFyWtCng9SsWubDa35HNEm8SU9WxrRrS1CNxi9XEST/wd78eacRwrC1JAtEoORVitSBKTRVqxv1HvN/P7q+CUFqPU2HIHQf1pJLJrprJuOGOaDP5/gbUsEhLXHPDk/IWo4bDuuNq/StS9c9ZhRvW9wPlZ3vejR4rGXvykpfDK/zxjr6ZSZb39gkJwygTdYDzXUZ8w3Xb41PhUfbc+Mfcdi0vH1U0JdFOAUzBZYsJNeuvJk7fDfzkG/jpH79g0Bd4nWjjkd8JP+MHx8/5+HDHIhasXOHtEdEFqudE7TBtxWX3mGxbDs1zXr/3E4xd8CSc8fHuMR/cZGJVz4FuJXFRrtmYrzlZbAHDVjdUdmQx9CR1bG3NxTjS6DzKkhpO4o5gPD9ffcRd3/FV/C3E/M1u8b8pMH4N69vRyF8dkXz/6RP+9//b/5wfPX+KxWGNwdiGY8gcgjKYJStfkGoWVmENJ33P6f6a5XDAGkEfTCk5FcYpAsr5ezvEe3bjCUEaqvVEdfbPGWpHcBXBebopUk2BAUMTaqq0R5l5B8E50GEWhPkAolSjsLZH8lrZlyV39RnjypIs3G3WfP34BeIM0g4Y4G31iKfHfuZkxBkI9ZTEehrJduLQeD40BVcsO3PK6/o9/vi9H/FZ9wnj2BF9S+/nILdx0RJE2N88ZbKndKtbfLMjlZnY2MsSBVYcsdZyLEvcqIyp4qZyUI1s05piDE17oJGJuq7wXaRYRWvLGCBJolaPGo9tZiuljgveprcMfk+TDSdug9o9iOd4d0YpGbscoLvhC18zas0iFs61xsREIxXtcaDEwmUl3LdLLuz/gn7xAcULF9/Ah9stxgW68wWm7Bk1cd0t+bi8orITRzpuxnOy8VjNPL37hvXhLc9evaQdIkUtf+Z+jPU90m3pxYE42mUhyQnKCq+WRh98A6MnqAVTIEJ44CmsrbIKK1q35Ujg1a7jD/MP+bz9BNtETBNp+shkd+zrnmq0XC42TM0TOmBvBwapOBlhtcgEIq/DR2ztKdfVSPKZq0VL8oYkykELpniUTF8c2IqcDoylp0fo0gJbB1YlczFZshh0dcWomayO23JKtbnHqRJvWj6zf4/L8NGMnG7v2JSG7w6GuwqSmd07IgP3K0eoKjRXNHtImonGs2jABIfNgdIE7vWEk7xjsg06njKVROpfQxKGccMoFrojnoGOA0M68gfVxOQsq3Sk7Rr2ZsRROI+wzJnQen753gcc65p31SUXt7/kJ68PuPQMazOOHm9gbQYyicmfUUpASkJZocUSq46wWGNKYhy3yJRQKaSuo3Pr+dAhShgrDnZg016xNK/m54SsaIunqBJLj8sj85Xac+tOSLqkTnsMd3yy3VJNxxm97aCYmruuYcpzKrHnnind49Kcb+QEblvIUh7AdhW5WBqEx7rlPEEhkm3B1BNqZ8puzh6TB7Z+jQhsdM9kB+rtSBRlOH/O8uwNZ9MWUcu+bll3E987XNGkPcdjookjcWdYqWXV3BG2hYIlOz+HQpaKd92GSSOprfjeq0gdHbf1xLoPvDcIpii36w3b1cQmRU4OR8TOrrpuB4s3FjPAuofX7SmLe0d3dcTFzKF+zLo4kIk6B9p8z1IPJGqgociK+8UZl81jak10ruPVxSOO3rNMLT8Of0zWmt56XEn8jv9jnq/+AGdfUVolUHHvTrAucnI8kAVuVoa6PuLz7AbKYjmLt6gYvjl7we1uwbku/kd7zt/E+k2B8WtYvn6gdv5PqHqdc3y3+S3ec9+j9SfcHQNZhWBXdLZgvFBMAWfwqpweL6lSBmOxhgfPfiGFwHK5Z70eEQy/Cr/D2+ljqpzwHw24znC1eIJKg8mO9iCkBE93R2yef2ejE5kOW450LhIlU1SoJiU75YuLLW/lAtFCN/X8/Zd/Qi2Bsa7J1kJ7pDc1f9h+n188+4gPqldcMb/2TW3Z9IWNvScvJ77v93xZ/Zh/1f4ef1H/gM/OPuKX3Xf4i8WP+OyD77L1DUWUqXZMzjFdV9zyGGM9iJJHS1ZLLh6rhUUqOBEOZkMdArEId96TRLiPK6JtaH3P6XDDie25rB4zWkHFkyRQJFJlj+LwK8GWQjxWiNaMcqSRxHnVUOo9Ii1Bl5T9o9kubG65rjqm4nhyUDp3gpRCqxXuEEgxc1lGXq6/w7L/IYlPyQvDh3f3mOsOVFh3BZ+2ZOnpl8LZxRWLeuKqPOHd1YcYNVzEHWarvH/YUukJm5sjFMNOTxilJktgWvRYU7FsI6gjmHPAspYlWRRNhlU/E2BTMoQRxCjZrqiwGMncmcCl3fAvzn+XP3W/xaFa0ZweOR/ekG3gtsn88uQFb5YL3mwekysom2u2dYZR+d34DhXDQVqu3YKdH6lSJllPB6gKOxFSfAIFpjziZIkvgX3aMhpYpDPqekLIbPoGg6etjuyqHQVLsQ7f9rgC8lLhZEDMDFyT5sDjfMPvlVccqsxoIkudoMpMbkcwDjuuqMdAAZKraG3G90KtI9odOR5OWNhX9NZTplNGE3i7/QXvmsJtiBz9Ne3ihnNeIZIIfccvF7CSnh/KN9TVV0wSiHKFC4nKrOgXG3aLmmhq7PQlB76iZsKnc1LVUFyi1Erl9ujyni/WT2lixOdILKvZJmkc0+oJbR8p95fMib2CNTUrWTA6y0FWOO04JsOjEnhqbkCViZZWFljJc4FRAlaUXi65q5Y4qSDcI5r4/ssDJSn7boFITUE4+IpAxWgsTndMMbMzymbM1MBtO0e/C0IVCr0scWJZmxuaIoym59bsSE0AgWUW2uLovUPFAZm13IIe8WXP1sL+8Qn1ekuTIyc3mWwK69ryybhHgeOQEbF8+NWCRmBTHcmmcN2eYHWOqK+K4eV6Q+8y+82CSpVPv0jsnWBz5HE/scrCsVkyVj3qHTZFqhyo8kTTw+Q68qLl/sl3+ZPv/gSP4cPrl5id8Lp5zkI8lgnKji4pFmEsgmrB12f80yc/ZrAVDYH3psLkar46fcQ6WFyb6ZcNq+2en/7JL3jv59dstkIdG1wdGfHszQpjC6fbHQX4+umRy+c/Q1ICnQuMVbxHreHm9Jz7siKI/7Xsb/9z6zcFxq9hvf/DUz7+3UecPP7/DJ+x1vIPTj7gf33+A8R3TKkwVKe01ZyIaGuHGqEYwxyoHZAi4B3+gauhzDjbsxc3NAL99Qkp1uxvTjE9mAperL8hbs4Y6gsO9hQNC7qdYRV2+JLofcUiBYp0uNyz8oUpCzl5rPS86eC2g1ftBiicjK95tn3DIg9YEzlWHVIduK1WcxoqhrdPGyhHBKVbJHxoKFzwwYmj1YorPiLtTnk0XfNh+JJn0zv8sGeq4GaxIHoYvWdyFT8/a/ll+RHRz+/htF9w0AU5edrS0xTDako8ut+zPm7JKFfSMGnNPY6sMzH0RX7JiRw56IJbWUPxBBtBAlWpMGpwJ4nJ1xzGCpUaN4JDeFRaYu1A6hkrfvsRUhTklht3QhDL4wNUdk1nlEYqUvFU/UiwDZ93FrRmyD/hrlrzYirYrUeAs3rgffmcWu7Yn46k2nFKYfF2JJkFuV9zqnvS1vFkX9hECLmiHQJJHZfylClnWO1wtqJxMyBsr49IzYpTtyIzIVHxfY2xiZyVMipqKrxzmLonU/hF1/H1e98jSs04Lbhuz2g3PQsuAfji/Cd8vT6jYKlUuH4xcnK6Jb9/yd2TyKl8gXGeg3/Ky6UFhNUA37t6y8UDKfNGOob8nCl3lBw4jQ2NKnu9JBilyxc0VaQYxQ5ndFODM5nx5A6bM+b8BsUg9yd0YcehgWf2ZrZQG2WTJ856w8+enPBPPv4E9TWBDcVtqUjo0EIBKRkrDpVCt4s0DND2mNDizI4+nXAIZxzkSEgj2TYcU8skmVX7hifuG05KZLewfF+/4b10iSTDEUOSA725nuPl7Qll9YRjM9vNZXhNli9xtifT0Jfn7G1LdDW1QFoE7jpDGxOLONKf7VFVwIOtefo2Q3+gGMfQCF49S7MkW6EgrNIZj+8/YjFd4CtIOWMGz5NeuBhusMMtVhPOZHp34M4vZgpqSBCUdhAGC2+XFQtOcRmCGvpmwbHymGnHFBL3TJzEHRWwbTqUSLIFdxR2sgbxLDhy0JEv7T3v7A3JJRzwXvRQat7VG4ZS0egtsryhkXf0/iVvVo52/RJjCtwvWb1qiabQ0s38HLPmj85W1Lnix192COBE8ZvIy/UzetewPN5RqeFQt9x1ntuzJWLh8U3ExVlz1sWJTTJkaxD7iNXJP2JdfcxZPmUVK2wQom3J65a3T97jfvOI9lT4+1/9K6ogvNMTjuvHWA2EfElU4ciSXg9kEe7OnvBvT88QlOfTaz7Zzl2zN6sTcrYM8QUH3/L85oZGJmSf+ejn8Ml9hTGFrbHE0mIUHu22QCauoCwmgh2QBAh0dqQuGXXC18v3WJ01aCl/rXvbv2/9psD4Nay68zx6f/U/0mB8u4wxGBGWtWO3/JDXq9/mV2f/iM1DREms5mjrYr4NIZtn+4hQqVKMJxXDanOPbeYkwuH2FKMFEwV5PQOtzlaXtO44hziZNavLj/joa0slI45MwNOEQpEGobBxR4KpOGTHVN8TnSe7p3yzOgeUTXzFG5M4i/csdOS+XiF1z41rKclRWPKr1QV3KI0qfpEwVGz9j1mevuV1/YhDOGFxZ/jp9k/4wfRzfvv4Z/z2Z/+cOjr6ZsPOFe5zxdYtGQi8yc95a1/wsnrGtO+4H98nZ88iHal3W158/hV/+4t/y3tXr7F54lJaglqiy4xhTZUmNtUtF/mOmCy744YcLb0egUiJFZOvMN5QMNwFoZiK3eVz4nBOlWqwzynF48Wh4ZR47Eip58iSwTn8YaDgeGIbFrkiisEed2xrzx89vuamsSiOOKy4q1fo2CKxZ+OO1PUREwOhHnntztB377Pd1ewWJ+SpY3vZ8bp4RBLfuf6akoX20JPV8UaeMWrEdXtaD9bMKahfyYap7miM0mDQWJC9I3uLsQOMBUyNcRZfDxxs4GXzITenFxRbkUPNu+Yxvg2Y1Y5Du+Ll6qckEdpJsW7gzfKEIIaDeL6uzrhatzzujjydlkxi8VrR9Y6jvuKxzEF6vcA6rlDtOGjATglnlB3Xc5AcJ/gqkYwS8imEFp8tfp0x7p64nJjUU95uCM0HnBwKa90xTQuKKK3syLLmy/Mz9jV8dfY73Ia/B63FAWM8waiS8pygGVU5vTtQaYRugC4S8NhwzqAdBz0Q/ZqV1nSpZjd4Krujaq9QWfJR/ZK/E79GREjZcqcLioGoe7Ix5MVj8mKOBVgcM1WZGMyRr6rIpAsWxhOsZzAttRr2iwapCqspUZmJfnGYLbPtkpvTM67PH7NvLPvNErXCihVeKpIoqHI6WeL0ISVvaKh5dHtg2Rdau6RJPX77M5KJGANRCu/8fNpdpYZ2aznWLe8uOvZVoDKPaZOhpMCbzRkqij8OTPKKL9d/wiK/pRUYfEvJ92RrSZNhzJ7BdCwV3robft7d8KbukcpR2wXr1LLKmavqCUegGwaEwgu5Y5GPlPYOXb6mOLDX55zuEzlY9uacop6f2R8Q209ZhxW+L4T9HLS27nbcN2sG5zm/veH5fsAofLN+xEDLtDC4DJ+82TGVPYrSRUEnRwq/y8v6I1pzxvvlA74fvoMUJTpDbYWvNmdQIp8eXqON5aO7G/rgeb16H4CDXDOyJGhDn18RDGzPVrypT7AaeH/c83gfWEwRmxJv1hvM8IiYYXUcqHXi1VMhIaycxxR4a2tCcixjz+IQMCaSF4rWLcmMTLu5iKcufPfwChF4d/6E9//Wd3+jwfiPfYkITdPgrGWzPuHr09/nUD/hhw8BXq/qcxAoYjBmmhNVi4IWnGaKnUV254+uscYSbp5gRMDO6Jnm64JoZrHcIl2kWtUkV7EcHU+39yxSoEYQNaQoFOuwpkbcDb317MTh3C0n2qLmE96efIxBeJQveekmzv07TsyOXb3A+MydW6DJMbqO3p5Tl4JLBjGCXa6ZVgXfHvmyecxVNjy9u8EfFojWZAP1lNgcBpKpuTlpyJJ5E2vUOvaN8N+5f8gfyk/5pfkOfTinFEe3H2HqqY5CWK6p+x7RzBHDMSvZFKZwjtFM1/Sc5AP1LlKPoPsak3b0bBlzi4ihVsc35Tn/4sVTxqrCxYRMARMVnz5G1dGalkhk+KLioCeYaElSyMd7Cp5nZs1S5yjukI/0zvCuO3C5OJLJXPSBQ7XmXZPR/UjNSLfKeAYGLbzhgvHN93i7uCD5Cq+R+vINv3pvZOi+5un+K5bjEfOgw3it79GrYKuRWpQh1oyp5s+GjhsyjZ04KR1KYHp3wZg6UgLNFeB4153x7qTjTb3mznyKM5Yq96ga3skTklWq8yN/9slvY9Ka9TjwD17f0Po7BtPyy/+BvTsNt6SqD/3/rXnYtee9zzz1PNE0MyKzCAhqFIleo0SJw5V/VBLxxsQhkdxcTaLexBhUrgnOxhhF0CgqCA0qNCLz0PNw+szTnqea1/9Fh46dbhBMRxqyP89TL/bav6pav6r9nFpn1apVYpT7qifyfeOl3GmdwzLLw4pUolgmKXrpEwpDXh07VlGQCOSYoSCBECrNyICoilAiqlqMAFShohgyQhJs01XcQMcMNDRHQcqW+Wn+Rdxpn02ZAVr6CnoWbearpxIHKUCg6jVmTYO2rhEpLoEo8HjfMJ1EGxkdERSQwpAojgjjgJYn49Tr6F5ITTOZ7QtJAHaYJ1BUOnGHyMiDrGA3mzhzITp1YqdCw2yxLJrDRDCv9zKn5Il9E10oGN4CgdrB7RHU8gcudHpLoPgmnvDZroKHjROrhCgEsUw9lmibNooOGTdEyD5NzQdito9u4JG1J3HHyefwpYsv5Xsb+okUBRMTZIV25COkMloE2ZJCM4zI7y5hNBtoioWu20iEtLxZXN1jyQrYYaSZdA7M5ZAITLKtHlq6w1S/j6cqWPRi+Qph5DGTN1FFTKZcpW7upxFOkavXMMMIU0jorQZaKBEIcCOoyGlSQmfaKLPTmWTBKKNYLpqiEKGS9H2WjDwdOUJvxNiBQq/eQVJi/P4yLSmkHqUIKzapuI7W0KhrWeqaw2SUJrAl/ESaBjLtSYdIVklaTQJZQXPbjJYCllWaCMVnMZWjI9ssFRwkYHCqxrwos09rYcQqoW+y5Bb4sVZgTyyTjgvkwyLJyMJXZdq6wZIFRHVWNCZppPLkyzWSkcUjyRGqCjRjD1lkkH0D15+npUsI3SHAJBIKg40kWtAm1a4jQo95J4UaOTiNAz29UcJlZkxQy2rotooSw6KUoip5ZNtNVDdAkiIUM8ZQDIQU06lFIIGsxxSCDrIUMZ3p5/OlNHG3B6Nr06ZNnHTSSfRknYNlF1ktVtFC0g+8syRGxlBdFARmDEgHXqmNqpPPlpB1gRTqeLUiEgqqEiEkSC66KHUJTYSksy4Ns0gh0LFFgpFam5QXo8cxhhcToCBkFV0xiPU2HUXBjTWWB2V6XUFLShHIDk7UwdAXSQ7XyZjT2FaDRMqloSfwkVBdgRweaAD1xDlwNRRJQ8oJksMLlFSbeuhgdgTJ1iKdSp7YjTnwkm2H4bkmQrYopzI09AXqEUwPjNExQqJQJ/bzTKaLLFm9yF6M0fBpqgqtzDqe2HQeW0dWo4YRviJTVmUgpCXlkSQJw/QxPBfV84lkDT+ySO2uo8x38CMDVVIJY4vHjOVMp9Js7x8hllR0bzuSAFMMIVCx0fDlgMVFn73zqxEdlYI/Rx0XZBVHypOITXwpRIg2sSSjiZj9lowq+Qy0AyJJZ8FUcJsBOhEpIyKllwkJaLk5QjXFQq6HWFPp6TRxwzpqW6aSh1QYM1SaIogktDCiHVrMRkUAjFwThEoQJCgBewMfU/bJ4RDKEGghi3tHiVoybSXLrLGSR5Pr2Z4d5hepTcRBD6oIyJp3Y5tNIl9jPpHF77GoJHtQo5ihxRIFrcwyMU4gyWxVT2cqt5y5MIWHQksdZNBZwouShFqSjO6xIlqOcEERHZAEg26TRFshjlQIl5BUHTWxmjomSCbCOPA+nsdV6EQ6ZihjmTKLA1k8Rcf3ktw7spxyMoFNk3ZgE4dF4lgm1gL250xCKSTnN5AinaZt8HiuiBASalA4MJZDxIShi5BlpDhiIejhtvSpPJgfo+6sJBHbVDSfhhoTKQ5tWSZJjbgjsAKfarIO+uMoArwgy4QzypKewOhI5AKPlLMXb/kOwt4F6vkmqlkh5VawgwMviGv6GWJkkqGFFB94Ed82a4yanUWWJQpBQCyH1PSYtmHg61lUISHHMZ7ssy2r80RPAc1wkGSNltumqbjEIkaJZB4PVjFHL4Hmo+X6cJ0ExA2UUKDIAZ4Bj+drlOwKHcnHCX1yYg0QM9+zgCJrqFIeK5AI45B6IkKNJdK1MnonYKASUBFVHN/DlDQadhKn3UKWNIgE5WyOu8eWs9858IZdhRDdmMdAgGcixxENW9BGYFSkA2Mm0h1KgzZhMWYx1ni8voqKUOm4CnpDRwiVWbtAKXRIRDbtZB8+MokZFUkGzZJRohC72qLo6WTlOpn0Xsx0i+n+HppmFoGE1IypKDF1CSwhYckGth4xr2uE5mpiP0L3Q3oYJJRVJpO9CMOjvzlHxncpJQeINAk9lukoFttth3oUIgU2nchE7szQUWWaloMSCUIMxtoJzKiNEtSpawJP04mUFOmOjyRBuxgjoxDZBiIZokQSZSlFhwCzUUIJApBlZBksSSYKDZRaiBASQpbxhE2IhmsYzE/UftOXssN0GxjHAMuySCaT5BP/9gpuXSGTdHg5c+QsjQO3SBQSqkdGSFiyfOCFaYrG4JhHsVilrTuE5fyBd17IRVQpIlYlHL+DutOAIE3GrFFJ2aSEyqDXYdCT0HwZSUmQ9lwiBSJFQ5UVIicklMCXYs5oz5H0PGRPQws1slEHWQ7QTEHLjUlFDfqtBcatXggh1/JwXPffZrPrBdcA2cIaaqIbTSa0Aeoe5OdCOg2VVglEJBEKiUgkyJWaIFvUnSyBXsJPNqlrCZTI5eSJRdaVfWJkWkYCKRI4cx6hrtJo96PIKoqtEQsJT5VZSOjYbgvRW8MwfGQd1IqHREykaTSVFH4cEDdjFF/GQOHB9Ep8X0OEMeWEw3g+SyacRIpNDNIU9Bx6BB0pYCqjsjc5hBJHLC/voay38bQEoZRCEylaKiiiiSDGCGXmTBNJCNa0XBKkqGsJSpKN0ZGwdIl+axpVREzEeeqyQj0/ArLM2laLZOyihhI1K4kVRfSXZwiFTLrTII4lpsUgsZBQUm1iWSKQHDoS1H0Pz/dIxhKa5hAaLuaiTxOLib4V7DSORxUSmbCBHgXovkHe3UNDa5GVF5ACmNeLzGZHkXQDp+1CEOOk9rLGm6YVOyzqw0SyShTFNAKTRXWY5c4+QunAi6CUlExKsolbOj770ZQQx3BJtg7MmGoFLhgmkaJT0jwCwwVZJxBpFM3HRUYPY0ZCl6nsCEoMTtPElULuWjVGu2ecnLwLSZPw3TSBDAs5HV+KWb3ksnF+Bk3z2ef0sV3rwxAyIQpCtg88XZHwmEn28YPCS+goGsiCXXY/ritxv7WDhqURRQq+KqPHbZSWih7EVG0PoU0hhQrVcDUt26GhmKh+TF9hL0auSqQEtNGQpQjHmmRNvIMTgjapUMNDpyVBOaEQOllqlkPdSlBRl6FKKhmthidFNGVYzGTQ0Ohr1Tlu7gGGKztpKx570mnGM2lAsNfR2WUO4KsRvYk5ijM1lqIM5cJKDDlBTbIohftRJBkrjLAVlUB1aGktatI8ZhRjaIO0EwqYbVKSRShZ6H6MLCIk4eKrJql6xMopKHTSzKtNElGArliEag6jU0MJPWJVxU2a1LSIfYUhZGGS1Ku4cgvLVwljj4WMSai2CKIYraYjAgWhQnn9EJGtEks+dXcEPTzw4i6zbdOspHmovgoz1jilvZ4wNYihOlheFttViRQHQ3bRW22yMchDuxmMphAIqr1JQj1Px7TxNRnfhzC06Yt7eXnsU3Qgq6YwFYO634GwhYOFKeWYdYrIhsvKxhS+pNNO6Cgpl9HaPFos2JXNM6nlGfdPZq8ssCjTkgTjSQ0zkkj58oEntaI2TSXAlyS0KGYpkcLGBAmWCj6yrBBpeVQrQBEgvAKRgIY3j6T6+JGGJUWEmozSzpAyA+JAJpYkEnqHTLuBJCRG8p3uUyRd/240f2AA47JCAmnVS9HWXsoZQ4PUNYeamsCw4wOPcuUs4n97B0N/to6bylGXelA7B17BLqQULW0QWVXQpYh2eRWya+KoFVr9FVq6j6dBoBpIJAiVNL1eg1gN8CQdRYlAV4glmVQckA8q2L5PpgNOS4CsYUkZAt9g274+0o0qttTBVw68aC3pReRbLmbgMCMXKXtjAKhSTEu22O/2EskeRmsXXlAnbGjU5nspLeQAlbTXAiQiPc9QqwfV0tEDhdxMG7vSYWDBpSOZB1+x3auWSNQU0tEezmpOkzBNjDDEU2Vmk0m0sENPfZa2YXJX5lx+uPw8bl99JnflT2dPcoitw2mqhoLsy8xpBeb1JL4rMbB/AWTYk88xm3CQ4yymlMDRHIxIpxE08NIWs04eOQ5ZsbCXUHVpmRKulUMxbKq6TtNREOo4imQSSBFWFLGpNUk+MmnpDr6XIfQNdCHoFSUQOguyyQ9WjdC2cyhCZUWnxiYzwohMJN9mKRFhiDY9tQUSzQpxBHNyHyIWSP82kVIQ2Wzs1MkELntaNRx8UkaKWPFoyzrjuVH2DZwMkcZIMMX5zQc4rbSfjXOzDLlVwjgibC5hKCGTjDGdWIFlxeSaTYTmoSdnyIQN/LZKRzdRg5DRpd2EbZMgMukYDgPZx8kyS2xESJHALe8lktqYio8wZGw/hx1IJIVGpEKgtwkSk8R2DVlSiNwMaujgxgpmGOPZywi1DImWxiU7S1itClOOxX2FjSj5KeQoxO1k8SWFmqPhCYW+mkZvp8YG+SGUWOE+ZwVLSZUQEJJJrOs0rCTfX3kepSBHNqgxGCzgxgE/1kPCsEpb1anYCQJdIec0MWUZt6MgBx6e02CCLJOJFq4eE0lgWh2SWhWPJH5phFrtONTAoCesYPTvoRDp5OIMQoqY1iKEFJKIHaq5NJO9w7hKH6FI0UluJZACQqFQcWxkSSbfqKKEgnSrSX9lH1Ic82BPhocLacZTFo1EE3nZwxQzexgzd5HwIWsvI5Qk9og2P8tYSHqOVFqnJ6NSVAaRkCgrE3TcMpEskNJF1rfGWRbnDzytEUVIxMTEVPQMharEcN0HOcDTkyT8FsjgOkVQG2j+JLWchiILanodX1GpJDfi6CENOeZn6gCPZlLcPyhAClBdD6uZwG0maZk2SkJGlmTKHZXlSgM908FLeVhRQFUdo2ms4dxmnuF2H5GU5faTX8xPN55EtbmWlpzHUNrYjSXskTnQQjqKQaZdQpLAG+yjlikgxTFRO6QhbHplwcZGipWNFMdJKi1DZb49Trk9Ti3hoOpD1Iw0Hhrr2ca8oRMpAi1T4rTF+0mIgNlkgkVrkJmER7RsiiU1iUedsuFihhKr6mkINAQuaamELpvIsWA+mQTDppZRaZoHXmKpiCyyJlACMFu9CKGiugs0NB8vUknEEMoKHTmHZRbxfQNJEpiJEsVWEzPd4bGSQeR2ftOXsUN0pwo/hgxkLH7vzDEShgqKDHaOfiYR2qMoGvScdC7ijn+lcMIAe+Z8fNtDKMPMSCYtt4f12mY0aSeBu44YAz3MMzd0LlIkYTb2o/a5pDMLzAwlEO0YYYAd+rhKg/XmwyxkPTptB0tExBK4sc6GoIIsxViBixX7aCE0G3247np21/fhhQrGvpDOhoAQCCKdUJ3BCfooNDOU5RSzwiIVTyCkmJ/rpxN4CrE+RdEbJ5SKlFUNOR6gHbSwI4EpR6S8BjFpOskxCpFMwl1ibFEmHapkYpe+xQoLfRqSJNhXXKIqJcl19nByO8vGeIwpX6PtxDRMi725Amu37ebmF5+NkEwkOyZKSAjFYk86i1Xcj1n3SUUmj9qjxLGKteAStgZJ19vUnTTfGXkZG2syI40YRQnRylVy8QLzq3Ko6ChBi8FqiYwOeWkYVcmgyQqeFCNUhX5XECgJ5FhloNMiEUXkwzmwTHy5SBBMYbddRJhEj0KqRCw4CRShs6zcJhG0sLWYHqFTb2XYnbIwvSInl9rMeg0mk0PUlTyPmKtJWxEChVLQQy0bQlVnm9rDiKIgKRG+GGapv80Ta09Gkix621VOsh5AqGl8Nwdag1TTxIstStMpSquTxHEOS22TFTWWxRWWDYyjSjFKw0LxWwy0JxlYmAdDkGo2ieU083o/G1O7eCiZZ0ldi5KqHnjZWiGBbbZIiCYnN9t4bRe9J6bdzKKqLtmWip5pHhhv5KVZFqcI2zapQcFj9lp0xWLloowdKRy/5xfMFwVBGrYVR7EMnf6pPF5fB4wAp9lBrpQh1WGFvIdS4DITn8KWAZtltQgphrZs8Ih0BlLYxCk1WJN4CMupsis+h7KWQTLzJBYDAtnAswxwE6QUm6gpIRIytaTLVG4r6VilMddHvTZGqneGMAwQJQPZVJlIFKgFRUajRUJdxewN6CuNUpUbTFkT9Hhphj2ddrpBQQ7QopiQkBLz1JODNOU06cAjEXbIxzUWJZBEloGqTCBk5lM6D+RUSnaFZa1pqHZwVRUlbaGeZrNbCnksllmUVLA3YsRLZKWQ5eZ2RhyfimJSbVWpNvaSck4iYxa40OvDp0lLlfBiD6QYIwqJUEh4VWzZx+i4SJ5BS55CoQ8zo9Gu6TSNkAFRR29KbJpucn9fllCGitPDqtoCpb0LlIREYjhB6GqMLNUZbKu0mmlqPQ6Gr6DpFkZrjITp4xUdMuGBHtUp68B7Y1LzPUyHMncPD1NNSqRaNZbkUULJJ2k2OLH/fmQlTSQcJuY3YsXTxLZC08wyMLZA4DZI7veYzLZQ9Aya63DmQoO6tZ9Oqk5jcBfj7ZDYXkkl0YMd2yQaTXapQ4QCarpEbBbJDM4yYOygbvUxM5TAWZxB1CV+UTyTVm6YWFHJuCrHz7vUfQlPa7HMc9llOMzpHTJSTGQl2dczzFR6Oata+8jb/Siqh9pJUJAzND2bbLVBi5C01qRH0mmFJl4wShgVkdtzGMlJJM2nv2eawHBxpA5Lj+nsGVjJGYMvRpZ+8/0J3QbGMSZj64d87s0XSKxxSGUSnHLuW1lYfxo9+x/gd+wWfltji5/ltnovq4sZcrnTqE0+zgnHjZK/bQsIizBroQdtsmGJYsfG1XW8lI0RhWj9i+SXNciqKpFWRos1UokZzCTEQqIlUmSlSTQjwIqqSCr0tupokso0KwnFDKW0jtoos1RdhqLFqJ02ONNErQSDlSSP5Qts64lwgxNoJQW+pzPsVSnu3YoW+9TTMJ7VGQ7XIUcpMnIANCk0myzJGhEBatQh1xwnH4dIno0mpVk7vR/V7MGM6jSbKZpJQVlo1NlDrt3CEStYO9/ksYFe9qZHWdKGiOqCtL3Aye178GKTh5SzqPoSWnKMajDBXHotkhSRaklEXpqEHqOV5piTNJacBA/kLWaTDXraHhv3LNFM9zCX30iqE1NotNFllWWJOo14FkVOEiJhuAksBEP1NCU9iRARyXodT9gkwgn6wxxCS9LojGLYCwggO1tjPK8z3PBZ15TJ+jH7ghEyYjfD4SC7Yg9PjZGDRTTfINOOSNY61FIFdutrcMw2cixR1Yp0EuAmZBazY8hLbda0mhhqxP7hFchahrwbcEZlG8rqCKEu0bFnadeLJOsCuV7ETwiiCJQIpLbMCmkvy4r7yUgh9SBJayLBiL6LHklDRaDrPmanRMtMUo0HuTebwlMCyr6KrPtYUgpFN5g10shxTEZvcJz8CHGyxU57GVLdYCplM2pPs0qq4YSDLCv1YGgaZUlnQc8hooCBmYBaVIVMieWlHUQtAz+TwDUUatksycBAILFG2obk1/DqVYy6y6niXjaLEebjgPF1NqvH6ywWBukEFplWnbE9e5ATCqllESMLWyknTiO0h1nMRxSrHtvN1cwV+mgrGq43yqCYIuFX0HQXdIvKwGpmsj1MKb2cvuShex41y2RaSdCQNNzmalxzHsXuMKLO45Y1lpydRM3jSciwvONjqB4dOaKt7GHO0OjIbVDSxIpLX6uJFOqoUZEgNmkKgxPn2/S5Kg8tW8LU2+wWKwncYdZMtqiurLEts5wwqlCLNRRJoGsmk+EwM77KhJtGsXx0OeJ4ZZKaaFChhcoAPc1NeNESrryftVqDRTNHNbawGou46SSm36KnXCJKJIksj0LcINRsakMnISKVwUDirH3z9LQFudDlJyt15qx+GrFCMa7QNEOMMKanFfHSUo4x22HBS+BLcziyRtTso+KlCSUJWTfo7cQYkco2CVBl7l+u0YosFu0Imw6j1TqxpbOYDUlFS/RJITIO8dw6NoZVBCa+KlMakNidWoO8Zg8rrH0otTzf7zkNw6qiZCZQ9RbJ9n5SLCKlJRZy91FSX4YuhayoltFMBzk9ixwraKFCpKZY15hmn56hkbVZNCS2eS8GEaIpIak4YKTt0uPWmJF8AtdnKKgyYi/Q0nWcQGJX7whz6VUEuMwYJzCaeAxFVqnKyzAkhU1Vgxc1NrIkHqYaLWMwCOkVGmowgCInSAQGTXma0OqgmBEZd47O3ADfTN6C2lxJzsiyrrjhN3496zYwjnGWbvGmV1yGpmjIskrfspdCfgPOE9+G0OWc4TMo7zM5dfUAawcvBKCxcwfc9WM0Kybz4gE6T2yjWLBI2x7r3W0s9rVpJS2EprBg5qmLHDWGEWZEUVlCUSPkUMdpxeS0EooUkGUvSWuY1f40U+pZTCcK1JOXUObnWEKQdluEscMKr8xar5dcFLOzUSerKyxmU+yUhjA8n0I8y4nj96IHbSacEKtnDluxSLZbjJbX4goTX3EYbHi4ThtXUkk3myRLO+nIHeb1mPm4gKwmGVhYPPAkQLSMQjMmEjJCQJk6WX0G3cqwcrHMg4UeZCDlNjjDvRsjFgQViexkmenRIkvpAgvpNIY0yKp6izOma7j6AlYsgdJhaHGKCTfBjwbyzCVddMvhzpe8jChWkWIPu11FmmkSJCwmZYlO1GTeN2hGKouBjejoOHWomm2EGqFUF9ga9dOj7KSoTLBgr8Br9KLlq4SuQbRUYllticFoiHX6KL5QmHJDatKZpOUahYTPtLwXKW4QdyTUtsKmXR4LPeuhqJOXmugiZmE2Q0up8mifyZytMp2HU6t5kl4akUiS9xTOGi9TCVej9k2i6hWsuo2lJUhVA4LAIJZtgpZFKDtowmdMzKBFUBMaS/sKtDyDZCijWUkCOpi+RqrtUbLnaTurCCWBYIlVzVuxwxa269Fo5alLWRZSAyxaRe7Sz0G1O8SaRJyQ8VWZsjTMzqiPNe0U66oKM5bOA+njaKgR2VadaXeCWFTYuWINQWyTL5UZmd3JA8ObaBkwL/VjRYuMRZMsH5hkKU4gxRp02hw3v5n77OMI0kmm1qQIGxLEMgNVBbengFYaYTFaQ0+9wUqnxv7+ERqOxkI6TU1NsC5+FC3y8PUkj4XHI0IZw9XJOh6y5YMp05FS/Cx3PhuDJ9iRGEAJQ44v7SfuBOzNbGLAeRiTKssKd5OTO7T6d+GoSWzHIEQmUlym9BaqG5GIO/i6gWw6GHMlPNUgbVYQ6jyWXkVzJxi0Aiyvxfawn8fFCfiKSrPPJ4pjFHmJYZ5AFi5RaCACGbdZZL83xGw4QNW1SfTUOKkdYqyS2CdajFpT7FPbyOpuIhFgKR6J1EoCOcOQPUMxOYfcNHEXNdKdKoXZJiOdH1FxTqAmFSnbKcbKdZK1cTwRc/JiAq1Y4XGrH1fqZ/fyFEZgklIsenybnsClKXvoQsdtpjGdEuWlPjpelQodDGLmnQT50Ob4qXkmsgmqNmgmrMLnhPI9JNtNgrkMXruCLAWY5VOQ4mWU7RZTyXGIDXLlJE2Ro5W1GbeXs7CiFx8TvzmHartImoIQWSI9jZbcgKF7uHYCV6liUWZF5kFUQEZHQ6UW9THvb6B/xiPr1mn12EyawziGh+Z2sBamWKE76HLIvGlSixuokcBrtDhn4kdMD/ax1ViJrPdjxAYZV8HTZB4pDjEaNdnvFInbdY6rteiRVxD1noTlK0jSw7RVl6reom0u4CspejWQYgnFSxBPbkB1LUZ/8iB5vU4+dR50GxhdR2Jr/2GCrlQ/nH4ViJikovG7Y4d+7SxbTv9JJ2OOjJI4ZRUlSyN5xmXEe/6BTjCHlIqZenw/ifQw/uhrmZz2WKNMs7O0lWqil7TtQ7zIJr2DQkyASmX0OAb37YRmTNpcoJIewkn00ds4lUG1Q397L3sknePqvZwayQRKzHTfCgrlPQyZgs5Ii9Bt8OqpR9nvyqQUm+PskO2yxHEdh4QroZj7CGpp9ht51lWX8JaN0VZajO2bZTIcwpFnMPO7qBvTSKxE8o6DUIcwRonryF5EJxCocYgRhmixxOpKg0DVqCdNjqs9gizmqaJRWXBwgkUSjsLe4RFCRae/3eLFC1Wy9QdZEjkiI8CQqpxkTVPwEkztWsN8PoOqpWlaOXxJJlVaYGhiBzXFoaoY5IMSu9tjeLSIaZMOSkRezCntRURmI0KS0Toa+6UqM94QG6s/J6dOcpt2DsYTDg1sSA5TLC2S1do0O/uJRIgSSMhBmqoUkhrYwyqjzp6oCl4CTYpY1qhzSnUvWnMlnm7iRQkqRp7jo15a7Ulq1jyukWQ6JTHqJnAErJroUKkZGHqeTmkUqbmcwsJK/GyWwarCbKGKJ4X0NmAuq5JthWgUEGaZ2qxDM27iWR0UM0WYzJFultEDGRFD70yJyf4C6YUGA8aDWFqHWi2LmDBIe0364zYrtFkeXLWBxWwG2jpaps2a5A7aUoIpaZhZJcP+nh526+AZMa4ZkNEWSIf7UfzdSIHOPs6hnC1wUnOK3ul5Tg22c/fYmXiKTljPsUzZTXa0QrOZAzFGpwFxy+XEzkOU4iI7+tcyK7c4aXIRJd9BbfQReyrNRRnDUhmpzJKIIvaMnkCs9lDwW2i1An2VeRxZYimhIpBBNYhbJgPBfoYKM2xNbCAwAmYGhvC8gLWlJTYsLrHQriBXs1TUPHb/Io5lkKKDawVUlRKuriCCHE21TiKWiXSLk6UKW9WQYe5nfWEBgUQoxTT1BkkpRLI6iFjDDiOWTZnYylYm84PoJAiiNunZfTjSHFIsaEX9KB2FXFAiTYMnUsvRaCHKEhlczGJEStuGGSWQhIJHGy1IEAUxju/TsGSGmCNjzyMsiTgvEG0Zve5T70wgN3aTlRR6oxR+RmV2pUQihuLMNCd6SVYt9PNAcA779VGywuO46iJ9vstuPcFkp0Ho1emZDlGUHJI/TpsKOhKZSCEppSgpJYKlImMlgWYbhIk0Gd9Hiyyi2EK1NZS6QyJQyMUmzcw8DWMv6E1CYeFLDUYrHTr1NNPpLK20gqW0GVO2km67IDRKnWHmtBw1SaPeBkX4KLZLX2c/nTgkiEzM0kZynWGSSoQiSUw7HsriOAEWWs5nlTzOMmWacFAjoWgoQqJNRDJWkN0IuRMhRJNCez9+ehmRNMsFlX30SC1+mlhFVZbZrQwhdzSGFyYYmVmknFuNL43gex3a8sMsSBq3JkvUZQ9TW+Ics0UKgbuYYFlpio4ic3JmhFwYkhLPzWBPSRyYHu6/jXq9TjqdplarkUqljtp2gyDglltu4dJLL0XTnvspWp+OEAIhYmRZ+Y9fIIAg8PnBLd/j0ktejipLBAgkRSEKQ4SID0wmJCRkRSEIfVRJOjCdaBSj6TpxGKHpBoqiHBh0+G8TjEWBizL5cxqP3gfGRgJlDa12B9lrsn/rPKCQNBuw9xH8NctY0udwFZf+9AD20m7QHepNA8mdx1m2jjvT/SgDq3jrhjWUZhfx5xa4ads4uIILTXDH91J2ajSGR5nbN82y5aMU5VkoZGgkbOYm9+ENLeMb4zEilPjfeoNli9PUgkF+tt+i7QlOL1YxlP0kzZhyIcvDSwGDoyuwU2uwO23utyd5YvZhNqmrkap1/MYcpyrrCOp12p0l1NZuEuEiCUPD1zQayggz7RNoSCGmt4hT34vt1mknc+zpW05Rg7PSEXU5QcOwmNyzgBILRteOEedTxK06iw9vJVyaw0mX2D40S6FpsnxxBZoqiFcNs1fuZ8ouMpUpsFTySJTnSLUWCXUPesfQVIcVaoQ8vo1OG1KJfuxomBiVlj+L1iph9RbQ5QVQ2/Sf/jvcNjNBIdPDmNQiUd+LOdtAXXyExUSFB9M+jU6SdDBM0jUwI5mgbeLGc0jEzEQyLVNjTB4lGVgIVSVMNqnKTbR2i0nTIhAxaw2VhR4Pu2USNlXKmsZcMkNHjtEkidOaj7OxfT+JhSTO/VV8WXDfmhQ7+ouMLOxnTTyILjlss9r8Ys3L6Kns4wT1FuRiSDsyaDQUvJKKo9tIKMQO7IxtBBqWJ5N2V9JRY4zWPuxWhWpvkdG4jIgNtqeGKCdHyNbaFEsKkqTQURtUjSyJsEm/V4UgQk/rqJaCMJd4pKAxFQ+T9ZZ4SX0OI7CYrPqY9QK+qmAWbXRVwo8FVecBOrJFShokFenEls1OuUZSWyCnVw5MuR01kFq9+K08VbVJSIQsKWhKRAKXfMVH90IU2WPRkbknexxBu02iJZAl7cAstUKhaWTIKoJiVEVu+DyaX4kWhZxZ/ynWSBWjA3rTJPRsQl8nEhoRCi42bVNjvdiKkyoRGCG+KhMpEmojZL5lEKiCTipPrPWC0sHSyuhyh16vhR16SG0T9r4IVxvAVKq4xhwdaY7FyOaR1jqS8hLL5UlkFGQlRNMiFDmio8V4coQaSij1XoJAAalFRy1gkUSnFxGZ6GGE2Q6QwzatbMx4JkRd3MXobBohDPYVPNrpIrovY7YFHUMw5syRyy2ghDFRtR8pUpnTB5kx+wjjFlpnAtlrk1Vb9Kg6rajIYns1Y6GBiANqsUcgwJM86laIFsb0ZOeRBpaIJJ1IJFGFhouHLkJU2ceU6hC7+LFMCws1jkgIHw2FhmyzJX8Krkhw/PYOy2ZLhLrKkpwllhz8zjQtawqBx6KWZc4oMhiVWZfZjSqH1Bcs3KCFbyV4359/CTVsQ7r/qE269Wyuod0GxlHyfGpg/Cr/5bn8208u9iKCuRbBfJuw2iEIfeIMBOno4ERhkiSjaBqKpmFYNkbCQbcsJEmiEoRokoSj/ntDKYgFMQJDlvF9H03TCMPwafOplkuIMCTb03uwzHMD2s2ATM4kbneQbQsJwG+AmT5k/bpbx9Ed3Mil7tfpS/QRt1pEzRZeu0252sLWVRKmjKKbSIpCLEkoqorb6dDxPHAy+LFEvpjG1P+9ju25GsgSds+//1afPD8vu+gi2rseJPAlolgm1jTMYhHdtkmks0iyTNuPsDQFSTr0ZXtCCNq1KuX5OfL9A6iyhqob1H2ffXv3s3bFCHEQEvkhqZ7cv68Xx7SqFcLApzlVIjXQi5lPMzU3yWDPAP6ex2k1Y4LUSprVCvmBBIuux1Td55wNo/ziR/fTk87Q059lpjJP38ph6qHET376E974mlccPD9hENNueaiWwsOzc+R0jawsweIc2WIfcaOBbNvUTJvHHv85PSMDyFKVdm2KwGvRbNUIEhaBahH7MiljBXEgo8USchRQX3yEhDmKqPsoQtA7PIRt25g2hFrIgh/QP7ic6tw8QlOQkirj89tRQ4tgMSJoB2QLKUQMxaFeDKWF1JhGBB71xQnGJ8ZZve4kFksKg4M2vrsAmkl+1SuYeXSJgbEi+b48UihAkZmamcJxHHLZLEQ+qAaT1RLVeh1H8XlocjNWopc4LkBHZt3IIHElxEraqLpEq1ahI3Q6s3uRAWdoiIVOlYJToOKVaLkt0loarWUQKRJ1EVKdWcLsTSHvfJysLZNe2UOpWWU4M4riugS1CkJOsnDPT5mv1BlZuxYj42AMFHh0bgFdN1iRSeO3yijFIjWvget7DGQzVCNI6SrtIKLaaRFFAer+GaSOTphfjqILegwbd7GM366TSctMTO6ntz+FIKZUrbNy+WrkyEdLpmhYBvvaC2SUPJX5Eq1GiVi0iWb2EyTXo5pDyKFBylJZqk6iFRxsPSKY209OydCeLRPGIUGxj5KIadUbjBVyqG6b3pzBTG2SlJIkNtLMygZaPoUfRPToKivyKu3JcdK9/eypK0w2VAopGX92igCLWDWIwhg9qRLOzkAco6QSiE6LRLafhmzjxjJ9iZCotYQmR8heDdlvoPUO4rt1NCnEFDGdSgOMEVquTiBUCskkgTePsHNEQibulPGSIdVqHQwdP6HzxITH8SeMIvwDDbCspLKw515WDZ3Iua9/+1F/VPVZXUPFc+zTn/60GBsbE4ZhiJNOOkn85Cc/edr4O++8U5x00knCMAyxbNky8dnPfvZZ7a9WqwlA1Gq1/0y1D+P7vrj55puF7/tHdbvPhecil8gNROxH/yXbfiGdGyG6+Rzruvkc215I+TwXuTyba+hzOg/GN77xDf7wD/+QD37wgzz00EOcffbZXHLJJUxMTBwxft++fVx66aWcffbZPPTQQ3zgAx/g6quv5sYbb/wN17zraJMNFUnrTsvS1dXV9ULxnP5F/5u/+Rve+ta38ra3vY1169bxyU9+kuHhYT772c8eMf76669nZGSET37yk6xbt463ve1tvOUtb+ETn/jEb7jmXV1dXV1dXU/nOXuKxPd9HnjgAf7kT/7kkPKLLrqIe+6554jrbNmyhYsuuuiQsosvvpgbbriBIAiOeH/d8zw8zzv4uV6vAwfuYwdB8J9N46Ant3U0t/lceSHlAt18jnXdfI5t3XyOXc9FLs9mX89ZA2NpaYkoiujt7T2kvLe3l7m5uSOuMzc3d8T4MAxZWlqiv7//sHX+8i//kj//8z8/rPzWW2/Ftu3Dyv+zbrvttqO+zefKCykX6OZzrOvmc2zr5nPs+k3m0m63n3Hscz4Pxn8c4SqEeNpRr0eKP1L5k97//vdzzTXXHPxcr9cZHh7moosuOupPkdx2221ceOGFL4inSF4ouUA3n2NdN59jWzefY9dzkcuTdwGeieesgVEoFFAU5bDeioWFhcN6KZ7U19d3xHhVVcnn80dcxzAMDMM4rFzTtP+SE/Jftd3nwgspF+jmc6zr5nNs6+Zz7PpN5vJs9vOcDfLUdZ2TTz75sK6d2267jRe/+MVHXOeMM844LP7WW2/llFNOecH8ULq6urq6ul4IntNbJNdccw2/+7u/yymnnMIZZ5zB5z73OSYmJrjqqquAA7c3pqen+fKXvwzAVVddxXXXXcc111zD29/+drZs2cINN9zA17/+9We8zydvqTybbp5nIggC2u029Xr9ed/YeSHlAt18jnXdfI5t3XyOXc9FLk9eO8UzmaPzv3hOjl/p05/+tBgdHRW6rouTTjpJ3HXXXQe/e/Ob3yzOPffcQ+LvvPNOceKJJwpd18XY2NiznmhrcnJScGBi6+7SXbpLd+ku3aW7/BrL5OTkr7ze/rebKjyOY2ZmZkgmk0d1CtUnB49OTk4e1cGjz4UXUi7QzedY183n2NbN59j1XOQihKDRaDAwMID8K95v8pw/RfKbJssyQ0ND/2XbT6VSz/sf7ZNeSLlAN59jXTefY1s3n2PXbzqXdDr9jOK6czN3dXV1dXV1HXXdBkZXV1dXV1fXUddtYBwlhmHw4Q9/+IhzbjzfvJBygW4+x7puPse2bj7HrmM9l/92gzy7urq6urq6/ut1ezC6urq6urq6jrpuA6Orq6urq6vrqOs2MLq6urq6urqOum4Do6urq6urq+uo6zYwurq6urq6uo66bgOjq6urq6ur66jrNjC6urq6urq6jrpuA6Orq6urq6vrqOs2MLq6urq6urqOum4Do6urq6urq+uo6zYwurq6urq6uo66bgOjq6urq6ur66jrNjC6urq6urq6jrpuA6Orq6urq6vrqOs2MLq6urq6urqOum4Do+t54dprr0WSJJaWln6j+/3MZz7DF7/4xd/oPo+Wv//7v2ft2rUYhsGyZcv48z//c4IgeEbr7ty5k8svv5xsNott25x++ul897vfPSxubGwMSZKOuJim+Yxir7rqqsO222w2+cM//EMGBgYwTZMTTjiBf/7nfz5iXR988EFe+tKX4jgOmUyG17zmNezdu/c/dUwWFha48sorKRQK2LbNGWecwe23335ITL1e5yMf+QjnnXcefX19OI7Dxo0b+eu//mtc1z0kdnJykssuu4zly5eTSCRIp9OceOKJXHfddYRheNj+b7zxRs4880xyuRyZTIbTTjuNr3zlK0fM6Unz8/Pk83kkSeJb3/rWId81Gg3e9773cdFFF1EsFpEkiWuvvfaI2xFC8A//8A+cfPLJpFIp8vk85557Lt///vcPi32qc/9Xf/VXh8Vu3ryZCy+8kJ6eHhzH4fjjj+dTn/oUURQ9bV5dz2Oiq+t54MMf/rAAxOLi4m90vxs2bBDnnnvub3SfR8P/+T//R0iSJN7//veLzZs3i4997GNC13Xx9re//Veuu2/fPpHL5cSGDRvEP//zP4vvfe974uUvf7mQJEl861vfOiT2wQcfFFu2bDlk+cY3viEA8frXv/6Q2NHRUXHmmWceFr93797D6nDhhReKTCYjrr/+enHHHXeIt73tbQIQX/va1w6J27Ztm0gmk+Lss88W3//+98WNN94oNmzYIAYGBsTCwsKvdUxc1xXHHXecGBoaEl/96lfFrbfeKl71qlcJVVXFnXfeeTDuscceE4VCQbznPe8R3/nOd8Ttt98urr32WmGaprjgggtEHMeH1PNNb3qT+PznPy9+/OMfi1tuuUW8613vEoB461vfesj+b7jhBgGIyy+/XNxyyy3iBz/4gXj9618vAPE3f/M3T3neLr/8cjEwMCAA8c1vfvOQ7/bt2yfS6bQ455xzDh7LD3/4w0fczp/+6Z8KQFx11VXi1ltvFd/97nfFhRdeKABx4403HhILiN/+7d8+7JxOT08fEnfbbbcJWZbFeeedJ26++WZx2223iXe/+90CEFdfffVT5tT1/NZtYHQ9L3QbGM/c0tKSME1T/M//+T8PKf/IRz4iJEkSTzzxxNOu/453vEOYpimmpqYOloVhKNatWyeGh4dFFEVPu/61114rAPHjH//4kPLR0VHx8pe//FfW//vf/74AxD/90z8dUn7hhReKgYEBEYbhwbLXvva1olAoiFqtdrBsfHxcaJom3ve+9x0sezbH5NOf/rQAxD333HOwLAgCsX79enHaaacdLGs2m6LZbB5W/49//OMCED/96U9/Za6ve93rhKqqwnXdg2VnnnmmGB0dPeQ4x3Es1q5dK44//vgjbudb3/qWcBxHfOlLXzpiAyOO44MNnsXFxadtYAwODoqzzjrrkLJOpyPS6bT4rd/6rUPKAfHOd77zV+b5xje+URiGcdjxuuiii0QqlfqV63c9P3VvkXQ9r0xOTvKa17yGVCpFOp3miiuuYHFx8bC4b3zjG5xxxhkkEgkcx+Hiiy/moYceOiRm7969vP71r2dgYADDMOjt7eWCCy7g4YcfBg506T/xxBPcddddB7t+x8bGnrZ+n/70pznnnHPo6ekhkUiwceNGPvaxjx2xG/6HP/whF1xwAel0Gtu2WbduHX/5l395SMzPf/5zXvnKV5LP5zFNkxUrVvCHf/iHT1uHH/7wh7iuy+/93u8dUv57v/d7CCG4+eabn3b9u+++m02bNjE4OHiwTFEULrnkEiYnJ7nvvvuecl0hBF/4whdYvnw5L3nJS552P0/lpptuwnEcXvva1x5W/5mZGX7+858DEIYh3/ve97j88stJpVIH40ZHRzn//PO56aabDpY9m2Ny0003sWbNGs4444yDZaqqcsUVV3DfffcxPT0NQCKRIJFIHFb/0047DTjwW/1VisUisiyjKMrBMk3TcBwHWf73P8+SJJFKpQ677QRQLpd55zvfyUc+8hFGRkaOuJ8nf7/PhKZppNPpQ8pM0zy4/Do0TUPXdSzLOqQ8k8n82tvsOvZ1GxhdzyuXXXYZK1eu5Fvf+hbXXnstN998MxdffPEhF/CPfvSj/M7v/A7r16/nX/7lX/jKV75Co9Hg7LPPZuvWrQfjLr30Uh544AE+9rGPcdttt/HZz36WE088kWq1Chy40CxfvpwTTzyRLVu2sGXLlkMuWkeyZ88e3vCGN/CVr3yF733ve7z1rW/l4x//OO94xzsOibvhhhu49NJLieOY66+/nn/913/l6quvZmpq6mDMj370I84++2wmJib4m7/5G37wgx/woQ99iPn5+aetw+OPPw7Axo0bDynv7++nUCgc/P6p+L6PYRiHlT9Z9uijjz7luj/+8Y/Zv38/b3nLW454QfvJT35CMplE0zTWr1/P//2///ewe/CPP/4469atQ1XVQ8qPP/74Q/Lbs2cPnU7nYPl/jN29e/fBsRDP5pg8/vjjT7lNgCeeeOIp8we44447ANiwYcNh3wkhCMOQSqXCN77xDb74xS/y3ve+95Bc3/3ud7Nt2zY+8pGPsLi4yNLSEp/4xCd44IEH+F//638dts2rr76aZcuW8a53vetp6/VM/cEf/AE//OEPueGGG6hUKszOznLNNddQq9W4+uqrD4v/p3/6JyzLwjAMTj75ZL7whS8cFnPVVVfh+z5XX301MzMzVKtVvvKVr3DTTTfxvve976jUu+sY9Nx2oHR1PTNP3iJ5z3vec0j51772NQGIr371q0IIISYmJoSqquLd7373IXGNRkP09fWJ173udUKIA13mgPjkJz/5tPv9z9wiiaJIBEEgvvzlLwtFUUS5XD5Yl1QqJc4666xD7tP/RytWrBArVqwQnU7nWe337W9/uzAM44jfrV69Wlx00UVPu/6rX/1qkclkRKPROKT87LPPFoD46Ec/+pTr/o//8T+EoiiH3F550u///u+Lz3/+8+Kuu+4SN998s3jjG98oAHHFFVccErdq1Spx8cUXH7b+zMzMIfu/++67BSC+/vWvHxb70Y9+VABiZmZGCPHsjommaeId73jHYXH33HPPEW/d/LJHHnlEWJYlLrvssiN+/5d/+ZcCEICQJEl88IMfPGLczTffLNLp9MFYy7IO/sZ/2fe+9z2haZp47LHHhBBCbN68+Yi3SH7Zr7pFIoQQ119/vTAM4+D+c7mcuO222w6Le8Mb3iC+9rWviZ/85CfiW9/6lrjkkksEID70oQ8dFnv33XcfHCMCCEVRxMc+9rGnrEPX89+h/yJ0dR3j3vjGNx7y+XWvex1vfvOb2bx5M2984xv50Y9+RBiGvOlNbzpkdL5pmpx77rls3rwZgFwux4oVK/j4xz9OFEWcf/75bNq06ZBu6V/HQw89xIc//GHuvvtuyuXyId/t3LmT008/nXvuuYd6vc7v//7vP2W39c6dO9mzZw8f/ehHf60u5KfrDv9VXeXvete7+M53vsOb3vQmPvGJT5BIJLjuuuu45557AJ7yGJXLZW6++WZe9rKXHXJ75Umf/vSnD/n8qle9imw2y3XXXcc111zDiSee+GvV/5nG/lds85eNj4/zile8guHhYf7xH//xiDFXXnklL33pSymXy9xxxx18/OMfp1ar8fd///cHY374wx9yxRVX8NrXvpbXve51qKrKd7/7Xa688kp83z94m6dWq/GOd7yDP/7jP+a44457yvo+W1/4whf4gz/4A971rndxySWX4Ps+X/7yl3nVq17Ft7/9bS6++OKDsV/72tcOWffyyy/nla98JX/1V3/F1VdfTbFYBOCBBx7gsssu4/TTT+f//b//RyKR4I477uBDH/oQruvyp3/6p0et/l3Hjm4Do+t5pa+v75DPqqqSz+cplUoAB28fnHrqqUdc/8mLoyRJ3H777fzv//2/+djHPsZ73/tecrkcb3zjG/nIRz5CMpl81nWbmJjg7LPPZs2aNfzd3/0dY2NjmKbJfffdxzvf+U46nQ7AwTEjQ0NDT7mtZxLzVPL5PK7r0m63sW37kO/K5TInn3zy065/wQUX8IUvfIH3vve9rFixAoD169fzF3/xF3zgAx84YuMB4Ktf/Sqe5/G2t73tGdf1iiuu4LrrruPee+892MD45fP5H+sOBxqHT8YBTxkrSRKZTOZg7DM9Js90/79s//79nH/++aiqyu23337EGDjw+33yN3zRRReRzWb5kz/5E97ylrdw4oknIoTgLW95C+eccw6f//znD6730pe+lFqtxrvf/W5e97rXkUgk+OAHP4imabzrXe86eFuv2WwC0G63qVarpNPpZzz2AqBSqfDOd76Tt73tbXziE584WH7JJZdw3nnncdVVV7Fv376n3cYVV1zB9773Pe6//34uueQSAN75znfS29vLTTfddHC8yfnnn48sy1x77bW88Y1vZPny5c+4nl3PD90xGF3PK3Nzc4d8DsOQUql08GJTKBQA+Na3vsUvfvGLw5YnBwjCgcGAN9xwA3Nzc+zYsYP3vOc9fOYzn+GP/uiPfq263XzzzbRaLb797W9zxRVXcNZZZ3HKKaeg6/ohcU/+V/fL4y3+o2cS81SeHGfw2GOPHVI+NzfH0tLSM/pv981vfjNzc3Ns3bqVXbt2HRx3IEkSZ5999hHXueGGG+jt7eUVr3jFM66rEAI4tFdk48aNbNu27bD5IZ7M58n6r1ixAsuyDsvzydiVK1ce7P15Nsdk48aNT7nNX97/k/bv3895552HEILNmzc/q0bhkwNCd+7cCRxoIM/Ozh4s/2WnnnoqrVaL8fFx4MBYkfHxcfr6+shms2SzWV75ylcCB85fNpulVqs947oA7Nixg06nc8QG+imnnML4+PjBRsxTOdI5ffjhhzn55JMPGcz6ZE5xHLNt27ZnVc+u54duA6PreeU/dsn+y7/8C2EYct555wFw8cUXo6oqe/bs4ZRTTjniciSrV6/mQx/6EBs3buTBBx88WG4YxsGeh1/lyf8Uf3mApPi3SYt+2Ytf/GLS6TTXX3/9wT/GR6rPihUr+PznP4/nec9o/0962ctehmmah00Q9sUvfhFJknj1q1/9jLajqirr1q1j5cqV1Go1Pve5z/GqV72K0dHRw2Lvv/9+Hn30Ud785jcfNjjz6Xz5y18G4EUvetHBsssuu4xms8mNN954SOyXvvQlBgYGOP300w/W75WvfCXf/va3aTQaB+MmJibYvHkzr3nNaw6WPZtjctlll7F9+/ZDGqNhGPLVr36V008/nYGBgUP2dd555xFFEXfccccRj83TefKW3cqVKwHIZrOYpsm99957WOyWLVuQZZn+/n4APvnJT7J58+ZDlr/9278FDkxMt3nzZhzHeVb1eTK3/7h/IQT33nsv2Wz2iE/O/LKvfOUraJp2SK/QwMAA999//2EDerds2QL8ej11Xc8Dz+H4j66uZ+zJQZ6jo6Pij/7oj8Stt94q/vZv/1Y4jiM2bdokPM87GPvRj35UqKoq3vGOd4ibbrpJ3HnnneIb3/iGeO973yv+7M/+TAhxYDDe2WefLT71qU+JH/zgB+L2228XH/zgB4Usy+IDH/jAwW29+c1vFoZhiH/+538W9913n3j00Uefso7btm0Tuq6L8847T9xyyy3i29/+trjwwgvFqlWrBCA2b958MPYf//EfBSBe8pKXiK9//evijjvuEJ/73OcOmVPghz/8odA0TZxwwgniS1/6kti8ebP40pe+JN7whjf8yuP15KRSH/jAB8Sdd94pPv7xjwvDMA6bVOpLX/qSUBRFfOlLXzpYNj8/L973vveJ73znO+KOO+4Qn/nMZ8TY2JhYvnz5YRMoPemqq64SgNixY8cRv//a174mLr/8cvH5z39e3H777eLGG288OHnUlVdeeVj8hRdeKLLZrPjc5z4n7rjjDvH2t7/9kMG8v3zMHccR55xzzsFjftxxxz3tRFu/6pi4ris2bNgghoeHxde+9jVx2223icsuu+ywibbm5+fF8uXLhWEY4qtf/ephk01NTk4ejP2zP/sz8Y53vEN87WtfE3feeae4+eabxVVXXSUURRGvfe1rD9n/NddcIwDxu7/7u+J73/ue+MEPfiDe8Y53HHFSrv/o6QZ53nLLLeKb3/ym+PznPy8A8drXvlZ885vfFN/85jdFq9U6GPea17xGyLIs/uAP/kD86Ec/Et/97nfF5ZdfLgDxF3/xFwfjPvaxj4krr7xSfOUrXxGbN28W3/jGN8RFF10kAHHttdcesu9PfepTAhCXXHKJuPnmm8Wtt94q/viP/1ioqipe+tKXPm1OXc9f3QZG1/PCkw2MBx54QLzyla8UjuOIZDIpfud3fkfMz88fFn/zzTeL888/X6RSKWEYhhgdHRW//du/fXDyp/n5eXHllVeKtWvXikQiIRzHEccff7z427/920MmchofHxcXXXSRSCaTBxs4T+df//VfxaZNm4RpmmJwcFD80R/9kfjBD35wWANDiAN/8M8991yRSCSEbdti/fr14q//+q8PidmyZYu45JJLRDqdFoZhiBUrVhz2JM1T+bu/+zuxevVqoeu6GBkZER/+8IeF7/uHxHzhC18QgPjCF75wsKxUKomLLrpIFItFoWmaGBkZEe9+97ufcpKzdrt9cJbIp7JlyxZxwQUXiL6+PqFpmrBtW5x66qniM5/5zBEn7mo0GuLqq68WfX19Qtd1cfzxxx/xaREhhLj//vvFBRdcIGzbFqlUSrz61a8Wu3fv/rWPiRBCzM3NiTe96U0il8sJ0zTFi170osOeonjyYv5Uyy8/pfHd735XvPSlLxW9vb1CVVXhOI447bTTxKc+9SkRBMEh242iSPzDP/yDOOWUU0QmkxGpVEqceOKJ4rrrrjtiXY9UpyM1MEZHR5+yrvv27TsY1+l0xMc//nFx/PHHi2QyKXK5nHjRi14kvvrVrx7y1NN3v/tdcdZZZ4lisShUVT04o+pTnacbb7xRnHXWWaJQKIhEIiE2bNgg/uIv/uKIk5V1vTBIQjxFH21XV1dXV1dX16+pOwajq6urq6ur66jrNjC6urq6urq6jrpuA6Orq6urq6vrqOs2MLq6urq6urqOum4Do6urq6urq+uo6zYwurq6urq6uo66/3bvIonjmJmZGZLJ5LOao7+rq6urq+u/OyEEjUaDgYGBX/1yyOdyEo677rpLvOIVrxD9/f0CEDfddNOvXOfOO+8UJ510kjAMQyxbtkx89rOffVb7nJycfNrJcbpLd+ku3aW7dJfu8vTLL89U+1Se0x6MVqvFpk2b+L3f+z0uv/zyXxm/b98+Lr30Ut7+9rfz1a9+lbvvvpvf//3fp1gsPqP1gYNvyZycnCSVSv2n6v/LgiDg1ltv5aKLLkLTtKO23efCCykX6OZzrOvmc2zr5nPsei5yqdfrDA8PP6M3Tj+nDYxLLrnk4Ot8n4nrr7+ekZERPvnJTwKwbt067r//fj7xiU884wbGk7dFUqnUUW9g2LZNKpV6QfxoXyi5QDefY103n2NbN59j13OZyzMZYvC8GoOxZcsWLrrookPKLr74Ym644QaCIDjiAfY875C3UdbrdeDAiQmC4KjV7cltHc1tPldeSLlAN59jXTefY1s3n2PXc5HLs9nXMfMuEkmSuOmmm572VdKrV6/myiuv5AMf+MDBsnvuuYczzzyTmZmZg68x/mXXXnstf/7nf35Y+T/90z9h2/ZRqXtXV1dXV9d/B+12mze84Q3UarVfeRfgedWDAYd3yzzZPnqq7pr3v//9XHPNNQc/P3n/6KKLLjrqt0huu+02LrzwwhdEt9sLJRfo5nOs6+ZzbOvmc+x6LnJ58i7AM/G8amD09fUxNzd3SNnCwgKqqpLP54+4jmEYGIZxWLmmaf8lJ+S/arvPhRdSLtDN51jXzefY1s3n2PWbzOXZ7Od5NdHWGWecwW233XZI2a233sopp5zygvmhdHV1dXV1/bqEELTaLQLvuR9j8pz2YDSbTXbv3n3w8759+3j44YfJ5XKMjIzw/ve/n+npab785S8DcNVVV3HddddxzTXX8Pa3v50tW7Zwww038PWvf/25SqHrKIjjiP2PPkyzXHrqIAly/UMU0sNECy7aSJK7hU9aVTkx9Z8bS/PdRx6j6Qe87uQTUGWZOIq5454pxmebvPaMAtK2h9GKRaw+GUq7YewccIoA7Jvbx493/JiTB08mkUsw2ZjknJ4z8O7eQlipMl3tsNjwGMlZ5J0DPWn1tkylqTFw0hDthITbbGKNruLRpYjlBYf1A6l/Oy4x+3+2HVlTGD1jzWH1ru3YSuf719HxbHwpB5qGOP44ME2yA4MMrd3w78FTD0CnAiteArJMHEfsuPsnzO7ZyfEXXILTSSKZCtvdGo/d/wAvOuU4zCeeIGi2GX3965A15ZB9V+fn2fKZf8bMJznpzZczMTHBULFI7Se30G6BP3QW5entDK8f4b7FBjuma7zt5adx37/+nILlMNSTY9/8BGPHr2XcSLCtKvGy+MDtTt/3ue+Oe2hU6qy/8GwejSWGDJXc/bewtONRVr34QuSWiqRq/NSvcuuWz1EcXcGqoRRyp4JSd7F3VQh7iiz1JhDuNB19HYFy4JxRGkeZ3kU+vQJzwSb0A5IjecbtRWTLY7vSYMJvc9bQKVi/8JEsHfnEiIn5ByjYy3C3pghaPuZwgAhd0n0DpPMgVccRcQTtJar1Gv/3Sz9kbzvPmmwD1ZpEkw1+64Q/Y+sdJYbWFVh7xmpkWaZVK7P7R5/DzA+zZv1GKO0iGn4xH9/xKK0g4KIehSd2/yvC7GNmt0Nc0Xj52S9mbmuNdMFh1WqN0t4H8Z1hgu2/QACNviH27XmC4dG1hKMZFhoLrJBXIxZsVBPm5iZo7K8QFFwW/DpJ4XFCrsKEWyJbOJ1MtBzhRlhSSLDjJtJxzAMP/QgRBpg9OnuqDWRZYe2oTpsmfqKH0mIN3w9Ijg0x3/LJ6AqxZlLxQe3UGK5sRTRTbCu8DDM7TzHugbtnkRo1nD6fpj2BlbTw45jA8ykmExiuB6pKzdaZa8xjxRZep0NIiOoFmC2fDkVQX4ZQLALDpdVeQjHT+Po2puNtvLg6hD4DURxSy+XZ7WTQWi2at3ybQNKxrTms3imktkWrvZ4FPUt5rJeGY1AMW5xb30W0MIvZ28s9wYlU2gny1h6yu9u4egIvk0OLLUKjjTm9hBLEoBkIN8YvZFhI5/FjheVOiaS/HVUNUII2ivDwzSRRLKOGKvmgjV6eoJkY4efWiVSNDMfJFaJODQwLq+yjVEqE8Qz1uoznKJTXGkx1RtjaeQBzvolR7TASBpTLc5jFAX77w9cjS89dP8JzOsjzzjvv5Pzzzz+s/M1vfjNf/OIXufLKKxkfH+fOO+88+N1dd93Fe97zHp544gkGBgb44z/+Y6666qpnvM96vU46nX5GA1SejSAIuOWWW7j00kuPid4U4fugqgdmRAl9FN0kDl2isAmKSrNaIZkdRpJlgkBgGgqLjUUCESBiiZ/e+n0uf9lvEXTKNBUVI1mkvjBFjE3g+XhRTCKXZ2lmilTSQFEU6rV5Cr2jdCplUlYPmUIv5dISPQNF4iik01wkbSWY2rMdLZFEkTX8ehm/0mZyzz5iQ0fTVSrVJbKpHFEcE4chmmlSLbdIRpDqOHRSDeSedfxQ7UC+yNtWDlMf341lmiyWq8RuyLrhUSb3bUMaKYCi8vOf/YJzzjubuFHBTCQxEw6ze3YQGgk+tXeeUFI5Z2CI00NBNB9x+0QHrV7muHgPY9kyyWAOZ3mRmmIh22kWU2cyXetwl3sfjWaZvsQgoRYgy21eNjeAv3uexaZHJwjRoyYpU0NXJKLEcgK5gNtuItwlEsYcpWyWEja+ppEYKPLyTYOUSi1S6SEmf/w4ipAYPG8dLdXHTJvUlxbY8Y1/YZ23QGjNYrk61eZyhOwiFdMs5IvUrQIrzzidxflJipqGvP9OFoDk8nOo11pkWjC5cydeICgkU4wm11ELdbY299EJO/SmUmQrLTRNsPzM85lMRyRzeRQZWnsep7ZlD16jjaR4NIcdVN0iUQsx3TpyGLMgJyl7Hlrg8ngEZTvHcjXJYFsCEaGYLUIVfDWBKztMuTVectJK2vEEM9UqbsNl0uylVhjGdgyk5hLHjz9AX2OeUT9C399gRk3xw9EF2oqHHTZJqgl6fIm+socbmUhhiH18k3ZBJ9QMau0c5SWD3k4dYkGciJn2ksiuTdmpIRkOS7ZDTS4hBxG9zX7WTSrIxMwON2jaEZnSIEpgoQkNSRZUlSmwlyjoIYph0pdtoAiJpgj5hXEydS9BFAls/3vowmPV0gVkK2vRVANrWQgioL/9MHJrkljx8RNjtHWTbSmVh9UU/coeRqUSUqAjiQipNESlNIov+RhGB01oqEpIJlpgVbCIGoOKTyBcHqWHx4wOgSKhaBk0HFKtHkw/hdWQ6FNnmCjY7HfyxBKcMXU36eQcqQhMr4dFkcORF5GkEIA4lNA1ga66RHIAmTbCAjuO0LyQiZZDiES9kAMJwlBGlSRSSpl+qYIiYkQsIfaZTIoBsiUfXFBSPmq/SzW2UaQWBhJCSKiSIBIRchTRUXx8VYAQyIGB27ZItHwMKUtKWYOQUjSVFDESTW+KoLWVmUKTsq2TqgjWT2nEscVsMUfTdtCDDmanD0vtUBzbg56cRVE9/Ple9jdHWEj0UM4k6G1M0lubRZVCEgT48hr2BmvItGUS/hKKohApJr5mQqdOGAeooUCLFYTu4RkaC2aGZG6eTHoSSwSYsY+luEhEREh0hIEsBEoQoe2HJ5yTeWRoBQaCZbUq65cWkeOITkfFj2y8yEPzdiDH8ER2hMlciqLfYFk8R9qXEV4HETZQkhbn/enfgqIynM6iKUfnuvRsrqHHzFMkvyn/HRoYcadD+ctfQevvI+iJKN96Iz2v/l0atW8RRHWWmgrzj09iZgcZ3/g+ttVVhqVHuWd+GtmQ2WDMkYqnGKjqnFj9MUKChwtnsHJ8K1NxgbvtK6g7RTyjw2RwD3k3ZlMosS8xzLmVEi9u5IhExI/kDEuNEm4+xcyqDI1Q4nenf8zSeIO0pmD1+Wyz64x5Dol2DxIWpabGXCCTj1vU166grCcY2NtgLy5FMYOa+AV1K0aEa8Bfh4hkzFYTggZSrOJGOkJS6DPTaIk0odxkR59D28ixvHEvPbmfEIqYyo6VyJUsj48N8+jQCLEsM+yp/M5ih7HK4ywFDpISoxodxtTtlITJv7pj1EUBKWkzlTuOlqyQXNjL0OQeWmaOEwvbGPLneGjxDIS0AV/x8eJpVL/Ji9pz3LvxFIQss2pfmY4NeuCyUd6CqXjcJ5+Ks9SikzBY0Gw6HY9+TWGVPoSIY1qlvchSgrbpkVixH7QWk1NtwpKBIWLWdASpMMIbXgNrNcLQ5K7gAkZjnS3JKe5NVQkVnWHXZH3Hob/RZGR3lUbQpGgNkRi9E9GxmJ05lalMhv7mEuXMLJEsCMUAe4byDFSarIt+jp6YZ2l/BiHNoMow7WyiYh9HtrmEU58Ff5w4UWDbspMolpYYEj8nkWxRK+Ux9oEcgx2DIgL2DIyxbdlqhCwopmfpy03TlBwm5FE6WDRby9hQcWhoAs15lJfLN1Hab9J50CdG5mebXsJU/zJe/NjjvLjyCKEa80D+VHYNHcdYuJfXGZ8hqXhMNdKgrqMVl1iYNPA1naqTZvuyNYx3HE6YHWdFu5+Op2K0JeQYYtEiVPbjKwYzfacx27+CQnWJ/Nx+1NjDanu0DQ9ftSjl++jYMivlCUadeX5hb4S4STJsUAoNMp7J6fOTlBckcp0kzVSTYHSclF7BiVpU1JhIi4kt8OMULdVDCBlJAkGRneoZrA52sqpZRwgI5Ii21gbVw441JCComZSWBvGFjptO01ZX44QVquEUVVkljgJMvx8NwZg0R83S2GMNIQURnixxbuVnDA6OI8syIs4hoRCKBh4SHQz2JpYzboxyfucuVoT7AIkWNmHLIVWqszAfUg0Nqqki0+om8moNbXmDJSvPJdt/Rlqu0rST/EK8imlzjD63ycnNRVRZsD0UzC0GqGqTXrVMrOi4fps5rY4EJNHoifMsqRK+nyIbuiQToBl9SFGEJEKCKELFRsQqTqTQpweUHY898jbmJAtJGPixhsBAigdZTDiITIfV8Q7W1PehSALFMFCnRnhC6+ORXC+BKqEn28hmwPLSNPa8hh8ZONEQGd3CV100FJBgV3sr+9I9xKrCcepeRvT9+JKOqZioSDQIabgpvIbNsuY+wigmlqCqJNHzEUUjomZluTe5EeIQOQ5Rmxk2bt3FGreJ0nMc1Wg1C0qIu+JWFlWZzfNpQq2EJsOZfbsx5JDZ8RxrH2sQGymmL17JUmzwO+t/i0vWbjoq15dncw19Xg3y7Po3QsDSLog8/OxqfvbgDjasHCYII/ZMznFab5Ltj+1G2lOCAZ1mPUP40+tpFlsoYUhzsYWPQVyfxNnzp9jxGu6NhwhDhdFogpQ8ieRFTEgSmzBQRcjI+DZ+EZ1PjzKBlzQhhoY3g5AjlE6Tx5xhYkmwpLSBXiR0olabff0jlNMOXttHQnCTdSKnq3ciwhrb3BA54fKgAapIsLJhQgBJSaampdjbdqiHDovpgJ7qEzQoY5WLWAwiSw6B0kD2O0RCEMoxKDFCRGi06Ug6xA47s6PsUVNoQRUvsZxBdyc6PsJRmG7mWEyOku4IiGpE2hpu76lxZjSGWutQiAoY8Tx7wuW045gJa4zFnjyRmiPhu+iRRCfXy6yusmJyN8tbLrKc4TinwWIk04os9sdZ4oTFQ+ki846Dgscya5JsPEavNUWgp5gxhlHLJlF/G63ZYb+RpJNOka9oSGoaEet0kjGy5mLJKs35ZcyLSZSmgREd6P58IpOimluDXLDJpSoA1Oc6bE622JdSUUUew4/IeDo1SaGTzGAO6AzPQ01pYlgRJCo0PJ9Yb1ITVVwRE6Ayl4uQIp+llIwd7iNGIdtbozI+RkuOUPwApzXJvANtZZ6UJKjlNXRNpTpcJCV6yDfniYo1qj1Fmp0MQlJoWBmWknkUJUS2PKpyhrZnUbEzqLKgGDR56fwiIzNtfj6UYi6V5vv6JaxJbkO3feKoSUarYlV2IxktFtIGjw1soKQXkaU25R6ZSqkXeX8ZN+hHLK8h5A6RleX+xMm0syaqLxho61T1MwgnZrGEj6oH6EmXRrPCbDbPZM8IQhZ4YYPdySTTZobe8hxxMkBoaeqJFIYWkkg3mVFtJlhBKMWYrsRJ0w9xT/E0XLmfCdOmP9qHNzaFXqhjxj5mFFFWBS2hogYBqmbhxDqCgKbeRgQqj4U5ShKIeAODnR0YRpVQCKTAJiBGjkwkFDoOLCUUHpU2kfB00jG01RzYKZaxiyVJIfabxK7BhD/GnONAq4UbGsQOeAVouQ5tI0ERHVkIQlFgKZZA85hTCkSxzN54jKTfJg503IoNNR2ppuCqKq3cOiKhUZQdepsSziMJNrgeSXcdj6yz2Tq4jNhNIDcFc6bFD4xR1pXarCrDMC7NWKHhSFhmk2bDoSEL2rJEXcQsoGDHPaiqwf60g6Ol8FSVpF8mX9tK6BsoYUxrMEHCDcgu9GD7PrnkKsrmLE3ZQolNFpwhqnYaW2qQMBvsY5TJ1hqGxASa3qa2tofZyEGR2hhGQChryJLGfK6PM4wHEM0i0CbWDGI/i99M0F9qMa/bRDkFPR2zQxpl0U+xrLEHGwkpUBCNPiotHcdr4rdjfEklVmSWLItme5R522bB0YlllYGwRC4o85gyzMPLXsTK8UlSnRat5E4GJB3CFimpjBuPIDomHU1lhW8hRwqjlkKUOgFPlkgsPYGw+xlMPjf/9HYbGM83nQrsvBXKewF4tJLkB+NZdkwu4gcR+5catGQPv65BvQWeRySyzDTnUOU27U6Gxb05Kq0k6dEyrq4yKO8nGc4xW8mwSt+NVYNAkmnHOrP00ydK7BAv4t7MWaBAljYDtTlc/25a6Qx9FZc9OQeIedB0WG0tkWutoJZSaFk2thvRV2mwkFfxNYkdI+uIp+7Da8gsaXkaepFCZy17pIgeBSBmPm1R0Q1k0WEpLyNZPrn5HvSOiemDkEOMXIRk+iwmplns86lGNic3A/aEIcV2inLCYCJjo3ZcEh0Isil+YZzKqaUHULM+Hccm0hNYUZM1kxPIPQbtXoknelMMLI4gxyGLSgMzWk8sS9hDw/RaMmoUcMb2u4lCiV+sOR4/oSP3Z7DnPYpJKCsWy7UWdVnF90OmNY3pZIK6IaHIKnFyiPV1DSvKcL+8nigA25hGH5vF9zXa9T6miwUyyQQ9JRdJ8UjYMTn5flp+H5OuQI4zGEGELuk0zYBHVmygafdhZj0SCRUZqOQFTaFguTbFapt1Sx02uXV2ZxUe7S3ycH+CvJciI+1Cz1WRtDaV3keZb/fSWmrhNxoH7udbJlrooisBNUujGDVwLB29Y9NcgkVZo6XUkTox2Cnapk2nt4AhBL7tMadtQBEbmFJ9XDVGNmxapoEahhihz/LmDqRmzB59OfqszEAQMlSYYL2yl0R9DbFb5LQpizuLMtUoQ8nsYYwAlQIbJ7cyXhzBMF0eG95AjIrZUTCcOoEksT1YzdjkFL5lQNhC1iV2D5xBM+wj8Bss27GHUn4jLV1mf85k1RM/xTm+jZOPmXMVdufOJtRrOA2fofkl9udXMqhUoUdnXhaEIdiJJYb1vYywxCNsxAvz6EqLE8v3Q8lnU2cXjw6tZE+6h9TYHE5ORVKKOEsKuxoZHs5PIM/XWeWPMmxnSQgJSauhp/ewFEXU8mlqsYQIVHYzQk/NYspNIIUmLgobgmEyhsLM6G52OSks0SDX0Vk702S2oFFOCSalHC4QISERE3UUxKJNqtoizsa4wxHlhQzO7g6N5mkMFB0yagMRWfheTCS1CXrSVOMUezyDnmkLNQqwm/PEus6iluKJ4y7GVS0UTyNGp+GHXLh7BlmCnT2ruavPwTAWyUpTqPOPUgtXUzZ7qKR76C93KERJFM1AGpjGMBvElV4qkc7DPQlMPJKBx+mzMlv7VqJKJiV02nKSJXWMc4Mko+E0SwmFrWMaunDJi3vpKZ1Jf20FHS9LTMwjBZuy42BbdVb528kvltilnYiQ+pgJdZRESKQfuM2UdKfI+WVybY1HzPNp2x1c3aaYmiNARQ6TmNIM2pJBKuxncUMCIwOZsMqCyDJZLrKfIdYGBqtbU4w2TdpiASWOSasmD/edSt2WWYoiNHOYOUtDd0Oyfsiqznb0RJmaW2NJHuW+4hAvGv8O+zIzDFgbsUVAr5+i0O7HcWVahoabGicGhBoTj1Qx5wdYHyxjVLVYHlafk8tVt4FxjBOxYNf981gpncjeytwT17NaG+G+vbvwpAi/dS5ToUE8V2aw+QSrGhXmvdXsWj5If22SEyq7aMf9RGMh45lhtueGyU64RJpEczbJXKEfcjEv8jdjp2sEkYHiSciGhyO1cWMN31doqVkEElOZHIPuFMucx5lrBAwseOSkJA0jpG0I6lKGzbWdLBODNKwictxk1UyTseROaC7yY/sMFpwCU6vWsHznJNJ0LwV5FalCi47WphUbKASUrTyhppKIVSqaw5L+MnRJIa1rZNQmjyn7qPZmSYYt7PQEQoGM30ZWlpO3j6ch20wX8ihCMLS0jYEFwePFHmpajgfsU1nDdhq9CSTXxmpP4vgex9V2c3fPMlqWwoy2xHSlxqDmAxp7+gqgJsi4cPb0NMZsA0+0GE7qPLxqNXNCozbhEWo5VK2AL6lIkopnuoRGiZozhqxaxMjU0ymKjRkW9QGWtDzF5h7M9CQRAYoWIeUKqEKlnEmyM9ZYV22wUpuhLdXYLSXwIx89sDD9NLEKZVuimTaJhMtosJukH6MR0XZjlpoaQc3AEYucT4UmaQo1n6zcYb6vj9vGkrym1kFWXSJhoHUKqC2TjtbGTS0iz5t4qkWEQuxI7JJWoXf2YaoB6eKjZNtJbh05D9+VUMJF1DikmUgjGRb5qEwxKrOkDrFbH8OqtsnFTzBsVlkwk/iRRL69iNFoInsaY/4CGaNDfjbGDDrIfYJQrzEh6hhC4aRGyL2ZE6kbfQwUKkRLCmFpljivMbl8lLyoYrYDTpiZpJztsFsaZHe8kYyVpie5naaqUkukKcfD9DbT9O2cIFOJyUTzPDE6SM3pMD0yilXYR+wsUnbWEwsJ4c8xNBuiizRFHmFM3sekmQVa9OTbDMjT6HKVpbZDvbnA8JJgrGecAWuOTi7FQKgwE/rsT+Rw+wwSoUzPbMxMLUVLNQm95Zwr95EnYkZECLlDgMNEaFHFww/zSIqPiJPMqYP0iEUUY5aOmiQUEckoTRT3s1u8iAYznFB/kPPbi3TcFfR49+M2Mswrq2l6SRpyE5xFjNggZ8qsz2zl0eXL2aauYClp48wFjDoNGlKETxs1HiKS0+x1GzTDAEWOqRsp7EodO2igeBUqfcPM5UZYMB3MCAYqi8w5aRZ0lYfyMf3lGncNjOH6KkPtOVbWH6YyO0Y+9GiMGNQNiZ/bPqctRCyZTRStSSxsrESZoflV/H/jEnJoEfoB5UQBRbJIRBqrKyY/twVSUuaR3DBOeYJ9IwaxFNNUDJaK8xRTW4hmT2FfykaOm8zlLBKpMus7j7KsMU8wbuJbWZb1OhRcGX9fAz9Vor+2QLk+RUNJIdIvJucJdpJiR7SRhPswnvCoxAkss8pQaoJyf0Qps4kYn979VfS5CpV0AS8/wnwiiy/r9NbnSUdFAmsvLc1ge3Il7ahGn6ahBAEJf4mas4/RsELDz5OyAoZajzGj9fB4wqcnepTEeMTMSXV61T6UIAdyh0ZQoOPMEwChbxLIKg8MrCCjhwQDL+dFg3MwdOpzcv16Xj2m+t9KHEGnQqcZMLV/lr1P7GVmx7/QnJliv99hwapQs+o0C49RdHYy7QYk6xNYXoGWaFFPxOzPK+SmHycfP0igCkp6lgV/GLUNAhnT95EqKdzZYbY3T0CgELgJ5mb6UQQYcsC4kkQNIzqaRd00cFXIahMo6iyrrDqJUELKaZiOTEoFR4PA7aOkRiwmJJJRGUNUcfJzJI0Gm8LHmTEt9vcMUTLTaJ5Fr9sgFUdIyiwhNdphQCWRAN1irFrGxWbO6mdW70M2LWQtw+zQKqpWhtlkHyNlg4srFuurWWxpLROJAepmikjWyHZcVjYmSa3ZyhnRPShELAYD3GucSV1NoakB6WqFpBcjDJe17UkUKWK+L0kYVknEHgu5BNW0QCXixLkOibaKYq9kPpNHjV3aqkTHNKlqJlv0HmadIQJJJhIRqOCrPjPJBg2tgZAkGpaJLIfUlT7qukkU19GtJYRaw0WBpERacgDYlU+w5ICCiSJlmJdCYr1Dn1cHr8wex2Rx0EHoMom4xqmdbZzYmuK09n7OalU4blLCbkYMlXcw5jUQUgcjnOHk7Y+Qau6no0Y8VOgF14ROFs2PkfwUNbNDM1fFsSEbusRIyHrItDHA9sWTmQt6kc0aWq5KwjbZPrKaWGvTslUaqTRNLHqU/axsTJNtmOT8FqeUFvjtRyc4fmY7g+MBI+MBM5NpfuYblGsp5FiiZrfxeyIikQagrS1RHkkyp5QodPbS6y2CFLNjQCapOIgww6PFU0HSsEKPoVKI7jTp9+eJQ5VJcwTMHoSxHDOh8IixCVmJGG3GrG4a+JaNhcfZ6o/JKE3mh/upmglcRaaS7EeRLKJ6C888MKgzFZYZ7cxgL+1jvfsYx/mPcFI0Q2NqBfvnh0m2c4xM1BmouDidGNnxIZOjV7g4WoNQjci4VeR6mT3OJI04ycrmWhwlQyCrLOht9mopKiIF/ko6sU46iJGJUYROXctQIUsUSRhhjXRcxQjLPNanYaDi1h2Wl5ew5ABncCex8DBmF8hOj7FhzzDD2/qpTdQ5bnobG7ydKFmPDPOEcYfdXgZN9UlJJr6s8HD6QWbVNLpwaCYcOio0rASukUbtgBJ4LGRy7CkWcNOD+MKgXfcwpnYRLdV4zC7ynbUn8q0TNGYc8EOfgfIEipAxbI1YG8BXUlQtm7uGI3ZJHr41hxQ0mVSqeFYVW2ljhWB5AjW28JQUSpTCaBv0Li1w9oyPFgeUEj4PDfQTahCoCm3PYjIeJKKDUnycuUyB/QOgJRok40WcZoX23kFmqqP4GAw0A85omaysmqzZbpGZGKFne4pV0zZ2KLDdBh3JZ28iR6G1iFqzWWzmaM9ksdyQCadAHOkoMxI1t4fBvM9Z41s4bXoRPZKYMyMmUxl69CyRClNmEiWskUMQKDrLFhfpn76f5e3bSIQPo3eWiKMOujJJWYnYmw8ppw3USCJuZJkWGns1j3lzgYY0T1OfoiYCyq7O4mKK2AsJdZfhlSuwTnkjHKUBns9Wt4FxrNpxC9x7PZWZrTy4/V4e3vkLyrdvpXxHxPgdO+DfJi71Qpc10n2s1O+mHQwhhIoQHaxoAV/oNHyb0G4Q6i1qQQ5zySFdCzFaPqtmy6iRjxASO1sbGJ9ZzezMCH6oEYcgx4KypNNSMnQ0hZKt0TYj9MDFC6qYusfKvkXCEZW2sAmwsBRQRIaablA3q/T5HfrsSZBjAkllQJ6hR6lieDbzuQ1YJDCEiyJ8ZF8FKcaNYzqKSUtSmDTHWYonKamwZ7mEm1ZppST8hIoQICRIlC1kV9DrDbLDWYvR8ekoMmoUU2y2cDWbWn+OlfI2XtK4jf7mIiJUkeOI/vYim3YtYAqFSI9Y5s5ihQF6QiIcsNjVM8LOQhHT91hTmyARtImEQi2jE+oGatvFDusossT+zCCtwEYPVFS1jS952EKiKUu0NJNAbhLKPhXDYtq06GCQ7Syiixqa6tKxPWqKgqr7ZIKAwXqDQPJ5tC+DJ2z2xmn8yMVXXIZqMiE65WQPUiqPkCWK8SKyLCCKEQhC2+fRxIHekFWNmFotTwcI4g6FqsfZW+/FldtMOmnqURERNdGVCkqsUdJiAknDHrBwog6D9Z3oYYNmbFIJe2jU+lCkZaj5PlzdJNIl2ske5DiibSQRekhSLNISac7fpfCG7Ts4b3aSRGKEqrAJEMi+z6zaomrFeFFIHEeEtR6WZBChiUBCMf5/9v6s19YsO8/EnjGbr1v9bs4+XZxoMiIZTDKTjdiIFFklllHlKggu+MJXvvMP8D/xtX+CYRi2AQO2IdsFliWKpESKXZKZERlNRpw4/W5X+3WzGb5YJ1MCrBIMw0oKco6bDazdrrXnmvOdY7zNwAv7DLdsOeRbLrZ/Th/3fHky5fnc8cnHv0JZzLBJef/1JWmc45sd07ilaAUjPZeTCd14j0P3Hs+Kx4h0fO9qj1dBJWM18M74NR8dvmZa96wXH9Ca71HZOe8NBXWf6b3HmoyLkT7DRjNmAr5Q/GbJ79yu+OXb73LaPUJUCDcLVB2Pu6fM7lreOdxQm1taW6G7CS+p+NJFsgqPuxlqDK98y1aUFx5EMt/qd/znd284U8M8K6t2JGnmcrrEuIyYkcHN+GfvvsvWO5Zj4OHmwHrzyxBLEiMmZ64+v+AHbQ9ZeGCWXDzPDJ9OiV8+4fbVt/jr1yUvNysiM+blCdZUpCD8+eKU53aLYjg14NQiFsqQuGrm7Mol+2pB1h2DnyFYmttbbFGy0pKswiAFofolgk9U4Sm7nMmV5dsXjn/YGN7dX9OZlr72tLOOarJj3u/JMvDS7bmZfs2QDGcvruF65HVMrIdLfjj+kE+bW56YyK9ffsNytyYbT1FvOIvf0I8Tvth9RE4Z6h338yv2Zk5ZDLw7fsrwtMZ0FW5qWUWh6So2ZeCP3j3jn52/w3VzzunklHfMkknXkvvXiGScG4l9xVxGPqhf8m75Z/Sv93wVv0NqF7y7e8kvhwWSfoGl3fNeb5kn4bpRfnAK4gOlrnjtzrn1ik+KS4Hp4Y6zqwNOhUsDVb/BxRFTDow+EF3L5WpBkz2lJDqxQGQaPuc8/yt89YKkoGPD63zKsPHs9yf8o48e/32eYj8HGP8xVcrKn311y9VugMM1AJeXXzIJO1zX0m49rSjddYumiGrm2dMVGTgvXxCrjKCY/IaEYEOmLRrSeUYnO7Z5xvJ2oOkFGTskGqIIQTK7siaNFS5nEko+KAbIYvna3+PNbI76yFBl7kxNziWimQdnOzbFlF1uWKY9OKGvGjalYfA9lblmWqwxeSD1BhHHR+4bnHe0kw+o3AIrSlG/YOYCkgLb2RSyUna3vCkEe7imGjPiHX/9zgl//u69o6wrJ0SFq+KE1sKP/C9zMAWp70kGypg560baaoa/OyGNllXc8Lt33+c7bz7jvLvmV24+Y5qgshCrTDCJ7+y/wfvIN48e83xxQsbwratb3t2/YsOGTdwTXGbqpqTblov+CsTwzfl7TNKEybCjHO+IacMkJ6qhJMeHqHZ4IkEcnzcLbsyeydhRFzus6ekVnukZJo08Nnf82ps3pLhmNMLTpuIpligjqeyQUcni2UyXbMslxsKFXJItjMEgWTG0PJtOCU3Jw2rB3hji2GJTCQ4e3b7kZPs1agPfr9+n1RItDgRvGKQh9qeYeE4fPRe85mJ4wTgIm0lN2J4T0ozRW1IdKeOG/eyCu+kTbDnQFHs0B65vf5kunzHZrAk6kBrBxW8xRk8cDL27Jjphb8AmwQaL785hmKGaSXKgswPGwlh4+t2W091Los380YdztrNTVm3Pxy8OHDYfU4wjRb3BK5zd9XiBZycwYvmL/NuA8kF4jgkJLxYhYsLAvlvyGy+/T1UNXBanfF49wWnBx1rwSN8jGyFWHqeJzTAhJKWqIl4Kmq5hWTwnysCkOzCJgV0351BUjI1SaaaJQixG7uyU680H/Et/yp0ZyMBpMjSjo9cDZTvQbG4o3TWNrGm6D6lIzHPg3t2GSOZyNuPZyYc8O/kFPr/4LoeipkyR3399y/v7xNmgxBe/xFW+x+vuHUz06P4bIpEC+P1thcl7rmPk+WgYuxGfC+517zAtHlOkEe0PbOySV+xAI2INKoYqwyLsWE9r3kyeIFpwHjwHV5DiwHTcM9ozZDJjvguknGiioUxC1b9krVMKO8PPOioj/O7zH0JekH3NYTrgJweqGDDXLVkUWydGDLmFITpuakPDVzzRr/grt+euuOXDm2t+75Mfcv9wx3n5A3xcM6aaXK5Yr4+SWV20VHXP+fiGsd1Trbdk67C14Z5t2XLFP/Mdf5E7vjKOZCrq2bdw7oTpYc8oW87bNUUKPC3foQxgIwybU76ePmZjPJMhcHG4Yh7PKcaatc4oTc2D3jA45bPpAWtaLDP2TFHrUON4tL4jx4Giz6w2x05D5oo4uLfr7goxkdCc4lNFKYEOg0uJlWyxqcNWCUHZtve4rqa0bUXVNBT27/eI/znA+I+oPnuz44+/uOa///QS0gjA7u4Nq7DldLxjFys6hD0ZckI1s7l23G5WiGaq1XMMCVRJwSKqHFYF6b5hNJ59EBb7lgOZrbvHi2YCZkR1Q1cWVIDJgZB6TF/gU6SSyOdmwb6o8NJRpC2XxYrULTjcTSiMsDYrXu0veNxdYa1hP6sYXAli2JaXSDmSdWB8XrC7ueCdYcuyiAyTGawmuEnH5OKa83u3SDjw6v4pkgPz/SUmFRTDe/z+J3/FYh+JrmArI482l9zfvSYXwu7Ck8qR08UrCMrpmzdYgSIpp0MimoJqI4zBE0YhLxPvbF/zD9Z/xVy29I9K8v3j7aKTwHv9a+Zmh4ihGTp+9cVzPtyUWM0M8pK7cEMWZUrDNNe8v3tJFsvL2SOWqcSMA2xvCbFjMmTqsaRIEHXL+TiQjPB1OWWkpQmREznQ157NYLkdzhA1vMtzLrZ7Tm6fETTx2WyBxkyWjB969la4m66YuEhbVHgbeWhfIyjdzRxywJo9UwxFUyCzh7TWoN0WG+b0i5KKxC+//GuSjDwvTnjjTjESOUyvyGK4uHvMVXdBjpaH/g33hxekIXFoKiqx7O++xdPilLLYU+gGozBOz1hVa87SJS8PFwz7+5go7IYVL/1zCj+inDDEgn22jLWCiWQ3Q4YRyYl5aqjGmhQMlh1DqCkkcigMl6Xjg+dfkgSGpudie83/6EefcLp2WJ0gecDYEZMsD64HvBqenRr++N13eWNOqYfEd9pvGIuAMw6rgSAdXTfnrNvxTnqOVeWgUxLgdceH8YJCYGgCBkNnakydScay6Gcw3keNsip+TN3uuTdu6HzJm3hBokEvXpBPnyE5M8YZPzIf88JnpnaHMWtqEepekKHlbH/H9159wkn/Y3KGvjjFqbCIyrTrcHHPYOCmXjGW95imknd3e/7LZy84GSMf7nvujwdkmPDF7S9xNb3gobnkw9tbbmXD/bBl4U5pUdZ5RDulSZn77ZwmTunrR1TxgGyeE/ITGCNW9+wLwYijDp5JbNnMJjydPST5E87ykoMv6HTApzuGyT1SmlD0UIw9RiPfvhk4FIkunGC0ZrAJx57SnFB2FaUK/UwxZSBlOP9kCwchGUGLp3TOs6tKxrKlmR/4df8jOh/4w/ozis1rfvXpN3xv9yOiaRnDSKIkVQ3PNyfsaLirpngb+PDwBf3VgOhAKo9mbSe2ozV7nsqOXcwUcYsdr9BmioqwD3d43fHO/jV5nPD15B2mHIido2vv89fnv8Wolnc2G051RIuOpbZs5+9hNfNg1xOt5+ADd2XHaCtgitNEdgUX+zUbk1GE0+sacka6lnSwJANT+xojiq0vIHucSWRJ+JBpGLg8ERCQDNfMQZV6bGmD5f+DRPX/oPVzkud/BPXJJ59wOBw4zN4B4PW25099xd/wHmV3Sw0URLaxROEoUwVyVkiJV1f3WM1u8NUa12zJ20ROBkuie+KYTi37NEP3jml7zaDKYGtez07YVpEoGTWZwmZSTsTcE+KMk3RHJSPfyH1e2C09G5bthDs/pY8V9bWwXnmu3D0IyjS12MaQy0zqHUEMWxlIdYdmhc2eQ3ifxcWBd8eW0WWuzxq+NVwTjcElxZgDb05nnG53nO7uGMwZi2KBzZ+w2BX8bv4R1n2fZtfyzdSAf8Aw9dS3gdnd9ylf7Hg+r1BjKGNmIoKNAu6aqJaUE62pGGcluU5IKZhtw0INYu9IIdO7xO8f/prp5XucrUeK8gRXXtAVa/LwOVk+ZMiJVS75aGbol5/x/fI32eqKiblGcuCaWw54RCfMckM9dnRl4mJMPCsMb8qKd9MtjwfwK+HgKnZbJWrD1Bru20umbuTd1xM+OfmIL5qG7+mEKxHO7pTWKtfLM7Q0iChnXLOUnpxnyAbKByPqDjxxife0YqRga7aQRprT1yxPn9J8f+TB7gXX41OuzC/xp5NfYywCT6cN4y6yvLvm7iF4M3LR3+GzwZYDh0nFUE54sz3lpSsQSXw8fEqXH1HPPYUk6uGap5vv8JHbYg4Fb7LjR5OC/8pnhmyQbHlWTmjrTOlGsj9D7y4xec15sQRG6Fus6/m1ECjqkd5FYhdwVxN+a/1XBNfw8IWnyte8uveEhRXG/gZBCXHOw12gSomNLRjLkTKMfO/1a6bW0fsDYjxOI8YA0XEoV3x3/ylfnH6PoZ/Q2C9ITrD5IReD4ezZJ/j5I3bMKesNnZ1QbOek8Vvk6o9ZuRv8HlZxy1dl5PLuPo+aFyxnULg3LOMjDuP7GA/qrymM52Ozx2rgTiKqUIfId8IN192EvXvCXWWQXDKLA4jlF7/+EUOTqIYtFxu4r1PK+TkaLepL5r7BxSWTfc9k3PEBnzIdthS2wr+5gmJOkhld7VC12EH4jbuSv6Ek1J59XRDylpP2ax68+i2KNDBwy8Gf4YzndBNRX3BzKqzlr6nGhmW8R+ssXcpkX9EVQiRRWcPy8pIPpOUX10JdfYupCLTjUSVjb3hd/gKztmeYOsLC0hnF9AWzqz3l8wIeF3T1nlfmPjfTBf285b1wzXm/56y8404Vv3/DIXfsVgMpKbuxITsYy4Jn0xLbfxujcJaucOvM6c2A4AnzilUr3LMVz2xgPYmc+zW/F3d8oCO5bBiDcGs3+Ji4377my/CbvJ4XFNvMg8Mzvq6ecDuf0xD5eHvH4zzSFX9Ia9/ju0NB0yfWwxYrBWIOfDnfcnJ3Tj85YRZbTtodVjvuassjhfpWsPuEv1WSgXRfWXHHMx4SZydk7yAGYoJyk7mqSvZYGoU8OLzf4XCc7O/4x//kd/8HQ0B/VvXzDsZ/BHV5eclut+Pq7phSl7LyV0PJDscXcUJrG1DQVKI/IV9kSBhUEzF61rcnaI4UZy/JKZPFIk7J74xg4W48xW6F1HWQW1pfcr0o6MTRq8GZkdEVqPZEk9imCU0KVDYSdIJLiUm45qQbURGu/X0eR8cmnrDTCfPYEseGWWoxRUR04MGhpQKizWjKpBYW/d+yaU94NLymrNdczufw4AYQbFb6WcOudhSxY74/UIYFD2zHrpgwkY77k+/zKD+jWh2oqluMiRymFcY6YpOPoKaZkaxnKQFvFZsNzq6J1tMPnq2pGYsS6kxj95Q6Q6SkNAOJTJscxsO3hxtsCrg6Y2eX7KqIxpeIDbR5oEzCxft3LGRP4TqsCnmywBB5pcrBdliFNFly2g3M9yec9QWFerZFyaq3LPMWnc1oadjvJ4y2wo1TlmZP+f5TVodLTBgYxcGy4WLnWWwndLbgbjGna2qcGXkgr6jFkLoJfVRKBqzJvOvXzENiyJ4te8Q6bDPgXcBOFErlg/ZTihhIyeGyIRrozQXrZoUhcsEVLhji2vDw+jmhGPj6/ITbEl6nJyjwXfMp/4X5I+7pNYt44Pp2j0qgYMeb4pKrKhHDEw5GCZLwonzjR7IEpnZgtHOiGpYxgxnp7S06jBiEXwk7ajvQuUB3EEJ3xrLbc67X+LOeuvuS3aJjmG1x1RoQhrxgIluerG8okuH93ef8w28+5/E2ogiu2JEIeGPxpmBatewWE6Zpz4fbK1xwfKt7SSgv8ZJ5cLBM9jdoaGkLTzVNbO0Kc1hSjpZnOqG1wpPDM5ZpTeVHYkrsb79N880HuENg2QfSOCU0luwiYuZ8rILVjp30FHmgSAPeBJquJ43CprQQCiZDDSpMhy2Pr57x0bMf8L3nz/jW6x02ZLrcQwo06hE8+1q5L684qQKv5x4xM1LqCLljdBW2eYwmx6KznMfESRsoRci+4sa+RILw6GXGq2HQSwafEVdwsRkJCPtpSXaOic65q2a0Ai4F1C9JekBcorKZ1bilandcpAXvjFNOxoK+N/TpwOiEa7dkOa6ZZqGfFCSBuzhjyAXlmwssBTO/xiwCd9UM17TM4i2OwHeGZzAEym6Dlcz+tMPEkbv+jCYM4CzXi4an8oCUHE8Or4lbx+wukRGePprykFMWqWbjDbFMLNz3+ZV8x0hHa3puio5e9pQhUo6RZRcoZMIPVx/wYPc1h9IymMT9wxWPh5GFeCa84l1apvaUWYTqsKbWAYPl60lgX07ZNnOMKXm8XpPNnrFyRGtIoeDbP4AiZkKbiCZzJlsa8ezrhlhZslq0g9R3rEvBzRNkYBBelXOyGs42N/zuQn8OMP7/vXLO5JwBuN22bx9VbofjwtAQyWJpTUPGoxhUjuzGgCGJoNZyc3tBToIWe6qTLVkM89NrYi3omHmzfUzINfbQ4VLPPP0dN0tPzCUoYDK9LxBaukLoxykGmEti0p/wfiv88k65GDZHUx/3Lg2evW3opaQOHdrPWIYDvoDC7Hlwd8tptmQVxoOgDCzDM77ue4xc0ZQvkeklf7T6ffZFydbN+Oy9XyObTN1vmMaaUzOyCAfa03d5vPgMmzsQpW5amukNzh7fsO3yhGcfvsef/tI/5On5E1QKzmjxEihHT1EcyMayGRa89hd4GzjRNTV7GmMRHFl6ihjpDiWQqOsIOjI/fUO0gRu3o+i2ZAkEBuz0hjwdsGZGRUuVMv2kwpC4TSOtBpzAMJlSqOU/e77ibD+FVILzzNot1AfUN9yMJc/Tt1jnBe5uhbSWu8LSvX/BdH/AT7boY+XbrseMF3x+71fBG/ZNhZXIRXhDZRyxm3IwMIhHgXuype5bugwxjmAtqcloa4mhQQtLkbb87ut/xe+9+JT/5vavOB1eMu0iL1crKt1xKtdELMP1hA+/+SEL85Ts4JOHU4ax4azbM9eWRVb+2zd/wj/58g+5Tp49r1mOgSSJ/TyzufeY18MEFErN9K7DSodT2JYDvVhW+hBB2JtbxuBwWXD+jlh1ZBHYNmTXoDcniIC5uEOTsC9mXIUVrh4QhI4pye95//aGP/jsx6zWXzPzf44fB1qTEPcaGDDGH8dpJtKvMp3xfPfNG/7rH3/CSegxfs+Jv+UkNDjN5GHLbgHpxDDmOW/a91DN/F26z5+6D0mAMZlzDmQxZL/C7xcUfzcnfvUAVct26sBYenlI1z3BS8/O3uFSS6NbRhWaW0VV2VeOSEF1dR8xgskDrtvw9Xs1NA1V9vgxsZcdQ+6xb32Zr2cbvvr4byhmV6wfzXn9oGF74rgsM9fVKVXxC8yGCgmGIgrvxwCiHIrEi8k3+ADvX60pc0mnVwwuYa1nue8oxgNj5WjSxzza/zK9PmZUw2w8IGIwOWNrZSotoiOdFiyY8EGasdAZmhwDgVel4cYWnIY3VGRSMaWMNdv+HQreY75vOD2ccpo7Fo++xs63VASc3ZBs5ol5xmL/FTflhtlEOJluwGTSref9zWtmsWN3OuNgFbleUH0xZ7nu0Ji4Wzgu5wZnZ/SuYOMUkxM3+TOu1v8dr9s/5y/lX/GXxfcxkmn6lj5ZPrx6QzKGT6fvsA9Tvlqes5JbfvP6BzQqTHXB4xBZEZjLBT7Dvas1D7oIWJ4Vcz5drUBgNUROuwOmuGGiA7fzGQMVDcrmBD6djyBwmg8sjePgajZNg6rBHYQXVUZUMNYiQEyOq3KBKjy+e84n/6f/PTmnn91h9u+onwOMv+dKKfFsfMan3afsdls+uP3nzNtn3MXj9Op+dwMomkE1gxaogGRlSAoC2Xqim3Hz5oIxJyb3brmnX3HavCQ4T37t2eUl7m6DT3vKfOBw/jXt0iLqkKwUGtj7Eqs9o/OMqcCoYFAG5xBVyv2Ek3xLFsO2WZKpuHNzNBvKcUCHGYu0x/uAtYnZbs00FoCw7wzJH4hYtpszNsOMj/ofUjYHNm7Bv5r+Dn+2/E3a2ZJqiNzb3VJEQxEjVYw8ouW+f4aNRxBWTlrucY1xkV4qRudQJygdoy9wwDKNlBJYaMTbnmgNXxTfZc2UmpYH6RqRI8FNtSDYgMkRuVNcilT1CNJRUNFrwfWQscME1R6bR7j3JWoMrXvEadpRZOXNzDHmLcFAn0dSJVjvcbHl27e3VHlHlJYqHdj7b4irkSxw1xdEM6HQgtUhMt6dMo7KO9OXTOsrpOx47U+QReLF4pSXkwnGG8bC44ic6Q2Fsdj9lJxHui6DZJp8haTATd7hcol4YfQRVUGcwVegOSNxz6wraUj84+u/oukPVCQmxcAy3RKy47A+wafAL7/6Q8qYUWMYJPPolSdtT4mvL3hw1TMMDZ161LQ8aQ3zWDNai+qBjYKgnOYO795Q2pbalATZMtqShT2jzNCaa4axxKhhnOw4+IEh1cy2Z6hR4m6BREsqIv29Cb5zDMcpAjlWtDLjM1lSBE+dSq7F4cKITSdHj5LieBhhLKqJpI52KgxSYtoGP92xCScIkdLdMtGSE3PGtAvMCqjyhLY/5TJ9RLYNtfc8Nyd8JQ/YugXkcyqdMc0XpMKS8o7l5ddoyowOanfGSbxHmQ2l2eD1jkYSRYiEsaS4rVj2gc47tr7GJrACJvUU+0uCc9jZGRalGCHKwF73FClREtjbK2JZEiSh2SDWUNiBNu8JpiBUp6h4ohrm+QPOwwEls/UDYZHobGYeDkyzZ2daRDIF6Qj8u4FQV6zkjEUu2FQFA8qqDYhYVBKpskzyjkTiRpdYUZZa8066oB6PXhWXLtOZwGm+paInW8vOzLlJK6DmftvD1QqNhjgb6e/32Gy4CyOtS1jf8ys3W0YT+NG3toyitMkTh5LTfouKMvoJo1Ee7LdMk+fkck/O8PWTkpIRYxo2dcWdSTTdnlnw1N0WsZnRQl+VRK80cYe/3vP46Q95/5vPGTeRP3zv97GSWcma5e41QUqMOUPsHisBY4+gtNpd8RvXL3BZ2folz+Zgc+KD2yuyhbL+hlXY8vTeA56fnLH5VsHTD5V13TOMjkm01NIDwuVihUGoDol9WGCTwWJBldbMkJSY7A7cy7d4MsbY/4GT52dTPwcYP6PK+f898iWkREqJT7tP+VH7Ba79gnv7T/n29X/HJhiyghtHREEUMgpSoFZJmslZj5wMEWxRsr5dsb2pIY08PvuSInb0W8PmaUV5dc1y+walI1ZbXp4qYX5J7xrqMTPtB/ZSYeiJpkQ0YoIHhVgLgzrMDs7yNaODg2/YFnMu3SlFTjRjR2onzMYDhbQ0bqDqR6oigMJtFG7rhk1cwXbBj7sVy3zL7+z/hPvjJTIYFOEs3fD+8x+xCAM2Q9UNlCnw/uQzZmHNsG3IoQRvUGNwZgBRdq5CcqRJt4RaKHxkERMkx8rusWlkyDVbu+IQCs7TG1wSrBlwIjh1DCZATqT9EfUXdYeVSJGnhGzZxy0mzkBHmvkdWrRoLNC85Dy2FBK5mmQOeY8aQ09gnFisj5z0t9yPV/j0Em9+RJNesP1wS1qMiArXhwK1UyrxnPR7XsULxlxwmu94d/UFKsre1dydT3m6mBBpuT6dg8mc6Q2Kx0RD3XtUI7vO4XSHT3cgyp7hOFwrE+vSYhFMkfGFkNUQckdQRVHuS+TRyx+xMANSRk76O8Ztzcbex6CcbFp++/IVyYBqx3wb0MsnzPcBp9f8hX6ApIJVjtRpzypUJDxliIxZMSgLhKl9hhODdULOI9lOmdg5NZm9uWUYCyKWmyoiJEI/Z5orHIGCjmFzQjRCeihM9y1TvQGB1C+40zk/klOmweCz4WBKrDb4WB1VBX5HKhRrDGUcuescodLj2h8qardhaxZMGTDummkynLt3OR09K2OYpJq+XRJouNQ52U55Z99BzHwpJ4xhRZVKqrRkV1pa3bNaX1F3IyoJ7+9zL16QLCS5pMo9Vi0Sa4ZuikmOD9ZvGK0nGk82GxAo2mtcGMnWU0xOSS5jsiDDyI4NPgVKMrdlQrTgKk2403NEFKdbAh1GoZCaYEssBQVLluGOMR8Ifk7nC24bizNwerdGCRjNTMOANYkyZzBnzMoCQbkthaSGVQ8Wi3LkDxQMBDIvzYqNEbwWlCTKXjHJsnNKtjsqEZp0QICrdA9HTapXlAjz1685XJ9zUy5IPjMLHTddxdfVBFFlWgsJ4cWjlg5lO8yPXddxS5aEKPRWebS7pVRH0Y18eeG5PoHzvmQoLc9qQ2+VxX7LydaTOUppkzqisUclUGyRECi6O379878jjZl9MUELeNJ9wx1KoiLZOXvn8DrgNb0lzXf88uWXnIYNg1i2cuD+fsNi6Di4xLPyIVXbgzF88eQhN8tz9mKJPjF0BR6YpR2aLDfzOVYNdTeS2poyVyCKqLK3U4wmLtZX3Gu26P4lf99RYz8HGD+DevGjO/7ynz6l3Y4/fezPnj7nf/V//qf82dOnvB57XnYBjS2TwlLkjrHd8i9vJ6QxY1SQmDFlT3VvQMtMThEJGWOEmYepV1Qs19+cE3vPqdkxpeP2+oSb0KCj4lPEpkg/WfJh9wcsx3OenTT4VBzbvzFTtgZxSiRD9IgKY5XYsqCKPSdpzbLvKQ+Of/rRb3JgQhECp+tbTPTIWPAHuz/k19K/4qo8oyw6yPDUVezKAolTzoc9XyGE7PAS+XD3Of/4mz/i9+7+hEfylHJoOT0IJmeafUdVjjSTO0QD+fKCcrdCfcEoNdO8w6DspcbElkl1RSyFAmW697CdsCy2+Bzo2gnltmN+dUWQhCSDS5HCgRelV4U0klQJ2aBG+WD2DjY5Opsxm2uimZIlMLl3R5aSzfV3cGPDkxCoTU9nhRfl284SiZt5jQh8x56xMg2n64HHL79ElyOfLd9lz4z+m3dYvc6EYkYpnlJ6Pnn/Ppf9Q5qxp5aA6zO9K/jb81/n0KzY3ptxqEvEJH4pfco2ztnu7+Pf3nTWfc1uCBh3YOsiUSICpElPIRHNBnyiKECzYZcMNr9BszCVkrnp+Z+8+Wf848M/x2mEgyecekwS5l3FkjUfXb/inZtvGFSosyelyNU3nuWPB1Y58X7xnCm32DxQELjXZSRHjMJcDQVCtAMTs6UKgcafQ7lgJgeCj8TRshPLnReyQrme442QRFiZW9g1jKFGSs971d9wb/IcESH1S2L+ktE/ZXXocVmZ5iXRz6gVykNEyITJQGUsjVGc78kiJG1wGZrcMlu8oY4dUq4pTEYXD8jFCffKDWcJmsOMgPJUV8z0Hf7J4TFTgcF7brrXzLC8dGu+Xya+nj3gdlZxcf2KaT9Q+o95ce89/q8f3ufN4oBmQ9QZaw/bIqMCho5JLkAsTdojkmgOlxiUOpVIYdFZgSDYbqAdrzFZETyjnTN99o94/uIPkPgEq4ZGt3QuYTVTSM3oKmozPf7PzRsmdkcyJZ19h7957wzEMzncYLLB0XPWHqitx0pJkDljWXO5MOwsOFWmo2CyUNoKOx5wjETfU8+/5ll53PtyMoSxIavFuI7Sdhg81diiCreypEwFZnkCZIbwgvbuEdfujCyJ5aZjqzVf12ck65lUBTHPYDUwoHTdPZpmzmCEsh8QMnW6YZoCjZaEoubpuUdC4EE3YdOUvCwCRRw53xx49xWoKkNjIHuCUXYnLW++M+H6bMr2ZIk7WzJzl3TLmt3ZlJf2lO9P3+GyXnJXNKiUJBxORqAlaeTk8JLH3SWDOHa65Zcuf4wh0/mePykcX5/XVPHIDfmr8Vf5evP79MMv0hwytbYs8poxluwnEyzKL7woefLsXYIc/YAkwG11QqGBD3ffcDbbU9sfo2/H739f9XOA8TOo3W1PTpnDZvjpY0+vr8k58+zyhi4lYs7E0FOvD0xSZJrvGKOSBoNBMfmAKUYQiykAVSSCEUEtTBk5lGd0pmL/5h6VMxSm5NZfMFbnbGZPUFniFfpqcbwN5SWhbLlZnTLViKRINBVzVSoCKXoEJRaWIRfMhz3Lsefbt88xOaPZMWrBcr9FRwUsYZyRfMt2UrE+OcOQSaEgFCck76lywUfxJVlLftTPGcVxZzacbtZMcss4E1weMEXFrB+Y7G9ZFQcsAjcl79zMMeEcNRVFlZjGHVYz63hCJqBlBoH53uJuTlhYaJoBp5nb7QnlbouMGz6Np0g01FGxRcBKpldzlNOWS9q+AFW02SJkropX1IeWaBpykdC6ZxTD9Zs5jB7nBpa6ZhTl+aRAyBzcwJfzkiTCIg7goM9XnI+fQjS8rh7wvzO/w9+U76CL7xBchTMFhSTGItCfO2xI5NGTrjwxV9z5B1x/9B6bkxViIo/Ca1b2BmLBdfsEb8CS6WJBKx24A98/qYgmYnNmnLVUR6YAuTJ4EXI2rHEYc8uYHRbDg2XB0m+pOKAYDvuGri6oUsV0aNiXEbhGdKBSh9cCyR2fd+9QDyO/+HrD6cEcZ8NySfKZe2GDU+VEA14SMxpUEk1SbBTuS4V4i5U7Hg8GsiEHhyjMosNtKowVEEPjDkx15G79HtEUDFnIYoixYkgLRhnY1bdM9gd8Vh52E+rDjOXdlvmuR1HGacCiPCwdy+kIYoihQVSY5pZyn/AHMKZHnnxO9iWLDypKM2BiyekwI5K5dR0zfUQTMw99Q/AFIUdIxw7jQTI3dWZXWSabl7g4UsZjYuvoE6/L3VEZpjVYT7BCNoG9z1iE1VBjs1Czw2kiGlj1FWqUce4hgxk6zOaWQ9qzt4rLH4Ja+lRi1FOjSLcg6IBkxWVDclMaOyVkR3I76rRHMLT2A744XXK7OMelAylYfNdz3o7UpiIUD4+/k4Ivz0tGEietIhgKVbwkfOiAjrrcg0l8sTiAERKWdu8ZxGBNT4PitSAnhWy4KVc4OyPMF6gJ7IqezIwv08dkVeq7KU2Y04YzYjFHFonu20tmTompRG/f53x2j2wrTndXFCnwbvcFwSYqPPbi1ymS5ePNY+ZjSXCJF37gRC8xTkm2ZHCWV9MKxJFMIlYd/b2afmZ5M83cnRkW8mNyaVEGXskSFTjYioOZEuI9NK6AHsNrHCOp6/mtm6cQR5bbv6W4+RSfWvLwA4IEOq9Y2SAqtA6yK8gsuNucoKrMWdPGir6uaOg42ff0PrPNc0AYuoLgCia559vdc4yHwXjM3zPJ8+cy1Z9B/WQ8ov/WmGSM8fgxRfTt19j9BvPlK+qlhw8/ZB6vmYUWYYbNP5kZG3CZn9pYGkN0njruOVRPiFJy4Xek1yuYlvT3P2Qsv82Beyz7y7cbhMelRJaCOguFvaSIA2RoizkP94FpdKRYkFBS4citZ2kcFfA7l3/Fr3w15TCz/NVcebU8pW2WkBwhNDz3JzwrzvlW/hQzGIa+pmje4TR2pHJPZUtsrPm7OOUsBk79DSlYMoZUwd1F4HW55OHLl7i8JY6ZMhXMX/XUIfJG7uHkKxo3sux3vK6E3ng2UtKVlpO242RXIPbAtOhIdWBwM+a7kebyx7xaRv7IPODXr3b48w71PYMYiuGMnQskO2foezbFMzbVM6pFwXbfUAZDsoIUI9fNjm4w3E//khw+Z30C5vCALjdsqoLT4QWvn3yHO1fj/RuG9hP+8t7I4d2/YZky3xr+jM+mv8mtn/CD++cMZkVntpTdiIyJf3D1Q2R64HJRsN7fp8g77t9csVktMUXF7RhxbcdZdcuChplOiO0jgttxr9+wkxIzydwu33B7mblvDef9HfupZZUDWSE2BoeQe8sLv+A39I5r2WI9/MrqDbkcSXuHWQtBK7ZxyXxbcL9acBUi+5PInSi/vHuAzwM/yp4h13TZcfLywLQ/J8cph9UbXn77j5m8sJw/r3n39Fe5ZsVUJ8zHAw9Dw012nLsa/A3V+CW/tu74u+xoOs9JWbKp7hH350zygYlEvE/UKdCHJV+s/xFfsGA/OL5Fz/vulrHcUB4sQ9oy6QtGcZhUU5geCSOvVyuMDBQ4vEnMJ5HeOUatyMlSpp571zva3T2Wj14QVq8oikyQDpMy7dW3mJQJN/9TnsU5Z/kBmpRFOceUGWMMLgnqDVYdLy9G6ruC2Ga+88f/F2Ip/Mtf+T3c2S05Bhq9xVQriiBkC8kqO29J6pmPynLvuSh+QOeFHA2TsUKqTOscSUBTBBd42lzilifMcFzWDS+Kr1n1B+6tC5QaOZRs54lZSNhyRUNLp5avhm+zbys28yWle8jWRK5mDzjd/+hIMO9HzvY15eweOMeiE753Bz9aQs3IyaHAScIoqAQUS7KRE+1YE/m67oiL++w7Zf/N32DHA0NT80vLJ9hhTpz9C2bTNT8+VFyen/Fw9w0vFh3zHHg6W3FnzpjfKfFw4J5/xPPZAEXFzUmDL5ROF3xy/T3mecXvzP81Nr3g2c2cj9d/iymnfKXf4p5zzNXwO+HX8YcFWmc+O7nFFnsuiq94szjlTX7CVXVJ/bI+Hs4uE8sDbfkO2RjWdsO6+IpH3Rz5wT3y2Z/wcf6GJ1t4wq+wKp9Q5V9h8IbRfkPBU5xY+k7wd4H/7If/G3KCtEmM+hnrBwmTJggZW+x4b/E5aXVg3Tn+4vX/jM+uG867LX46YGxg9J5JHliULwirXySMFX1p6MISL8KD8Zpp6jkw4dNv/y/4bfNzo63/5Et/CjD+zWNjOAKMIR0/pqzo0GG2G0x3lKBW6YDLR4c2CXsG7/lm+pixKlEUshCdIVSROgXckQlK99Z33jNCY3kzndHFxKLbchrzcdOLgSyOOjuS7kjjHWji0Ex50N/S6IEYheCmWJcxUmMLi1RCUSlWewZ15OzpnaMwU1AhhoYsFTMGpuyJQ8FN+4DsSsYJ9LbDxA6TS7Iaboxj2iVicoylx9lAmQ6QTtkuT3ASaPrnaB6pWsFoJlcFOU3ZuxVN35OTZ6REciLSMAkjq+HAqvgaJTNaYcgNMRoGM0EFlMirQ4ERT128IdkWk0vG/n2KrNh+IDvFlkqXjn4jXhtQwVYDapUuKOe8omgTQxaM39KitDqgaY9WHzNSYCQgw0i/bRh3JTkrXq55f/jnfPDmT7i/vmM1jHywd3zn6obXJrK5+ghNNamocBpo6pGDv+N3hr/k97q/5ZfuWv7BTcdv7hvKOKeJM3Kac2scdbpDB0PAUxJYdNdkAZ+EaAxlDpAg1x4DyADPZcG1r7ltHeVgqVEOk5JRG2RT0NmKTkt8GCnDgnuhJNQN2Z9wYMrABedu5IHf0TRCuVhw7zBHJaPNCAS+mQT+9NFv8Kq8I9nMRVqwCAkZlRNtKI1Qp4Hs9iQ1mHzs3hjTYFqF0SBYVkOiswM6XEGOWLV47Sid4F1BNJnWRC7igv3JPZrDMzoXeNMYdKH091uGQhDXHy33XaJxgShCyjVBLT2JGCym9ZgXU3p/4HZy4FL2rC/PyGOBlGvupMeGR9h0lAoOvkZ9jdo5tXiMCm6cc18FrxU+zyhTxqbM6fqWXGU2doGPG0oTMeIJpqG3whs7JYlnGpUyv+RRvMNZIXlLFRp6NYxaELynLRzrc2U/cZQIp3JA5i/xCSQa0vYNKDiUjcmUMTLzMzAFicTY31ANLSoOMTN8smRX8cLPuZyecmsdU3/CwxhxacQqPByE//L5nsXmlsfXAWEOlGQ3ZShrhrrjTBQXB66l51/fb/m/+WvuqMlGUBM4sx2FOLwo37HXgOF2PmVT1Hx20bHIlhenC7IvMK4kSWbvOpphIIxzTjQghfB6/5h9e8ETcczvZizahzSNg7qhsjUNyk26xqnnLC0gJX40ec6ras1F+IbCDFRkimxJSZFgyJLJdkBsBBqsCXhGJBvcOOfEBByWmS1QsaQMCMTifUQMmEvER4zsMUG566bkZHm0LqjyhK6YcSMFPo54BTFwMzgUYVrOGIoJANc3c1wIzIo9raspYuIvzr4HFjbXC97czrg8PCBl4V6/RkRpXc1scf9ncbz9e+vnAONnUD/h2fzbhJuQjkTCIY1ARjWSxx4ZB8w+sZEZSY88hYxADOyLim0xYzM5JpuikJwhW0UkUpOAzGiOSpMqdTiJ3DUNXVaa0LLKmewdJmeyWmz2oIlyuEWNEMqGxXjgJN5AUPZmiTXClJbkDdlWgMPmjkEsSTyj95S5PvI1QkGggWzZX59y/eN3aasZwZa0lWUkY8JInQyqwo21zA6JMXv6sqDSDqsJm0vuzs+PtyKzp97fYMaCWNrj3zKu2LslEoSYSkZTYsZjHLrFcBY3iIzEpAwChVqCLkhSMHpo+p6rdn7Mu/A7TPk1oxvoUsUk3WG7lmQcrkjsA2ADRurj19cjIso+CdYO2DGzCZaNGdjknq6cUuUGKadECsq8OerRewutx9nM4EbyOHJv/YqLV9/n/dtbfvt14LwbuJHMDkd7+SHvRENPCRjKGqx/ziN+zLvbDRMqCrdmRLnbVTzXnh80JV57qn5AkyWkgkW6xeTMfrZAUHzMGBQtjwcgLUQT+fPqXQZV7Mv3sXcP+co9AZ2i25LelMRYYsOIkSkxVIzVlIkPBDG0RY3HcWYC5v4jfJ7gTQ0k8sk1jUa6Qni6zFyXa6JVFpwz7wK6Ve7RYI0i5muyUTR6TE4weiRbXGfQaEAMC1VuzYF99/URhKgyI+AKj3trfd9J4n5aEOqSshx5Wb7krlE285ZsByr2GHvkq+ASYo7ERI0le2P5hjMGPf4Nky2EdsJL2/As3Kfd1Ag9RXJs+xlTM8WFgNGEuAJTNMzNCWqEpEoXHPdSxmoNRsg+UIbIolujRWbrFkiGk/IrrFGCmdGaijezd1GEWcxIvmSSDjQYxBnmeULXCohHnKOtKkKV6LWlNML52XPmh4wlEbsKo0enRwfcuUwWWJoSNY5N2hPCni7ckgA1U5qxxGmPYnkzuWBTVMyCUCg8aW9YxMy2MMxCYrZ+isejzDC5IRWntM2MKoFZzxBNFP2aPzvteBquWZczVA2V6QhmCwi1Nyxt5PF+i4jw5ckJX9zr6etTblYN2SpNt2GgJ3LNLJ7Qby+YYkkOXrQXTHLBhU001xnWZ3i7wpcOl2ZcqGWde7a8olTDpX3DV8UPSXlgdXmDqmCxeJPRMUP2JElk3+NE0FRgZQQJSBZ0XPJAOtRYzpsaxDIGRclEM0MQCl7gqh5rWiR5hmHOkCwSHMqcy3LFprYUMbCIJdPkqAKchIwzNYv5jrrp2G8KqtRTM+JN5ln9LutiRhBDNwo/2r7Pxi/IKizbHQJsTcP7xd+zjSc/Bxg/k/pJB+PfVpKEn3QwQqQxLzipnoMOIIKMgef5jKfxnF2qERSNkWwgO0OuLAqoytFpkEzC4MmIZqI9KjJKHXAa6MdjK7x0Spx4+nJKwjImcLGi6BacjZlSDJV4yjGw4AA586Z/ACIs/RXeDwzmDF92OLdhtEJ2BcEYHDUgjGR+uP4N/vb6t+muFriUCFNPtJ7oKqI6oiZO+uOIZ4cyOSRiKujKkooenwwOh5jM/qxBfcSNA37wjI1hlvfEcUmnE+6Wc3LyDOmoLhlLj2A4T3sSG2IOYBQHRHNG4IQ388S0bUnREmhQN1D7a3blDS/mP+Zh+EsYLEkcYpQ+QzIJMUezI9ckMMrBWHKZkFFIo2XKLX48HFU95QVaFARxeN0AUKhSxAJjQEWxB0Azr80LjmYkFrHCISZ6jUhfcvLZe2zuzknqOKTF0eTL7riu7/hkdeBy+WMu3cAntxv++/iGv6sdYeKYhB1pdCgw0zvcmLk5O8eS8TEjklFvjwTBXsky8ok/pbdKEzPj7j3+j5v/OfEHT4i5IFiLjgajCWdLwlCyLoTCRno6pOpwoYaxZF+d0k7OcTJlKCJ3buDDnBGjHPwNg92RnFDbBSda4cncp8GYxJC/IbtAEUrKKMgIRjMxrDAZxBgKifhcE7IgqcNLYC6RUMwpxZBEaTVxnlZYNVzpLSbc8do95V83nzNSMucaazuMGLIkslWiBWLFxjr+dfo19jQshwNaWV7vP+D/uf+v+Dvzi+Q8YJNSJcM6LmhcTRFGUm7Bec7silPToKJ0GtDkKKIjYVGTyD5ShZHTfI0q7O0UyZmT+eeIP2bMbOsn3E4eoCJMQw/qKfrAZJjza+spS2r2viGZ45pxWJIJbE6+z/LiKVOb2SRIRLadJxXNUd7uDVeN0hWeaC3ZeNYcuDUHDuzJAq0rOR9n+HBgFEsoG2JTU48JiJxn5XRQVGDnIm09EpzHqud82BFdgRtLquffpekDVdpRxpaHr7/iwd1Ldr4BtZQ2cTB3ZIRGlIePHvPxZodRuGoKrs+/y7/47reJk4yLG0J8RU5rmmBwVOTNkvjFiq7aIxzlz+cS8QdDVIPND8nrFSbOeRiFPhn2/oqvqr/mX9d/gX/9nI/+5IccnpWMocQY8BLxYwHqSCaTfY8VhegxLmCImCjM0wpnelY+YtMR+IagCImsFZkBK1vKcgNEtv0REFgCi2BRMleNsKktdYiUWVjmkt/qlnx4SJR+z7ce/JiHyxvemVxSx8QsdxTAy+ohqooZWq6bJYOv2VZTsirzw56sMPg5H//id382B9y/p34OMH4G9e/iYIQYABjTiKFHyDgzEKwjDAmnkYg9GqmQgZEkQraGVJq3AAPUWs5Hj8HjUEQTyR61z4UOFDkzREOZIhNGgndEP0ERMhlSiQbHUju8syTr8Tkxo0WIPO/fAYSFv6EoW4Kd82o2ZbRKFMFQ4tQh5thuH2xCY4GLisuRIgVS6Qn2OAM+uIJRAvfaAcUwqFLvMkk9bVFic6TG4dVgcuDwoEGNoKMlG8M4y0fjm9Zz2b7DbfcuToUiKV8ufoHBWma55zzsUUY6f1ziJlqiddzO7nE7q5h1AxIzo5miJmNtj2fkxifmYY/JSkjHzkEi0IlFxEKGoskYoyQXiSUwGkw2VLJldthgsqGfniCFZXCWnHuMJAyK5BpjIAvYDtDM1rVcmQ2SDdErh7KhI+FV8eaCRR5oqem1odWKQabkumUzP4DfkHJBJx+ycZa9n3GYV0ziDu0tQmaqO2xQ1qsVhkyREkYy2LcKhEMiG6WTHc+KKWVQXtj3MGbOKA0BR3KWOg7UMkVUCSMM1rGkhfkzjO+wqYahoekdzx99QK4m7FfKjQ48TjCV4/NWCfR2wNqCd1ZTTpuG2lgSkWwvyS6gucJm4OCQnWNz+z5iOc6qTU9FzZAKTOhBMiIJ/ByVRBbBpClVnCCa2eUt0+6AaObHXPC3JnOQDc72YBLRKmoyyRhMKFCEgNBpwXzoCJXnL+YfcNUU7CYlmRGXMvPdwOMXex7f3DFp92z7b8hWqG1JjSWJ0nNMMY3rE3I2iA9IGZmOAyd6RY6WwZSgmbromTXPjgeajvROUBJ1GPDJ0Q0eE6CUgmmZGVyFcZYkEesyVo77xK3r2amhU6WLd9SxYV+uyFahhN4cpZ1JIJuSfW4ZRCjwRIl0tmAZphC3tFWB8QVzA4OBTORcprzfKkngTZW5WmRcVuoQmaaBaO2xWzIqOTtmZo8LcHMXsENgsMdLQGnhwJqMUmugsp5VsHx0tSdIYizf4evp+whw0n2BjwcW3SUTXWJswSRdYfMLJrbl4eIrZn7Hu6nHSMN6dgoINhWIGJZqMelIip/UBgyMJpN3hmSU2DmMSRQSsaEBcUSJJN9jDEi0YCKGyGS0XOSG3g6YYkAHQB059qDKMcs4HM37qswe5ZJASmsmvbBqLcjI1UTZ1CXJeLw5yu69rfG9I+OYmQ2rYoM3gaGvWIQdVpWX5QOKwx5C5nV9hqNiX07QDJN+T6+emITbVP4MTrd/f/0cYPwMSv8dACO+HZGE1P90dGIIBGMZMlQ5vDUFt5iUUBfJmLcAQ8giqIK3jvNYUjA5ong9bpQqcgQYmhii4NPIREeicxjjyRjUCCYqtosUOYCTI2oRQ6kjkiJ3LEnJ02iPswk1ji8WJ9w0BQqUsaKMNWo8TgLBgMuZKvXYlChSYKwLonPIOOVQeKIoZ+0ezZ5iEExQonFsiglGE3MLVRqOjqVOaZsGBkeuGkwz4oGmSzxd/yo37bd5sG+ZkBilIhvltzc/xktCNdAV5nhzix5D4vP7H7KtKmbtgORElpqsBjThdGSNUGqiyj0xeJRjt2iIBaKCDZGiMoiAlgNjKWhQJrHHa8tqf4dLls3JHHVw8CVtDohkjCh9noMRVBTZWEJURit8ba8wZJ4vRux0Qe8LSivkxZyzFUR1jOrZ6eJodV33PK6P4XZDv0Krj3izfAc1wn5aY1HKw4hoZqZr1NgjQVQzZUqIKmKPPiduTJCFkT1vUsm+qwm6oMEyOkNQSxKhsQnjVhhVNHR08ZS5djC5QvyIyw2EBmcKDrMZl++t6OaG29RjMnygDmuOjoZrt0fIfLv7Bd6fPKaywi0HCtOjOTO4GZIFRoP7csHm5j2MFbIGpj4d2SXZ4PqWjFJgmeURJdPZyEm4B6mki+tjiFS7Q3H0Zs7fuIpbIpkRfKS3FXC8kZfjkd/kyaRkqWJP31T8zeIDkgm0Bag1IJmyH3hvvedsd6AYR4ZwRecPGAcmBjpGkkQEZXxx74iuTGL6cM+8WbPiFjsCWUgWnCQqv2ZadFTjM6xeI9pTJiGmKeZSKdpANg5fQKpnqKkIJKwPFHI0Dfvcb/mXZsvedszbPaVVusmMbDiOaMwRQEXJBOMZdSQpePFEOYa4TfMUE/eMdUFRVZylzNYKa9ciGjkdIYty2QhiBUtgGlqGyiOaKMcBnyNJHTO7x2bhthNiNohkGpPw1tPqhmQGKolozLhc8f5Nxy+8+pqFHpBU4ZNyNn7NdLikSooznmZxAYWQbcDEyMnsFb8w/5w6ZLxt6Fdn5BSwYrF4RmOYpgQKJhiME6JVfEqIJHIrOI14kzCxQY0lSQLf4w3kbMkmYUkso+K05uAHRCKxU1DPGHZo1mMKcPYojtZmrp0HzZysM99az/EqhCKixQHFclc8gkJQIwy2ohgtmZKcYeKPysN9N2PZdQBclafkIZKTcKhLjCnpfIOKZTXc0ZuCKrT8P3509+/0X/pZ1s8Bxs+gfkLu1JThb/638Nn/nRiPACPn/qccDdFEMI4hCYRAUjDCURJqI9FYsrXkQthXwqZ2WGuwmhGOBDj0mMqHCCU9RU70QSjiSKUt0ToMQvAVohmTe+61LRaw7thVUY639SKOdCbQDw2T1B8BTIbWjHTV0euhHg11LFHjEQl0NmJUqVOHzYkqjaSiJHqHCTWdL8hYlsMByRWLfSBQsJtNaaXAkJiLUISBbBRjMl0zYTN9RH92RmVHrABtwcWrK37r2TWLPhxluxm+3X7GuewAOERhLAKIQKpweWRpe0rNTPtApY6sDUkdkJCU6PIxlno27onRk3HgQIYKADtGrD+SaIMbGYuj9r/uIkVOPNzd4LLw1fkMU7SoGG6tQa1iRDGpASdko8gghMESgRe658+KV/zp9BkPlwMrtsz0DskT1D2CLJgEfZyhKNPpmjN3hcmZ9c3HnJpEfjsu20yO5LDJumWqB071kr6qaCtLRcIksICao+28GQOr3IHAkBOX9j4mglUYPfTqUaOchTuG1WNC4ekZOeuV5u4EKTrqyuHTAhVPmkw5LJTsCqIoexlRFS6scD+/g+M+nzdf0do7ShXqOEHVciMH6pQhwfrkI7KWqB6j55NRnDWURphWmdLXpAT58BTnhHMWTMMVoLQ2cDHeI2RPn9ZkDGd95H7vmVaPac0vMSaHklAfMPbo0ZCyo8geULIE3BBZm0f88fl/ziieB7dXlPtrnn7rEcPEsy9rNmcfsF+csV4s+PIRrCd7vD36fbTaIxKPrrt2Qh6P7xG3UHw1Yjul3B3JockZUMHHjLOWQ9287cQEBEv2EyQdBwHhdIbxRw5WHwsCAVNCJQZCwS4PkKYsY8OvXXcYyexjRQSSh6Yw7CSTRNlZC3I0zFJT40xGMXgzQWPLOKkxVjkPGRF4KW9I0rEcBmxWNlY535bMwzWldrjSIppphh7hmFu0qjuCN7z2DaNzGDJzn/HG0bEju45ChbEbKalxajhtR357+xd8/GbNr716SWk7CjVQniDqmSzuMVQzkj2+b32smQ0XmCFTuoZ+eUaMA1YstdSsC8c0H4F1ERQREJ+Zxgo0EocCT6IkYtKMLMJoR8QkPJBSJknEaGY+KjkV7IsdjhGSIKaA1PFq+Jxv7HNe5Tk36ZQ1htninIf6gIdXytl+iips5spS15SxoMwlZR4QlJ2vcTbx4/2v86z7JQ67U/rDhKvNRwyv3kPagt5UrJsZRYq0xZFUixiG1HBrJqiHVTrw2/ULjPl5Fsl/8vVTcue4gduvSC//mvTWIz7l8e3nFSHSqeH1IJCONx+rikRFTSLJcUyQDQQrjNbghOMIRY9+9G9/FMhbRB4DIRnqMFDSE5zFZMNQ1BgNlOHAfOwBcDa8bWFbbIYiDnRFoO8r6jgeb+3Z0NnA8JZAVI+OJh7nu53dMToFhDIOoEqVBsbSY6xDKRnsAlFLFXpcqjjZj/SUrBdT+uSOm5PAdOyJJmOtYtWyb86pS0NJQrMlhYbFoeM0wqI9AqPvbj5nEdcUrgeUw6gEf/Q3IFXYHJgwHm85MTPJjpRrRuOOSp10HE0djGM+7o4dDLF4A248djBMjFixGIQxw74ymCwU24QqPDjcYVTYTwzWJkxMjBiCO/pTFNFjBGKZ0ARBhSCC4Pis2bCXjvluw0x6bF7j1dLkc0QNkqEb5iAZ9UfUenc4JY6nVERsYTBkdm5KtobcW8q+xxSJqmxpC0OdI5IFYzwicmznpsxMR+o64E1EMIRkEFUykV49kLjoL5Fiyn4yoSdyut1TbRvGdsWynCBSkn1BMobOJlQqBjMy2LcI2xhOWNFJw8GN/O307+hmnyASOaDszIAnY01mWzwmLU9Qc8yySZXB5shMEloYbFWQgZgPrJseFXjYH8m3vVHO0gJB2MYtqpbZ28jzSfkEX/86YyxIkjA+gFfi0bIWrGUaAI1M2oHBTHk2e0hEePf6FSMt69mC/bLhUExh9YT1/ISb1YyvHzt6f4O1PYd8IGqPEBEd6W1BSh5CJrmCHB3dzYxqd3yfR2tI2eKiUljDvq7IAuU4kI1F/YRYW3YPloxnS0QchSRyskQNuFKpE5RjRaENvxd+n1/ffcC9sWPFjpgtHY5cCI2B1yYRUS6dRfyEZI/dOkHICIO1FLlnnDUUJnA2HCUSOxu48q9pONqJtyKs+gpndlgdGX2BITPpOjKZUgMPZpFQGm5dwYjFinJeW6z3BOkJdo9BiLtEbUsw4DUzO7zLRdsykw1qMl4hmAmSLYvzR+zKFclFTAoUsaIIJXZQCl8wTldoGLE45jLjclLhVSk0M38bsSASWWBIuWUcPI6E14zl6IHT+8ORrCmGkCLBjAgwCYYsFQffYpvDcT8wJYUObMMbXrpXxDgw9qesomV1ep/KTlmYOY/vQFE2M2X0ykWfmGnJLB0QgZ2t6HzFjnNe7r/Ddn/BcJgSOyHmBWfbiErmanWGy5nolGyb48hpDOxsTXaWU+24138DP88i+U+/fsrBeMu7COHfOHqqDsepBKAaOajQq8PmjNOEEUHykYCWRcjWonJ0M8wKVt+CELWYfJyLAhjJiBp8HwBhljqUgd6aYwfDlZg8UoSBSYpgwPqAyjGJFaAIEEtPTEpeH6VlOzGMUhxlfkAzCtPxaKdy5d8wvg3e8XlEckasYkXxRhilZpATjHqqoaWOM1btSNbMYVYyRn+83ZiRMiQiGesSVg3VsGJmRgxKSg7VgiIbpGiYbh3/06//hF/bfIqQcMVxI9iPiVT0IILJFSZHqjEwa9PRaMzUaCrpbEEWcyRv5QOdcVR5JAeDYqitoYgeEKxRsjochohwOfEIFjkI5ZhZxD0uJbSE4Aw+HBjUk71ijDJJejTwkoxOI8FAsJZoPMYlXHDYvicDVu8QlIvxyP43SWjHGSBkb1inE/aHJUwCTpXCWwxKF2rGWYGOEPop+MzCX2MYmeYECdRWmCzEDFkVk0CMclpuEeQIfDTSk96us8i53mGKmn1ZMxJYbXeUqqTdY5rmXYxxbEvhaf8lJjuiNHQykk1mADDgRNmZ4yjOmUycXrJZ/Ql/kW4w1jOvI1YNe6Y0bg/WEMuKVBtsGqnThqZ6Q2E6jvduwwu3JgNV/knWcInTEpXAKw504ikxlBwVW+f1hIEaJWOLAbVCbwSbKsQVzMZMvd9RjhB8SecMrfdoNxAJ3MQpoy7AeAocqBIlUMoSMSP75V/yY/sNJg142WHTjtF4VC0SM+nNGcP+HBMy0/7Y9h7t8fNODc4Y9nVDEsWGDjWGu/P79A89zgnRTUnG8rHZM5cBJVA3I5Vm3r37Dv/t+L/kYz7Cp0iVImfckTH0WLIzzMTymQT+D+WGtTfo4iH7+Tkmjqg6OlF6k6iMMEwnVJJYhcCAMBaOXCSu51v+bJHovGMaa6ztcDKyc0feS911gFJq5HFzTLAlCIMWWDIPpiXWeTCRvb/DiBDvFGfMcTQhmWL7BHGedHZJzMqojozBRGXaTLgtHh3HFimi2VEOCXSkms7wIjjt+CjOmLHgxayhE8c0JepkEQWrmbHcQu7IYUCjwUZwBpRMWxwJ2yYJPTdEcyTm+1yRrGWUhJdIUTkmtcebCCmhkimkQvMUQ0VVZfK9DylNyURrXDbkBk77kiYZ/qB5xf18gwKt9XzT3KeSwLLr6Gxz7DTHnpgsZ22P5sTV8oxsPdW4J7kCaxyT/oDRDF7ZuzMuH/yP4edZJP/p10+5F2/RZMyJkA+8DD9izJt/I2NNCb8dKFOmJGM5puVJVJKVY4aCMSQEfQswnOhPRyQmK/k4HXlL+DL48WgRvYod0UQ6b463FGMxJuBSxCkYXyBvW8XRHrXgkYq532Gjsr8849XujB+MS4gF0WVcSviUKbMhC7ywb+icRwSKGLAxEl1NlUecEQaZsbGPgZJy6Pnu60tOdwMmB3YzS5tKrGbqIpIFCgnYpgNVUkjwVh46JAPZUYghuYqRkn1aQTAsZIt1IyhsNKN2QEWQVB87GP3Aog0oYFwDuaD3nlYqTBBWeU8rR117ETpysjjxVJKwISKlIWGxagDhLpeEqScFWO1GSp+Y9B04JRlLGXZE9ag/Hn1ejhLRoCBe6Sul80f3RmsC1TjDcvzfqrYomUozPiua5fhc9/e4zuc8De8fN+1SsJqoCgMoh2HKMDu6sIbhyNcppi0f959xP2wgCp09kuBylCPL5G2uzYJAwUjAIEEZ05Gdv2BP41tyWdGXNUEjZ9sdCHiT0DRgHZhyjtsPzAaLYBnsHiOJVuR4M0XJOQLKXAPCW0fL5HG5QkIm7WoOpsa7yHG1Q8EW9LihOztQ6IHSWrII6xgYJCJ6dL5s8gKwbGQNCK0pSWKo9DhKK1Mk5AUZxZQ92Ql7c1RUGVsyWMOk67AIfV1xKOyx22MKmiGwtyNbzVgMaiyqmUDLqA0GpWiKY8hdCFSpo+ouCcaSs8VowKhHK49npI7H7mHviqMyQCwW6KqjKqt6C0Aa69Fk8CmQTEEQgxmPY7uQM7aw+AGkH7D5LchPkTolzswGstBhiQ6mWAaFjmOCmpP66NuQAoRML9DbfHQ2nU0oyCxDoBOhx4FEXO7IOdN5R50rvCRWxRf05XHUW3QHAAoCS694f+T+KEIlI/dmC8QduSyd22DFwF4QA0HG4ygje6gGpNliJZGAKGAHxebIenVBdgYX0vG1OQRER/x8xX1vcHlPSQ1S8Ww+I4lhFmCelalGVGGs9mAU2u1blRRYm0kk+vKAEUNSoWeLMUqZlaSewR332kKPHeqqaBBfUY4Fi2EKviHLHEONY2BYLFF3DH4sU8GujkcVjxUeWss0Hl+v1jielw/wkjnpWjpTHQP8NKMhcNJ2uDFwqBv2k4bVEI7jZzFMhuPPcC7RyYT2p+ncf3/1c4DxH7BUj5HLPyV5poSixJS4S8+5Sc/Y51fAcROvd1v8ITDve0w6AgeDYJIS3JGsmK07brlyvAkbFYwexxJWj12Oo+AxA45iHAHhNOxJktm9HW0kaxGj+DhgALU1mo83+9F5chRemzPuFdfMh5YcCj5/8zGf93PsUJKcOX5vPnYVRhe5k8ToPEYyNr0dDzhPnUe8EXo5JbgJN8v3UOB7L/+OWQdZhRezOa16bFZckcmizOoOU/7EJ2SLvHWjGXImI3hToM6RBV7H+xAtC92hPhKzsC8gu2MHw8YaHwNlCEyGfFRPFBNyLDn44m2WiaHIiYNxRHFU6cA4Fhg1NG7EjQEqQ8Th9Eik3QTHOK+IAWZtwnmOt1ILg3FU/QYwjP4Yn25NxgBJIQYYSkPr3duDeqQ5PIAsb43UFOiPAVMKqGEUTx8XfJM/IGOREQ7eHgGGP86Y2zhhmDYoEEdopWScZr7TfgoYbsclvTs7LtLh2AXTt+t1li2V3ZEBiYmj4axykjcURUtuLH1VkySz2KwREZzNxGGD9eDKGRLh3sGSxbArD5SaOLy1tHcopAHIrN7yenQcMHmKJ5J7Qww1icxPTAhVoIqbI9CQTC9zoi1oyuON1kfPS3M4jrkQRlPwykf2+QpB2LuKJILPPaoZH0d6XaFkcCPqYG8yJlU09vjcijTgTKafHP1bSmPoyiWTcaAzgZ1ksmSsClmVkS1KQS8Friyg9IgqJ7tbinRDFAvJYFNAxZFrizhlEltsThzKKRIzDouxhqGsUIRmOIAYpnJ08PQxkExFFENWIWd/7DClCjtaGFtyOIKWJrSIKmd+jcnKgGF0gk2WkCFKArPFZQhvpeu+3TEi9E4ZihJbeSYpMY2ZHkNrKsR2mOGApqNip8gVhWRWxY8ZyuNFqOrWJBXUKpUYJlVk8laaf2L3lH4KbzlWo9sf96DeMBKJpqfK4BFYXiPGYXQgI4TcU2AY93u6qeOwOPKN6Ebq/YjkgJ3NuTCBUiNihGQ8gy/oqwkmex6GnvqooaOtA2qhCInUJciKdUoygdG3YJWYLZYIJlErRBydj2Q4Xq5yxvkpRV1Qx5JpXDL6AmWOocIS2OoVdxUgQnIFANEcu1ULU9LoUUl4sAVX7gQR4Z4eyGLYuCnkCOMBGywnu2uSgdvlkpN+JHqPGJh0e1DFl5mohna7///hafb/Xf0cYPwHqk2I/K+fXfEvbnc/fSzHwOsvP+f61cvjggGSHlUkZddhQiCJwcREGcdjZ0LBpEw0R2lqtpb0k3+bHrsV5m0LpMiZLAIoTjKo56TvebgP3G9vSQKtPX5vMhYcVPGABXA1hJFoLcEVSM48Lx8iWanGEaeJwVnGaDB9SbKCTx0mJ2yO7F2HiGN0DpGMjQlCYigsdR5wAr2pjqzp2Uck6yhjj1ehbTx7U9K9BRjiQKqIdcfxUVZwxRXCMYBolA5VoZTjbROETZ7TxQrBvOWrwObkjFQd3RpNrrE5YmOmGRKCxdoazSWDM+ylwUY5HtDOEHA0qWXoj5tBbSMuRKgMCUdxxHTsoqOfVsRwHGU5r9QxogIBoUgHTM4kVx5JezZhBSJwiIZgYHT6NozKUIQJMXlUlKyKSofwE4ABGcNQGcQoThMpWA5VSTIwdQlHhuzoqqMZWw7CQRpydbSk37kpL3bvUrrjeqI7kjmP5GCYRzmOJgDVgAYFhbNhR2EiWlYMVU0oHMUY8MOIs4nU3R47Z+WMmor5mGhtwabIFClzMHLsbOkA+XgALnOP0UQOAdWKUgcyx85ZyQFrBMUSs6GMO0Ax4lnbd/nk7A+oV08QwA6eVyaAHjuEO2f4y/rANHdvsx0akggutWz7DS72DHpCFkV9REzmYDIuNSzclExEDVg1hMmEwgmNMeyrOZMxkFF6iRysHjuJKL29hlzQ2RojoE2F4TjmdOmOwXpQg08DYgzjxBNLz2Q4AozrYskYBMHgDAxVfQRW7R4RQ60GTe44DjDVcX0ZRdWSTab0EYkOCZEYjuqBeji+zqbK1DqiCP8v9v4s1totvetDf88zmreZ3Wq+9XW7q7139VUu25TbsssQAiYcCw4XB3GBDiECKRYSVoLEBYoUCYTEHUJKFG6SKBdwkZPIOieKyJF9FBEMgRNjO4DLuCnv6nb37a9Z3WzeZozxnIsxv6+qsAnOOS7qiNSQ9lbV2muuNeea73zHf/yff3OtDVNy9eL1E8muUCtoswEEt7vGVDj4wr5tcZa4M80ElIM4DtJgeoB5JMwJn2onSSuJwMTOd4gZze4ZMw4To6Gw7grtMbX4bjvgCBTJODWyu60ldaMwlonk9jRZaLprrB0wcXi5ZpufcZCRXpT91TUiWy7vn1SG8jDS3Y5IntHlkvN0Q6D2AGX1qDnG9Qm5RChGWwQz4XJlSHS4InCTcGScZpLNqE+IEyaT2owqhRbFXMOt21EQmiJky4jviV0kdJFhuaEQMNugBJzMbNNTHsszvrKGd1epgkMTOgu06gkloVIY1ZHMczLuOLUDBeUdfwF5xk1bylC4d/uI4oynm1M248T8HGDsr+q9v8nMphxuvwMw/o1d70+Jfc785m548bX5sCeNA4fdDuUovrEJN8+EaSQrJOdBhLPr61pyJoZkI6k7NnT6erA9khhQ30QxCCWTpRZMiRhQkwiXU6bJO5II+1CV6EUdpsIqTzj1SOwZJsfkPXOIWBF+ff06NgvNXBBgrn4tylizKZQ9iBHmiRu/xVkghQbVgk8ZnQsHX6lpL4ZY4DQ3LLXndn0Pk0KLcbVeMRdHygUtinNQuoSGo7rfjBAvEVEkN0yyx0xYasPgao29FOMde4AetRKDGynrhuKGerItLd6UhdtyNnkCEQkLJHkGKexY4FIVNh6iMcwr/Ow4HKpav/GpjptaIWnGTQ1zjuwNDtbzrKnAzsXCZpxxJRHLAQ2GnzOzLigIXmaiM7LBttRAoFmVpghr65FSGFODmVEKFDtQrBBECUdr880iYs6INpFnxzYosxN6TfQ6IOZq4dfKoaNx63uumo6db/ln/cfZyAYNFQTJoLgCzjyBE/oZfHOLCPRWHQ6ewnKeCMOK5HuKD2wXJ4RSCMMB5xJpe4mIoE3Pqaxp0szbXSC7JSFVgAHQMjG5GbWZExtwZWDOESceJ4UiHjQS7RoNQhFfq9nKCAbRBUyVw8nrbE4vEGrGSU6BL8dH3LqBX21GZqfEXCniXViAdzR5Ys5zjapPC5IAfib7kSTKMp+xij2lzBQVXBEOi1UtExTldnHCYiqE+ZLRJp4FqWMoCvvmSzgik+u4nCNz16EUnBVGNW58ITHTTVU4eL2pnUDtNOItMatnX1okK05hjC0GLPbboyMMtESkyFGECAk5xt4rnRbC0KIpk+ZnmBWaeY+IY9sGVmUEgac+ssvV4q6+MLsRxdH5DZahvX3KYtwxa+JqveTECqdTQk2ZiqtW8HnEKDRpxM+CqWOpt0zxhKIOVxLNcEMyPY4RjDuLTJcziPHKiaL4mhWhhnBAtNYnZIPSPMYzsz5/mykvMBSXhKnMDFFoEfLtLbBlf96COmwqhKQghnqjO1wTpSP5UCubijD1J1gJWBFagwLctInQNfiisM0IYx3HlAGnIOKw7AmWcRS6I4t8LdcoSjyyjS6sadsqYB3NY3gy3VFwP2K5MqlPfcKl6tQrBZYEOhF8KaBGAYp57u0u6ZhIGph9SyZX++vhlnu3T8Alxtjw7PweoKjAyXSJl0xsC6ko0+3uW7K3/e9Z3wEY36JVjqzCYf56AYk97x3BsDIfvzoRhoFswn7RMqwWFFXObq9xRVAMlyeyOEwgUYOAoFLaaoYagBEsU1QRDMQh1lVBIUZMFWDsjgxGOc7/VkVYnH6Uog1jbjBVRh/Yhp5HqwtSagmzHXvVCtEKOTUgRgk7oODSwHXYIUTm0CGSXzAYW69HBsMI1vCRtOLTdsLp+qNMwRMk82R1l4Jg84AmV08QXa7tsWbkIoTuFjVPKQ0DdS7dHf3t2UBL5m0ukKFaSMdmZOkmcAmTTEgOL44ubLlfoGVFdhEtjn0pmDjSXOfeewe78ZT9swsOU21n7cKEpplhCbgD8+1dbvcnzC5zGD1vr7QKx7wRYuTh9Busyg0aBJ8Koy4pIgSdcCbMWdDcIKVhHl9jKYmFOpTCaNU5kbLnkA6MKdCoJ6TKQjzpVjWd1BJzjgxamIIjysxKD2BK2p8wbgI61ffzy909/p93PseNW3OiG8RPZJnRvccVYZNfobePEKZC9oXgEitLmAitJBwOtR5pLpj9iml9QTsX4jCAzuSbK0xnLHjuyClxmnmrdxzcGWLCFnfcKCf2wWjLgWXZozYzpxYxwXMMl1NPa7eYV4wale9srvN7l0mqtItTzjbndWyShGZu+B9X/5T/271fYOsr3c+0r8p8v0R8JOQJMHQ6sJxhKlWcnNzErJ4zu0sfmsrcCDgTdsslWeEkRHJoUQ2stl/EpSuSVvHilpltfIYjcHALfu7ZK3x12mBOEQrX4YSvtTfs8xdp5wRmPF317PslirEc9mBwSw/FA4kpNvX1HnaoGssYCa6rLAh1ll+OlnQT5cGTlwlTh6ZEKtcUTcT5gKLcNI4lCRCeasttqYcMcRlxhkhgaQtSEXye2BxuyDrz+MEKrwNnNjEXkCKUuSUzVSFjmVnuleIiJ2Ls/F0MYTnu8KVguZCdx7uWT+av0eSMw3jz7gm1I3rCaakWTS9MqX7Wlifv07c/T9duGeeeIoofPMWUbeNoMGTY49wO1YTFFp09zhx0LYy3lGd7zvQBc2zICM6E1Cwwi2BCY3WUnKUQxi0hdFhyoAVR8GXECahzxNzQlAowFq5QVLnmCkXwGQqF0J/QNB5JM5hnRkkSMFOMkTZX4Xa2ajfvU8AMluaIIiCKI2EY2Txnhx1NmUhS3V7m6+ippIkmJe7uvlTBbbOo72Uq3PEHFmHALeDuqeP3vrr83d/Y/neu7wCMb9FK8wT/7Bc4vP8Oz6NOLFdQUV1Sz+1DI/IcjLSRse0oIpzeXqPUjVP9RLYa+JQ4hmTV641qKoOqwajaBBVDj8JPR8HMiGVPEmHw9VGmDlRoS+0ryKWGSKkYkw+kpGTvmXJHyFVcGmWgYWROEdGZfbPjWjL7+ZYhVOpWNDCeKIvbKyiFIcw0ZUKkMEVYOmHSmc7PvHv3Dld3N3z5wRt85vKEj9xEooATw7oZF0YEyFaIzQExh6WeQWuHRK+e7GoFtFphL8ZXhjcYc2RuBpZuoGCU4kAdzjn8lGnmhIuewRmWjKkYYjCkUwCuvZLECMnYTTMpJZqyxS8Sh7URzFB1BKmnl6sCb587LAliQrMKPHavkq0QdCImSGmDOUFcwaeOZmq5F1dI3gAdD7PSe0HcQBaQFEm5I+meLIVV8TQlkbxn5zuKCa5kiikHg2fLSODAmRugOIZxw/VrPds7HZfdio27Bi1M1rHUFeJnsiTK4GlnrRZcM+JBmSWzjDv6XAFG1ATOk92a0/OGbhWJ5/dY+p7zuYANlMMAeqBERxRPO0y80808bV+moNxKHck0NrHzsMoH7s47ujxTyrIGo6WBLI5l3HJXvkrxgmkgS9UugNC5idkri+6E9foOUY02CwFjkU7p3KsUPScXR8kTHiMtOyS2NVSJght3LMaBQ+rr9YXhrGNtF8TQICWBGA5l1y/JAhexxVxlV/DQllvuzpe872a+Ui45uIyPkalbIVa1TTkoasaj/pw+H7g/PKWd09FKGzEPi2nL6va6dtvYEivC8Lw1GQjziJBw2fDHEaM3RQnMVBuxqHCaenypDosyDxwO7yM5UTSwU8eK+r+vS0cuNZisb9ec6pLkDDd7xrhGReinGXMd14vC0/UVq3bg6awEUSw7JpfRCIu90R6Uoo573Z7bcEoB+sNNDaUriX08xTUb7vodHx2+zIcPX+HOw1dIpSAUVAuBif3hfco8MOvAeawHmEaMxbLH+YTMPQXPtnF4qwCjG56weHqJ+RY/V01U6Rcw3lC2A148N13DVVNZwrlZgEQoQsQhVgsm8YbGnnRvybwONGFPuPOIhUV6WdHmFrVELAkNQqKwZ1sBSFaMQlyc0jQecqIk5bK0IAEjgBxoy0gGZlPM4OVtz72rBfdKQyMVJDqpe8JiNyGzIGWmiZXRLqKEMlPQ6hhsd7zy6Gss5lxFSsPIbnZkhK9u13zlMvHV3/i1b9n+9jtd33aA8Z/9Z/8Zr7/+Om3b8tnPfpaf+7mf+9/8/r/9t/823/3d303f9zx48IB/79/793j69Om/pmf7O1+7Dx4h779DfuvXXrAZlqowqABSElK00oRm9WJXY+46klO6cWA5HIiHGXEHZnEUKmX83NcqdtRfWIUYTmvfg0rtmgCHJ2NASAeSwqgVuRetc9iqySpggksZL4XJBXKx2tSaIzEZRZTISJSJlBpUZy6bwIBxmG/rTNgvCCbQj/S7LZgytjXhUjQztkYMxuAmRGasbXn06n1m/4AP36753ptTAhkV8N11jeFNHpcS6gqaWkSFSeuJr8ERslLMEEuYjFzv7zOVAO2W1lcqN5V6eg4aicOIyAy9kX2hL3fYzw1WlMv0EER54utZIsyZ2c9st67+bc4GtKsnDlNHf7TkPmZmFz1bcxUUnnUkXWIYfrzCA248qSVzaqRhyR3XM7qZSTyBwCe6FdFFNGxJYkhumC3WTVuNBZE2ZwbfHKOIFamaXFxKPGuM3nasdARzXI0LcnBcv9mTrVo0owwkOzoGdKbITJ4jITtcqXofdxtImrnbPWZBpdWbMKMCk7+P75X1nZ54dkGMC9rDSHjnETkn5jh9vd9kOnAVjKfNSyQCozgmhGB7UhPxlrk/VxtglmV1i5RMJuCk4BgpTiAsayS9FjyZGITsPXF5Qtef4hXaXIPAehFO9MOI85QMqdQCsul8xayeUDKehFkmzomhLJkkA8LFeJ9O10jTsEx1NCfi2DYLxDnuNhVgzGFBwwyaOY+3XOctj/KIujMWJyv28ZxOC2qFm2bBaJ4nq1NiHnmwf8riMNe/qcyc8AEPb76GOzq9blkxUzjUJGvalOoB4uiqUF0QXMNi6mnTGVYKEwcaBdETAg4xJY87rDypIl3XkEuglwQ+MLmaIrtxhfP2Lp2NHMJMTsqhPaNxQqRBXU8Wz8yGZXeHyXU0XkE8Q1Otx1oqI7Q/gXU7sA8rEtANtU/EW2KOHfrxP8q+ucObh7e5k69Z33+NYR5xKMU7ght5Or8HSXDuCSuMIsY8z3zXG4KkhFjD4B1DMLQY7C45/9KXCfOAZMNJLS48bC6Q/RNKmdmF9/mHDxr+h/uxgnbfUVjX+2EOFVw6sNNT/un3/TDlfstIT9PvmJuJaC2d3mGdF0DmLBslKkknyJleHUxKMWiWJ/Sdr+6dkkmmIAExjzARy8gsSnKeQ6ssDp6Xnm7ofe3aMRwtW0ygn0dAUZtZLVrEO1qf0WwYQtQWeserjx/z2pOn9Ayc7K45zJHkPPsU2M+Fw83Vv4ad7n97fVsBxn/9X//X/Af/wX/Af/Qf/Uf80i/9Ep///Of5w3/4D/PVr371t/3+v//3/z5/6k/9Kf7Mn/kzfOELX+C/+W/+G37+53+eP/tn/+y/5mf+r175OC9nv2MqdUyS8syv+553Q0u7Dbzy1Y/Qz5WmxYQCmI8MR4vaxeVVtV75iTHW4ioTd6RFOXq57RgNDl7nFwCDAlZqeEwqI00xkhijVlGkuQowfAMi1eZ1b3xEz8QYIiXXyOCcfN3ERUhNzfJPWSlk3gtrxvFXSMNbFDXmuMQDi/2hxiKjzOLx5YBIofGCR5FS2ZhoxhPfodbhreHDNuG0Ht661WNmHPtnG7ylKmgtihG4uu4oVvCqNLNV8tf2BDLdtsUVw7o9TjNFrFapK3Suw88JkULol3RNoAj8s6ffw2+892me6Rt8Nd/jPV0yUwgpM4fEdjDECs3ZgIuFYIlJM6tj58ulTrjR8ZvrlquzFWxCrX3GATMOWAyR9/PLzEQ0OyQXikGmYZ3O+MGLE17pFng/UpSjPc6hLjO6xMJF7opxaFpMjIwgGRotPBi2+OHXEXtMCAdmE946shKBgkxKZKbRA4kaiy0ukUjMc4NaSygjzjJy2TLdVlvu/W5k0c+UznPziVfZXrzJGAqlcSxevmB8/ZNkVZpHV5SUeNYmZOlRLxzsiiZm9u0JhZ6MZ3ccEa1X9+hKIR5HeW+dvMaveKn5F+WC96dP8o/Hz/IPwx9CmhNct0KdspIt6mBolrQxEpslTXAEi4hT7rXwQHy1vpoxkHGWWa2UIgHBY47KHbrAnDve9iNPnSPZmqweaVoejAecKantoDvltD/nbhNAHbvmlNdu3ud8vmKxzNyc7XjWHAjyGZbLTzLrEu7c41m8wzurl/m5N76f/cmSE9mxzon1OPKhdMnL/n2efnzJ5ffeZQgLilNu3ZpkmX2obM/JZDhZYHaoo1Bp2ay+l1XpMIxDueKD8h6th0KP+AXBBYIV2naLp2ChaoUcCR8d6hoyxlozJwi7kvHugJlj6O5xeP176eJ9FKU6fYwAuNByvmrQjbKNM7kUYOB2lXl8NsEaUrMhWqEdtjipwkhzHrd4yM7do4hnCpF4/pB92qMFduc9drchnRr7k3f4rpcSC3OAMc2Fh+sdcUpEFxlbRwqZZBnLM62DhTdCLvjlmzz79B/g2clL9C+9w37xG7zVw1caz+CEVYLvukkkfYmvXv0e5rLCBHIfsQ+9zhA6pDWe7F7hax98hJurnks74Uvxh7hgzR+4PePNWcitkGSCnNhIi8117NEsekLfcXHW8MAdeMkbrXe1g0gML4nROZ7dOeHyrMGGeh9ufD4yZo779g4vrb7Mqks81C0P5JrVYsW9B2e4ZkGZ97R5QrnDWf9JOs743i99mX/rS7/M527foY8Bv4ycvwLhBz7EG3/4j3yrt7l/5fq2Aoy//tf/On/mz/wZ/uyf/bN84hOf4G/8jb/BK6+8wt/8m3/zt/3+f/SP/hEf+tCH+Kmf+ilef/11fvRHf5R//9//9/nH//gf/2t+5v/qVY6gQlJiPNrGDjmRRBhFCaOCQSjC4Bq2YUEWxZxn19fZ2evvvlNr1cPE5B1ZFUxr8mfVFL7w/oPg5BiYJZWRKKn+nFj2eIQsNTEQ6shDxdM6T/FQsqdlxqsxugglkVUgK36uICaVmVZmMHiczngaN8Ce5WGHmdXTihn9YY8Bk4+QHWoH1KDVwuRqtDY4Wlmwb3qaokjS6ikvAa8F50dmPO8/Pcf5XJNKzZOt5b3371WLIIJaYcag7BBLNENPMUcONUSpUBiyIA46qfHLgtHEcywMPF6/hZ8P5NRQfEsqKwanzKSqbZHCbueRIvi2sivrPDJmYaM1j+QmJsJB2acAvad1t2gO7G1DEx0LMc5mz86tUTV8drRJWdIR7A5rjXz8Q/e5szklRA/xgKqBy3gxDm5GDe7Q0Y2VkSoIlhWvxmY6sEwDre3o/AFRZSBwSA251JyJzkZ62VcNj2REZpIUUmkxepbTzHpMzNJye7vk9nCfk6kCypvFKal9g7xZMmoheeHipTVPP/3dXL92D4D9NHGzMDQKwcGOW5Z2wFBGf4dZPE+tkGUgLk9YFTuqlIXt6iVG72hkIknHjb3E2/M5j/WM4AM5niIiNJJQcZR4Sh89EgN9aAilARwn6/4YOlct3vmoSfLLlklcnYmrUUpBYiDlJQdnfDVe8cVlw94rsmzQJhKykJqOyXmcOu41AXPCtjkl5IyzCrzw4zF75oQQ1sxFcF7qRu5a3g0PWGjmNXtMFKOzTMyFVmYWfuKw7pkkggg7XZBK4RAqy9jmQkQpZY8ei++IL1PEMYRHvJ+/QiaxaGs5lnPralufM15uK4iVgJSa8Nq2SpCWLPBSmFgivD9FbpJDRNmgxOUJm6m6mpwq67F2Yai2rIPiW89OC8SnTO0HPDvJ7NUw13DjVzhRwnCLFnDMlNihvscdEqrGoYt8OT1jN+/QDG17h7g64WOnD/n+/gw3QduFOmrde0JsWNtMdIE5eooWhmaJNA3yxinOCSVn1nOHX99llI53g2dbEo/CiuwDr+6Nf+f9kQdTIm5OGeyUUAJTJ6RFxJ2c4DXhV74ymNOKeW6YfMfBnZCk4f4UCdaQGph0gpRYS4fNFezHrkWaiO8da030KhQvCDu8VQs64tk1LaYGQ2WdFyFhKWF4JBjr5ppDd8aJJDoGxGB17xVccEw+E73Q+DUPDx3RWhQ437/PJ91E5xN+5bBFz/4jdzn7+Me/xbvcv3p92wDGNE38wi/8Aj/+4z/+TV//8R//cf7n//l//m0f87nPfY63336bv/N3/g5mxqNHj/hv/9v/lp/4iZ/4l/6ecRy5ubn5pn8A5nn+Xf/nG3/uNI0vMjAO+1tyKaRUY8ELgpTnRHfhUXeP9/r7TN5hEnh8doapEMwQjLIaKVSAIUUqOyD15q8UAnWu56yAVDsgw5IyV4Cxmg4Ixugr7VuoNtVIw7q0mBYmqQ2IqjD5hlkMrxmfwc/VVplyJgIYvDfdZ9c1ZJUa6LObQBzOEt3uAEgNgLHque9KAk2MQbm02qTayJIhdjRZ0VKYx0DJbXV9aObq5oL3fcZ8BUyYZzueM+u6FjyJgBQGmxlkRkuiQ2HsSU6J60RWYzBDHATXgASm1BL9CeYPPOmfsJmqoLY4RViAE8Zj5LlZwZIwX1fx6EW6ohtriueJqz7hhEFR5ingW2j9NTY2LEPH97zykA8HWBXH6Fucy7gifKqs6PIK0cC9Ds7WK9741PcSQov5kdDfVPsdmYOfcGWiQ+mGet0YAvn4/k8Do480NuAoXMRKuV8NK3IRGjILG1iwZ5KA+QkzmIuRSmDre+6OhbMxkcQz4PHmOb1tIDser85JDz5LOgvcJGMWeKn1/OZHV/yT3/c9XAdlO43sNoGuAXHKlgPLeU/JMLmXGLThAyskG9BmybLYUUfk0LihS3samcjqSNIyWuJQEiGEWvQmEa/gxHFolkQ1iirLuKjXP8JmfYJZBcBNzhQrNSW16xjwTMcY6skEMUi5rzqPZuDZ+pR3H7TcdkrqelwRcrPg4EAxLoJSRNn6dbV1S2GIDmc1NTaXDjNlSmBWeKWZUYzOhKXNvOQ/IPiZLhXG0hEks5wPzNmYShVmX4c1I8bOuWpdT6X27qRbKAUvd5ncikuJTH6HlbpJLZcRdMS5BZRMGmbI10B1nTW4miLbZoJEGpd5Pe55pRUGErdjiwbHK1J/3tkh41BaCfjpGlQQDUQR2lYZNJLW/4Sbk19FyZgZP69LnoQlKoofbmtGT5mZQ0cpnrLd4wWmtuEXnv0a22mLpMJJ/wqvrj/KiXM4PFftZ/BNZVfH3aI6y0ZYNgG/bFFJzOs76IM38ecthjHnOia7Hx3mAv80rfmNOYJr6DVyPhRemTL3h4GwWJJXd1EaUquMF0twimeExmOi7ENh9g1B61hvlkg0xZknt56DO6DFWJrHctXU+SbUTJ5QkJxwxfEozDgSsQhumXA07HzArMBcD0fRF+Z5wnCYM4zCrZ7hUXyZ2F0+ZV2AtiW1kTsnCe88rz1WgsZ6M2ZPOBRWzYD0wm5s2JfCYTx8S/a553vd72T53/F3/i6vJ0+ekHPm3r173/T1e/fu8f777/+2j/nc5z7H3/7bf5s/8Sf+BMMwkFLij/7RP8p/8p/8J//S3/PX/tpf4y//5b/8W77+Mz/zM/R9///bi/ht1s/+7M8C8JvPnvH02VPcDF+5fIvrx9e05W1cPDBrII0jKSUCtWMEIKnD1HO7aFnubzgyyFiTyHiyuqNjhBcjErGCt8qGFJc5xBmhUCTVIB0cXd4xizEFQUs1yJoqCzulSdfcNhP7APu+r2VoPjN4pc0jroBOkJeCk5lGJ3Y0zNlRGuOmbzifJta7kW2zRMtEs6+Wwtx4zDJjMZZl4AOZ2Qd4J+14TRwdS/ZNx51RcbkwTRHLC5AbRDLvXN5n1q+SgpF9w8iKYvUDOpYZRRCrAKOxTCyZgMHQ19duA0YgF8fsB4o2NGHFvtxj4TyD23Flid24rMDEg6UKcAZfmCePmuFLZrpuaTdVBLubF5SinDQzpkJOdWR1jUc00bhb3Fx4dvOIdx99hX4wNpaYJKBaw3x2+4mrQyEJbIZn/Pw/+RpfCFeMQw23SuPAfioMhy1bmTgtx5PSwTA7NtdMQk4j07NnHE4X9DZTSqGddsxTy7uHFav2GSf9Y1o9ENmzS4XZHygkdtrztdNXeHgzM4yKDfXnDqL4tCdut2CFm9Dyq8M1sGdz23P1fmZ1/SuIa3gr3SCvrFhczTxbO/ryK7yTWg7jAZ68x7zeMOcLZnmLnRWe2i3vvPuI78sFE2OeMpfPrugmCM3ADFzOnsFGDrtbxuHAbtyzS5GV7BhS4tcf3/DOP/z7fPDubzLuMtYkxqx85b0te9tjbk05DNixPPD9/cDNlFiqkkncppb99oa5P0HljCB73FB4+/oJeqjJoWrCFFvmYUv84IovfPFXud66yhaeLDjMxtu3l4w7I81L3n90S7p8i5u0RYY9n44t722Fnba8bs+4WDwl7iJlJzy7XaF3B9ppz+XcMU8TcRYmF3i32XB1jG8POaNmyHzFYHdgzMxu4mAT3eiZRiPnmXk8MJdnON+Q88T22SW7s5GcM3OGeWekUujDjjvtDR9uEimP6JMvMKeZNLXcbLd89165MuPs8sAvnjXs91uurr7MV9J92nyXq8srsvuAK4ynec/sbwluRAj8v/RjdGPh7uVTZHeJlQU273l0uePv/k//kOtHT4iW2avwi1/8dTbPPmA6hdurGx7bFZvbd1jeJL54OWL9yxzK1xhuI7/885ntM4ewZXMWybsde7aMH7zLB81XWOSBlBy6m0hPHnG96Pnikxm7TezDDnv7fd571vIbu2s+NF5RFqfMoVC0AsGb/S3vvvNF9jcPGfXAYMZeJgZ1zPuB/W7PPgFzQoNn643ChMwJ3U2M48yuCL/wv/4id9/6NeS9d8hLT+nOCVY7bqIV3Jw5ZM82ZTbTnin1dDozjAeeXk9YSmQHYyq8v61JysM0M03PuPzClqumY8FE4G0Gu8/hcs8onpGRsB94drXFnSey81zdZH71y1/jv3vy39FK+7u+x+33v/OE0G8bwHi+5Iiany8z+y1fe75+5Vd+hZ/6qZ/iP/6P/2P+0B/6Q7z33nv8xb/4F/nJn/xJ/ov/4r/4bR/zl/7SX+Iv/IW/8OL/39zc8Morr/DjP/7jrNfr37XXMc8zP/uzP8sf/IN/kBAC/+Mv/hJ5GmHMnMuKN179CNPVB+yGjjEbTXAM2SFydH4ARaH4BpfhdrFmPRnWQXEzJdeisxcpj0ItwLJCODpMTAtjA5AwMkkKpRirclsFntHhzZOO4kQxMGaumhkIaNfW4lEnTG3Dye6KgQ3gSUz0/kCIB26GFdkcbbxltxbOr4zNduBwpohmuiHXvpTGIQJ7g1Wudsb3omPSghWHugVTaGj2DpcLg3Wk+RTsfeZpwRgKXhLFoNAw2wpEiM4hR7Ha7BIHVU7LzMleq9d+6MF7nHfIDCXHmhYoHdEvyXbBrC038T0ud/co2VN8zRqJ3Qk2wqEx8qy0M3hTpquAscc5YTstMQrnLtdRU+WkuGwE00LUmZUksj/w8ssPmZ484YIEoUWPzAipY5KG4iMfutPzAz/y/Vw0r/DLP/1/pwywXoz4m4Jvrhlazzwv2K9fZfnsvRrE5WZKaWkbT+cCh25JcBmnnouzC85ujNvxDgf3Hg21frx3ExICsiiUMOBcR/vRT2H/9JVDlyYAAMRxSURBVG1y9oSpNmaWoCyaiBdjlQaerNec/uhnufnHb9Efen74uz/Jpz58BsDb14/4H7/2d5k28MMf/RibwzPefneie9rzchAuDfbdBW3YQHrKMzfz+muvsHq7upgW7YoP3/8wu1/8JWJXaJcrXH5A2V6x6iPni3MOTycGUUa7A/4J6zc+yx/80R/m5EsP+WdPv8pbg9L3p6xfXrH7QPDFsaagqmjfs3nwIaz7pxRXsOCYXcfZYs1lCZjriF54bdlw0t2nvZzpPvxRbn71lxlOL7h7ccbFgxX/zmbFz/zMP+Pmaubu2RnbskSnjrUFGmnYnL7Eqxev8+7TA3cXkXC95dX1imdlycfdFSd9YL1cUrJxtblL727xJfGeRdJmxYdu3+bd5QPeXb1E7irzGHLGq6C2p22UGBr2klCnuNlQPKqe1z76Ju6Le5r2QHDQeGG1EbZtx2mz4hEHijj6lfKx+z2b4YaQhJdfucej/MtYeon7d895c5iQNPC+Ou5MhdvG89JZ4Ic/+fv5pf/HY05PT/jB7+r4md88wcZHNAE0zxAanDvjLsqP51v+17jAjULr4MErH+Lzv/cz/Ozf+hnMwcmDD3H6sQVnv/6I6yZx92TDK4slDx5fcTd+iHH6FEP7Ho/1q3SHBW/c+TTv7R/ju8LnPnrG3/ulf0SJE5s+cPLmy9iXf4N5hItmySc/8Sb5YDxtbjisTniwucdHPvxpbr54y3Lfs74Ebc+5fu0cf+1xojR9y0sPHnKxbLgIJ3xlXjAPz0huzXolWNdRQkdQJYYeO2vQrw444KzteXQIeN/xIz/2w/TnhWe/KDzzHYe5ZakOnTqic7xx7wH/63QXaRua5CjmcY1yuupY24JhO2I+UbRjfXbOhX2Ief8BF6mlyT2DtnQ+08ie2O/Q0HKTHDoocTty95V7+FdXPA1b8qhs7n+Sz3//57noL37X9rjn6/kU4Heyvm0A486dOzjnfgtb8cEHH/wWVuP5+mt/7a/xIz/yI/zFv/gXAfjMZz7DYrHg85//PH/1r/5VHjx48Fse0zQNTdP8lq+HEAjH2u3fzfX854o8B0/CPB1wqmC5epqxoyr8WAKEAYqZ8NrcMt/c8L986DXcIvLw3bdImsnFkbWOMTgaX+VoUPXFg9Wc/8kfjXdWqKY8Y1l2TJqZfYMryuwUfxRhfcX9JrN7iBBocmQIheyVXbuodKRreW+1oNUvEXUg+BGloOI5Wz3mdlVLozbbA49xoJlmqq9qPrZ7jjg2ZY/ozKOgdMBsxmXbEySxzDNFT7hZArevknVgYsS6W9oxUYpQrk4Yy4IiEKz2qRz8wHV7YJuXzEnpC3RWsKEnPc8DoepLprgl6l1at6QxYSs9V9mR9yucFDLKloDJGhXjcul45bawGDJWBJuV+dDQqLGdV4hc0QkEVYoK2UHqM8kcXuFju3/G2y4wLV+mzZGFFNZhW+POEbY7x2EWrpoFv7o4YxdXrJcnlSqVyBsnr/Luoy/yG/ZJPmhf5qVtQ++N5Zy43V8winBq7+C1ECjkAk5qxuusCy54wj+5fgCN0KYdD07fouk2RD3wbvdFNv4KCXd5/dO33P6qxxVjMR5QjKSC2IwrhdW0R7oV7ybPpni8ZD5xvnrx2Xn19B7320guxqtt5FCkgjs8m8OWKBMTHSftfWT7FogxbZ+y8C3CgdaUk67nzvysZgD4yBRaihgqiRBaSqlg+JrX+eXyQ9z0r7HuG0Lb0YVz7uUNz+Iph/EZCapOxnc4UVJs6OKKKXZcbiJPuwV6kwnZYSbMVBvgRVMLthLw/oc+wW+cnHCe75Cd4p1j2Uecc1hR1rTsxNjlCWVCUeYSGDNE71m3BbtKvLlwfOJUeH17CTeC04CPxoc3Z1ynX8PpSJ6EvAy88uwJ79hDHjV3MNdggC+1t8anHaoDiDL4A667JQ17FkUx9cTNHZJ7TIyG0z2mSnmyg3BCkIZ2CBSM0GV6iaiAa4yDDTSauLM48Jn7a/ZfeZ9FAVXlB97eslx+AbqZk7sPEXuCqPD6wzXjlzpmKZgdiGUiAd4KP/7kCV03kHxbnRM2UfoVaA+HuSZhnj7kzrIhhRanM85mOif4InTLiA4blC/Rn3QcppbDzRWqgW4tnHfr6hryW+6EU75y9YSFCLkICxN83/FAhH++/hiyfMqbmxVXq45bvyf56uiYx0I2aKaq4ZpsJrjA2SbRTZ7toudyagmlx2mhWOGQE7dyDasN5jO4GleuaQCTal9ujLBY1NwhP6FJQRQjQsl4SbjVCYuuY7XvcBJxbSZIpphDxLAgJIt0zoFfUeQZm2WgjXdZToVhUjpp6fz7HOaPI21DCYUsgnOGP+s4yweezsqTw4Ik6Vu2x/1O17dNgxFj5LOf/eyLkcLz9bM/+7N87nOf+20fs9/vUf3mp+yOSv4Xlej/f7JeuEiA+VhCU76hOlesIJJfpFgAJCdoWFC8Q7Ta/RQjy1GtIY5S9MUjitZyK390ZYhAih6hNpFOeBKZPl8zucQYaknXqI4iiUN5j62MmKsi1EUCVxLTwnF5vmJ7HtHYQwxHm2BCzLjrP+DE37BeP2W3UrDCendAceCM5lC92al1Ry26w9kzBj3wNBQMZVdmnnUNAWE1JyiO7Ebm6YQ0nDMXj2v3hJjwRXBzIFNZnsBR7KqQrUY9P7q/RNTj1WFDRxJXmR7ASmTwt5gqjS7odUEJniu/xzETtZ7cxSkrPC7A05WSLLHaZXyuiu/d+6eUecWwfUg8amDa0JFdZN8GvC81xlkDa03M08AwDsQc6DAcB4qvjpxdahiyY9DIuis8lo6+6SmmzObofb2uh2KYD4wqtDbXjoLrS/rdQDvPaCxIMcI0EGRGgUTHKSOajSG1CA4bzwmiLMMNU0fVuWRl1D1d4/EG6/mACozOU3KDM6G1xGqxwqsnZmGjB1zz9YZG5wI+RpxIpXnLY0Rnggbu5sDysK9hXe1LLwDx/voxC23AOTQVznZbTuabOvpyC6ZYu1l8ngghVpt3MZzr2GsPs9FFB8FzO5/QKVhn7A+Q7ZjpoceW4aal9Q05NAy+pzij1z02JdSML+U3ecYrrBcnnLT1ZHY5Ki507LwnCZxFT1EhuHo9u9LgVEmlkOwWFWVMjsOUic6xbjNmCe8dpzFCVAhVEKxNg+Jxs+FzHevdDde8vNmiyRhKg2lN2vTFwDtKeZfM+0z5KXNWjMzlcIOIo4kLyvKMoi1OG+IyQDpweOrQswbnIiXVILnNYs9rLnHmDemF6+kaktKIZzocuAqFwYN5aMwTGJldwbcLMHAqnK+XSIyMZsCBO7tb7h8Gfu+zd+l5yjaMWOhqLHyZcO2SqXjkMNd3f73ih1/6fSyW94huhc8TTZlxeMQFTu6fYexp1y3eV3pfxNGuGk6bFaIw6kiZZtJQU05LcYQM2kcuoucVFV7tGk76jmXjwQmzeFJR5rEwpxk/GytRglNWccUrm4BXRYuQdcI7wdEdtXNgGCd3P1zBQKg5ImnaIVYbrrObkKbBcianRHZyZFkDljNqE2WxpDiPNwd4fACxgXy0I5fgSeZpnSO7JSlDayOK8ooZzUkHzrHSR2y6p7iHkKyQxaFB0U3kdBEoruHpbcN2+j942dlf+At/gf/8P//P+S//y/+Sf/7P/zn/4X/4H/LVr36Vn/zJnwTqeONP/ak/9eL7/8gf+SP89E//NH/zb/5N3nrrLf7BP/gH/NRP/RQ/8AM/wMOHD79dL+O3Xc9dJJiRpn0Vd1pN8jRAS0G1ZtI/RwyzU7JGsqtWOz/XMJrxeQ+JOjBFpCBitVZdCpLr7xERUnjOGhT2tBQKrT0mqZF8QE1ITtm7LdmuavS4q0rx5VwbGKfO8dWPbjgs4E6aaYKQj4JUlwsX7hkvLZ8hQZgWieQEl40+1UKg5lBzBOZjJkIRpfCEG39DjrWgamsz122DQ1ilDEXJOuDNs98+JJmjjRPeJ1xRdPRkMYoIXrQ2WQpgBSSRgzCcnuGch9Qw0FbQaZCzZ5KJWesoAxfYx8Soc52RSsELnDvj+5pbvDeerWBmphszcapv0ZQW7G8+gY2n+COgXfmOqb9HdgucWxPWHwUR2piZbeJws6fJgU4KXvfkoz34mX/ApJHsPeto3LglbfCVwTBwrv782eqNefBCnGuE9Z3tFQ+fPOK5zbjkiZBmotRiu1mquvyk7DGDlT+geYWjsIpXpLZ+7GVW9vOAeU/0jrNxj2AcpKeUM9QU1cAbqwVePcuSaRkx981gPjR1I9jefpX98BsEf4sgvO7ushz2FFFcu2IjrgZYlYGVbyEExISzL3+JTiaKwEE6xlif3zKP+LblOWkXfcvsHS4b0Sn7QZlKR6OJvBi52bv6OUAomnAY2na0rkWCcginmBYWusPmPUrii+XjfLH7d1g44yy+U1/QYMQi3AYlqfBSExjMaBqPijDmwMY35KNjxatRzHF1mIjBs4wZs1xHNBrIQUBBm4j0HXkYsbnG0rc58Ur4gMX9JedXtzUPR4w4p3rRNQ7lwD79L6ivI7lpP3KYZxDPsr9D7i6qxVaE9d0lzb0lo29YPPgUc6itoS52aFf4/mbHmRd07RjziBTw5thv9yQH21PFPHg8JoWw6DnM1c2gKnTtAt9HZgpiM3068G8/ep8H445tfMq1DJS4QBGCzkjsuRpGOFQQ32yWhHDOZ17+PEKDyxPxCDBoVpw+XGCyR72yvqhMtoinWzf0GmicZ5aML8q69XRNR5kdUjLaN6gIn42el9uIb1pWbaiibfWMKWClgMuEWVmq46JZIgjnbcumC7VKXUaCU1R6FMGsY9n0XLz6XSQLEKojbp72FWBoYJYZiU2970+ZoRHwQhagGFpG/PqksoNZ64EmgFgizSMmhRKUbJ5WHZP2ZDMaSZAMb8a93mrgYp55cPIW64cjqVTBvm8dug6s2oj4lpSFrzz7P3gXyZ/4E3+Cv/E3/gZ/5a/8Fb7ne76Hv/f3/h5/5+/8HV577TUA3nvvvW/KxPjTf/pP89f/+l/nP/1P/1M+/elP88f/+B/nYx/7GD/90z/97XoJ/9JlzxkMg1wyeR4qg2H1a4KhMlOkshAG1QqqkXK8WcQxQZiZ8RiCCpQix5ROO1JwYKmgVkcm5iKOwiCZp1S2oy87JoHRB9Rq2AsYTZ4xc6CVwWhmCGUmiTL4BUnnmuIpkLWgUvCpZmzswmkNr/ID103EUDa7A2oTYaxK/hwqUMrmULvF6UxxNVXvpiSu24BD6FK9URc5YC6zt45ZjTaM+JDxRdBJyQImhhNFRY9uigySEQ8+dKTlHd7f3OMqn9T/bh7MUcTYuYmhabnZnLIP07HUKNMz0nFAxNG1S7xzzF656upNcTnPtEkowTFHR1ca3LEI5sS3QCGK0kaP+UWNxPaZIU/sDwfaElhozRtI6sjFczMGsgtIt0BPPsw2rutNrXoUKNUjy0xBNTMFh08zWapFtdKqQohGyiPOEq2bKSVT3v41bPcBd9nySveYh+0zvC3xFFbhinTUfekkDNPAHBpQx2q/Q6WQRdnPCiXjxPHx81P+yPkpD+VQgZamb7rWQ9MBsN++Xcd/sVTvfzLaaSDFSLbAXQ2g0OaR/s6HoD9FLNA/u6KTmv9hmzXX6zq5XaSB0HcUq0FvnXOk4GlLHT8+fZJRbTlpn+HdHikZESOK1XRKM1zf0/gGDcLO9SQEpwlfdviSmSWSWNO5wnl4F8pEmCa6pNzEwCTwUhsZcqGNARUYsmftAykbCjTBEPHcDonGe5YhA18HGOVoDZdFhy6WlGHAxnr9nLk9nZthdZ+TfQXmxaBJtZ7coqAIKQvduhbm3dw+AXUsFueob5lZHWNnHKvG4XuFT7/J6g/8Aab7lT0N3QqaHjGlcR5iwC0r42hJ2e8PmEHUiKjgVWgINIslN7ttTeZ0Qt/2NIvIVmuCZcNIQEh+4DLccMVAaSvAaLW62t7fXiFDzXZxi5anc2IIC8wUX2a8TSgemiXriw7RevI+ffh6vU7V0awaohNaF1HNLJqOh2enqAjMsSaatrWYcN4Px+uyYdVWBmOqEXjHe/Ienzx6HKMmSyx95LSvzclGjQn/kQ/9fj6x+Shj9yY3/fex/tRPsEt3IRh9PJDnoQabaSDpiDaRUjI2Jfa9crU2sjMsG+SR9vyU9vwOqi1OhBirmLfkY2N0UIp5Ou8YZIEVaGVCijFj/Fh/w6kzSqlsYT/eMrYN5kIFK0uPc5HVupoX3nr8nS4S/tyf+3N8+ctfZhxHfuEXfoEf+7Efe/Hf/qv/6r/i7/7dv/tN3//n//yf5wtf+AL7/Z53332Xv/W3/hYvvfTSv+Zn/a9eLxgM6kWUpj1W0nN8UUGC5spgHFd2MOHJztcTwJQQl5hKnRc7KViRY1InIL5GYU/11GZiRJY46iz51hrMYFEGZhXGIzMyuzrzi2Uim8d0qD775IgpkVUZ3YKktS0RhOQANZxUwem+PUPEEd3ETdthJqx3Wx6++whyZoyR7GrYVhFllpGOHSqQguexV2avxAIxK5ARnVikJQdbIAqdhxiMkAUdAxmjCKhUmtFEwAqme/BCLI7gAkNs2U41sa+UauHNAnvdk50HF9n7ERS2fkck1ZApcfiS6bTeqJ4t6pvVzQWHQvR4l+mFapFF+Eh/gqMmI3ZNIPsORAk+cZhH5jKzkIbgEp1uyc6TkzKkKg2Niwbzp9ykTCkFdywFE6kb1GyGSGFcNLiUGELV2tix4KjzMOWEL4lOC2U0GHZomXBmLDngxPA0KEJ0M9pVl4+bIM+FsWlQFziZdrX7RhQRQ0rGOc/JvQd8sm2Jx0C3QcZvutafA4ySqzLfhYR6h8yFdj6Qm4Zkyn2JtKK86Xvi6hRZVCYoOE8nM0kdY9Nzexx7LqY9zfk5SZQpdqw0U7zDPR7ZXY9cPkuoek7bLWd9wdmuxis7YVZwQOxXlcHwwk6MwSKi6ZiCWzBzeIk87O/gY8andxBLdLPjNgRmhYdN4FCMGB1ehd14xtotKHaMho8FxROc4Jxn4RNQCCGgqqTjuEu6iFv0lGGAQ41hVScEr1zf+z3cnSe0GFmEmEt1o8fqaJlNyc3EWLZM40hhzWpzn+JXTNOxDFE9q+AgT2xLS/uJT5Dnp0x+h1utYLOBrDTqMe/xJx5zhZKMnPPR9l4PLbGJLN2SbrXmdl9HR06Ftuk5WSqXIRx7O54RRbhuv8iVZq5KpqzWOBFWTZ3Vv/3sEp3AicLC8WxO7F0POBqbkTS9YDBEMv1JRlR45eOfInY9m3sXOK8EETrXMLqJoFpj103QKZLU0Fj/zvOhAgz/DQBjTBl1FbjqeIkmj9c63s0ls3CO00UEquBHRLizfo116HHmKIuP4/o1vXyG4gK1MzIfRySBWWekaRjmgWka6bqWaSWEblVLfi3T9B5ddNisqAhN6xgzIAlRw0KgmLJZrdlLh5nRUZNfizM2bmYZA7NELM/4/Q1j12EhwCagllFpONtUkfAHt9/8Of12rG87wPg3deVvYDAKVYdhVihHXYBawf0LGowsWktyfP1ghrmOQmarPn9HnUUDRy/+1xkMzMgKTW7xVsCUHQEo9GViVmHytc589AERo5v3FHOoP+BLJpcGLQUTIbkGk7nWGAtMzhAx1E2YNARqLO5CGvZhBQantze89qV3KCa8fXGPqlyQY1FbYckNapC8492+AzHuzOMLN8zKGYu0JE09BSHIhouyqT9nDpVuxIgaEH0+IsnMfosER2MtXowoM9vhCDCyw9yBXODgd5UBKYVJM5M6du1lHZsIBAPJA63UMcZ1H+r9JtcmW7rAxWJAJOERVJRPnd7nJ0/u8Wqbid5jrgcVgsskJmYGlhpJmjjtH5OcJ2VHLpA00HcOy8ZtzszzTOOq8yZZQsQxY4hk5vUK96HMvp0oohVgGPhDIWXBl5GFE2yEsPT4RYPkxDDWa6lrElZOEFEsGGZGGD1zqu/H8vSMuzEjCqdt4m6XCGIsFyu603NsKnj1ZF+Y8vRN13psj6VKucOFM9RNaAwwzXTjgdI2zMnRiuP/vDzn/3L/UxQfEBeIMRKdo9WagXGg5eaoPV/Ne9xyxdMHH+Z2dYe7cYctIt7gn/+D9zCU1mdWoeHuwnA2ICXRBEdS8GKsl0sa1+CCsJcKeAfzSKlttW1JfLdGzpZvgkD0OwzPbbiDicdUOfGOfS6EoAQHl7uPouVHcSXiULpY2aToFZVAHyqr1jQNZoVZqqaEvkVXa8o4UA51BDL4lhgjj+5/PwsK59srsrU0Rg0FC4ZDKBJ5Z/gqw3yDokh8DX3lhxmXH2HYzmQNLwCGlJlZGoYnb5P2idv4Ae98ZiQu7yFZ6EKPOcEtHD4q6uqxp/EtaayNp8vNitc+9Emc99webus9JzjUKetmSVoowRfa8Izb7pe49V/jcZO4IZNOTti8+jrn5w/BjMdPn1W2wjksGs/mzNYvEHPEMkM+Aoy4JKVb1hcdL33kDps7d/jsT/wxPvyD31vvhwKdttz4qtdx41iB4tSQXUFC3c7moZYhhtiwbDymQkrlqGszZPsITQ7/DULwKHXs1oWabaNEDqkwzyNNyXTNEjPj+7sf5eLms8fRCWC17G3IByYHb41f5d3hfbq+4zPf+2m6zTklA6UQG2W2RJ4r89U11eIuMqJOKbGhWay4f3GPPQsA/KGyEFkTWEK8Y5YGcsK2t0eAESknAc0J1cjZZs13v7nl+z/yO8+r+Fat7wCMb9F6wWCIUMyq0NMyz7WoaoZqxl4ADCGpkKxqLYQKMBBjthoT7ik1DEvKMVpIKHKMPjYjqRLFEczAHHsighFsJosxaa0yn3xAMBZpTyJgOtaQLotILTRExeoMtuxQO7BvFOe3+OaKMa6Q3CAYjZ+46jrEhNVuSzuP7EPP5fqlmtOBVMpGCgu5JgiUIFx3SyaB03nE4+iA1dzR5MrfT6XFONbKG5BCFbtaYe0iCSFJwJcWV1rO3UOWZVHHIpq43J5zczjjdntOcRO5OPYceE+veaTX3M/36O0Oi3SGs4CjxWfB8kxTPKhws6gpiJLrqEkah5NE4kBIPb403D05Z9NBFz2Io/gIpcGbI4ZEYqS3hlkzq+4JOBhLQ84waWDZKWTjNlWAEb1HxJgoOOcqqLKEF8e431f639f3UUuhzrCMQGYRA3kUUkpk9VAS01zZhaaboJwhzpFUwYzm4BiLMHulkSoormMvQcoWoeC7Nf35OTZnvDiyKxzy4Zuu9TsPv4cY7+Dtw6At4ie8dxwO77I+1q7n4gHFeUVEKMGDekKMBDVancnquM6Bg9WT6Ho6MPvK9NQW0ZH86pKm9ZRcU+FO24GoGy6W9fPgLLPsA9EZay98eHPKd6/XnLT17+0RnpUTUg7kFFCnJFNWq0+xXn+GpntAsjN2bUQEWl9vkY+nmRgdratBXbvDQDP1KI71orrUone0IR4HmoW2bTGbScUhD05oP/0JdLPGhhGbZsQUXUT2F29w25zTauYjl29zt1yxKamOJp3hcBSJpGkiN9WKen7nDmcvr1hfdEyHWveOerwpSz9BXPLol//fuCzgFTZrlouP0DWvcbJ4g6IFEWG56hCXMYzoW9JUau2AVxbUa+f2UGf57rk2Ji658R7EeMDE0tcAwHfudYwnp+Tlkqbv8Vbwhx1XTy4ppvg+ojLxdEpsjwxGtBnyeByRrEmp6ndC2CAiiAiq9e8bBDrfsvU7YMTGqTajTl3t73kBMOrJvTIYVYNh2TDn8C4jN5eQHZ3zQKF1ESv1MZ+8uyKokF3Lbk7M01iTV9sVFCN2DuaHWAmAgXmcNAxp4Em+IZcEcyaRaboILpBHByWziAO5ZFw2VCoAyklAMuodo7Y4qSmge60AI+YZVXCLxDjVYrtZGso44Ictj15+macvv4p9eIXkGdVI353ysbv3uNOf/+/fuH6X13cAxrdolSODIW29UMZxTyFXwdoRVqjMx5tnfUxWxawwHWe2aoZoIVk9UQexqmmknmqeMxgzCSu5ViNLOSaACoP46laxWtVcpAGDMQRMoMsHMh5zE2qG5VCLhKgfALGAswF0YIoQ2id4N3GIp5AjoEQduW1qyyMC3jJfu/cyoaxrEjRCl2tCXW+3OCksdWbsWkYKJ/OMN6E34WTaEC3gMMbSYQJFPDZ7zAJ2bIZdu8pmTNrRzScsh4d8T/gBGmsqOgqJeYb3Lt9gGhdV35KrxfAdvWTHxIolD5c/xMX0UWJeotKiJWF5JpbqkT+0gSz+RfaIbz0qE8lt8SXiS0toV5wuAk6lsgNOUOtxpkQ/U2SiLaEK09odLsBEQ7G64W16h5XCbSpM00T0HhU4lAkvQlaHUXAijLuJRgtTbAABy2QdEDFagRg7bISUZjIeSmZKXbU6xgnyaQUt7tgFMynzLMxOqZmABqo0URl3T6v+5P7LqPfYXHBHBmNM30y9Xrz0cRaLNxlu5sqIuYkYMtN8w+npUzZuTy4RQVFX01FLrLNj16+IDfhgFOd5NnkGBG91DLhNBma1tk8TpWs4/+Rp1Qk0gU074Oi4tww4cTgrSOPovNEFx/3Vhp+4e8Jysaqx3yYQHGPq6lTee4ZcUA3cufNvcSP36RB2UWtOR1CGYrw/zoSgLLwwFuHmaqDNC7woF+cnADROOV1ESjEg03UdpdQiMb04pf/+70Gdp0wjUMjW0p87Lu9/H2kYadqGLifuXVzVzVwL5o6CZotIgr6P9Avj9dcin/r8y6zPj+MpF8AFRDyrFnCBR7/xBQKgy4A4x6Y5YdF9lK6prbEAJ5sV6msEvtPAPGXA8N7RHwHGdqoMhn8OMMKSvVY31IkqS9+g5nivyZSTC5yLxJNTnAphv+VwfUNBCYsWLSPXKfNMOzBPKDN8w4gkpTqO8X714vp6DjC8QOMaJh0pfs9siZIDi9SQpXDEpczDUYMRG6JXYutwRi1sdJk8J8iOtY9I7aauDxTl0y/foffKbJEv7QfSNBJLoevWWDZCL3jXUoaT6p0uLUrDkAcelyvMDD/DaDOhcZSspBRAYMklqSRcznjJhKZnssowanCMrgKMiDA3Cwxl0Qc+9V33aBeB6/1Iod731ApdHilnJ3zxe78bNg2SM6KRO6uX+GMf/mP80IMf+p1sVd/S9R2A8S1aLxiMtn5QxqGmIh6Nk/iSEJtrwVk1O5CkJlPOTo4z4joLT8cRSaBgxVA5AhRTshrViZ5r10Lx1Z6HMlnEkcHqIKZIrYKfvMfM6NOBTCRrbXTFHC7XqHEnhqYO6xoOm0TxDtVCdsI+rJDsMJTgqk30tl1hwLSMPF6eHl+/YAiruXrPe24IJJqQmbp6qt+kRDDFSHi6WkWtxpirrqOoo0wBqKmgRp2PFmqcmC/HQYxCtPpB1jCTc2Y7herdledjqToz16JoCNzEJd6O4lk1XKk0ZFPqSRVVtrGtORhAu/TckQPoLaqg2iNHvYZIpcmLUzRVMV3nEyaJmAOzZorLhKYwa9XGJOdZtzXbpJTCzTgSfUDFOFgikEjOYaHD2cw8GN2xyTV7Vy3MPiMYnTicizDVFkpzHimJeeoq+xJmfFlQtDuyQkozBlJRBhWi1NpyEcHnmTxuEYH1Kx+p1/OUCepJrjDmbwYY7XJF0y+gKNOQED8QOmH98IL+Yeb79Rf5nv0lzhyqUCiUdlF7Klxg/Yd+jKcPH4IIT6ZIKsKzuOB/Cg/479+6wsUH9LJmcAoinNzp+NTnX+KTn38JrxVMP1y9zCK0OMuMfiKfnCJnZzRdBfihO6GI4EyIfaLd1XI80QowoFrdn6TMKULXR7xXVt7xwTRzKIU2evqgTAWmPNHS8eGzN/n4SaXwo1dOFz31bFFHJKoZM0cpDuvrRlnqJcO8fJ27n/9LTOefIB32tF3H7GIFjjHjNFHU4aVFi8Is9GFBiBHnq2C2W9UNykK91mX5CqtXPwbzgbx9hiC0R9HfMixrrjWw7Op96bTbcO+k5fx0Q8lGniuD4bzSWwUYu6HS9O7IEHS+w4BBPZvY0foOJw17S0xDQUX5QvoKTw4fEHY32GFLMUezbGlkxjC+XOoBJViB+XAEGMtvABhfD0HU42fMi6HO80Y540ObNZPN5BJYpgaJnlSOdQ3PAUZb2dDVIh6DDJXg5mp7zsomNoBRjuyFdz0WCmdOcLRcXl9RSqZTo2kWkAqhEUQ9kpbY8JA0PMBRGYxH6RIrhpuNsYwVYMxCngPqhcXwPpaqNio6w/nAbC0uOpp1Q5YOJ0ZJMxcfO8OfnnB6p+OV+2sQ4bDbkVImdXfxYrRloOm7Y2JzdQMJAqH7F7ejb9v6DsD4Fq0XLpJjKt807TFLxxFJ1QGoJAp6HCHwIr52kirYVECkkHMVKkaM2hFV6U3H0eFhmVIySQMtqQIElKFiYeR5m6s0zM5TpNLrTZ4wdZirVk+BGhBzZDB07jCF/XrisFhAKIytZ5KmNpua4iWjJN4+fcChaXny5ilT9kzHmznOEa8XJFN6uyXIwNC2NG5mdIVVKoSiSAErNXuhqDGXI/MgjjJ5xBSsMjUmdTSUrPawKIKWiWB11h2bhFlhP9WbWDkCDGeKHHtbiJ6b5PFmqBOyr9bhnDNNcawcIMJt6CBDESE2SsQY/YjXgpp7YTFWrbqBLIaknqKw9FaZDaeMfkIUmsY4+DWzBqb1hrPgWFAp3OthpPEREeNghWDVZWSxR/PMPBQ6p4AnO4daOYpvoQ8tQgMT5JQw5/GWmedaQKc+0Rjs5S7mlILDD5CLMDqIpVqbHbWhV6cDwXviaaVZbSo48WRvDHn4pmtdRNjcvQ/mmfZj1WCIIFrHH6d6xelUPQeiQiGTY0tuWkQ8LhSaWD8El7MnlcIQOhB4en2DhobX/cijVP/Y99ct/TrSbdqaqgUsm1f5zH3HKhwosqvAOzR1YwBSV19Hl2YeLGdcGVmGKvwbzcjFuNrP7AUmJ0gQnFOWTvny0Xb9YNEQg2M+NgXjC+cnG1L2eK0ajPPlmlIMkVru1TSVb8zZQaOId5RYn3OQDa+89H317zsMxH7BwApKplu8TdS68UW3oiGyae6gIsQmIsdRU7usm2+JAVXDdM1qs4bxtv4DvH73VTbNhvuL+1WvBbx+/gaLsODl7iFtKzgV0pTJqTragndfBxjz8xHJMXMII2okNGv60BLU413dBNNQ2E63jOvA9XTJdP0+YRzqYWTZsdEKAh5lobiGBafEEgg0Rwaj/q7fjsFQS6jzNHi02zEyUnJgU3okeNKRWUvjWHNEYn3cqvNo69DG4Y6/34rycnuOF2Wen2FmxHjB48NjHi56PD2H6ysA1rFHVSuDETiObQKUgFhAS8tu3vFeflZF6BnS/roCjKmQU0CcEqdnLIdbBKUJUssaUwV083KFxB4vwq+994xDKeRug3fKSassfA39KoBsHqAUGpsqKJU6enfPczP9bw2W/Hat7wCMb9EqdmQwYg+i5JKxPNUWTAwtBeeOrpLnIxKBYpnJSS0LMkCMfGQwGstYOYotrZ7IESNJwSyRJBCrZBlFOKhHmakyU2G2hjFUgBHTiDOw45hFjlZVsj/yDqC5w0ph10/MTWB/6pgbR5JIJw5BcVpwMvHo9CX+4Q/+IHMfsAIz4A106CmXp4xZaW3P0t0SbWad9sSyq1oFc9UeVsCbgDNSOVK/tX0NxVUGw2pJVhZjtkKoBDJlHAg4ikLf1ZtRzrWmOx3fi1jiEY4IU8jskqvuEedI0aMFpmR05mhVCCGyb3o0GbN3NCHW2PJQUwmlVDAG1dny/H23vCCLcSdm3ugH8iYz+KoGj86R+yVvXXyScn7CmTqWCJYKN2PNUVARRowQPNnH+h6lG/JUWIgHCRie4Gp8vEVPh5IHOfbTZIo4vGWmuY4C0EK0xJ77mCjFAm6EZJ4xCJonxlwqcyWCjnti06J9vdHbnPFaNRhD+maAAbC5e+8IMPbgK6sw355TckTVYUlB2hcAo4SGEjtEHBye0ctcRyIlsp8y7aJjYzM/ND/i//oDKx7MbzOFhpdPO14+rdeGiCChbrCNv8vvfVP4iU88JjiBXJhcoD0KUPf9KQCn056LvvDSnZFll2vaJzClwqPbgckL+66yUae+vhdfOtSN6+VFU4W8aswIrGYa17DdT3TR0XjlzmoFPO842hFjZQarm2lG12tyWwGGt45GpWpHxhHXLdnnO2x3FyQd8DJTLBPaUz6++ThRa1JkbCNydKZ0y+cMRqy6qRIJwdPaHvIIIvy+N3+EP/mJP0nr22qZBD525+P8u5/6d7lo7+BDwSikuVByLdMLwdFb3ah2c7WN+mPA2uVwyUV/wcunHyWEet0v25pZsdsfmEti3tTnc/P4y8RxQiTgFw1L+brwcApLLuR1XpZPIOqOIs9/+Yik2ETr63v/TI8J0Cmy1AbxnvkIMOZ5qrqkY4LzugvwoCPcaV4MqbUoHz15nQeLexzGx+zzTLv4KE8OT7izWXOW2hdj7vWRBbNsqAJSm6hLTtV6ay3PhmeMeWboI2KK3T4htA6bquDeQgtSuDc8QcURg1DmTF9Gihm704uqd4qOKY382qNbJreoUfHTlodH6/akHet7r4IVOhuJXU+RzIzg7Lid++8wGP/Gr+cXJ6IQOoqBlekY/mQoVeRZGYwKOooIVgqzyjHvAYwaY23UcJdcQI7dFwIgkMjMUhMz/TELQK1WdpvN1J8CWGDyAUOI84ijUNzRkSBT/ZnPk0JzRM2RSAzLjFomkFGDTCQgBHU4qmvj7JB4MDyjO+yxojUaV7WOIMaReXY4EitqS2g3Jj6ye0Yo1XLqjmOcY0EpEz1VNyIwOgRXHS4lH8dJFWA4hN4JeagMhojRLJSF7bECSSI3OZCGFZoXqDnEhMnNDFM5Aj04tM3R9QIdwtL3LNqOIS545+yUr9y9Q9d4khUe5PNqUyvC/GhHMUOl3uiTJSxtGIezWvMdB/bnP0eJO5wIHmW5dtxfz7zx0sydLlaAMWZuh5HG1U1tMCMGJcUl0/wUV24ppbB0G57TXU13whx6Sr9Cc2begZjUVkd1ODMsK1gdZ/k8cK2v8568yXTYoMWBNKQYmYab2gPkBTVw00Boe6SvG7TNX3eR/IsMBsDm3n3AMQ8Dphm0Zd5nxuEe6jyWHEZ3HG9lSoiU2CLq4eZdglawu82BYS60y46PtZn28gk//yvv8Ph2JMeWH/3InW/qKpLnscVz4d69/xOvPfgJvLiaHaD+6wAjVsr9ZNrTlfoYr4Z3ngwMc+aDm5EpKNuu3hYvjpv446luig/ayLINcDIxPTxAX2hcw+0w8upZzw+9cc6bFwtUN/UeYDfEWACtYNemI8CoT9lbU90nWgGGek9uOx5dfpKd9BRXI//FnWC5MOYKsGMb0ONza58DjNigWioYzY6VXEPJ9F3Er2pvjJnBkcEQV/+G6gMu2Is5bZorg+GDoy/VKnlIA5mMaxypJJ4NzwDo1i8RfQV4m/ZY0zAJXjz3XnkDVQj7Lc00oRLxi8jSfR1gjGFJPDJQhB7U/UtGJEeAkUe6I/1/mR8jQenSiug8EjzTNNT7ZU6QDX8EGMumRuFP4snHNGU1xYfI2jeYzdwW2NJjZpytL3gz2YugvtP++FxSoaSEc8cAtTTXA0uJ9VA1HCjLVXW43T7BeSGP+euvj8zF9ARVJUZh3k8sGcEpV5s7FLfi4UmHMGMGo18SnMJ4y8WyuvZm7dg8eI3TszUPzyPBeyAxmsOV5wDjOwzGv/Hr6zkYCs2CbEbOY/V+WMFZdYOUGuXwYkSSMWZ/zEIACkamijwbKxTjhQbDrJ7iihQm56q1kwooxFwVKDJRxCgOlMDsffXZz1MdsThqhPExzVNzOApCesRgaHeYUyJj7U8xwcwfA8J8jQTWiT4r98cn7OYWK0aUsd48cUhx5G11PrR2y0FaRtfw5v6WYHXIESiIObzJscfFs08bknlkDCg1re953Log3EoNfFqrQ+dUsyrU8J2wKDusVDC094lhanHeiFbDxgZNjGNCTXDOMS4Dzmr9uQrca+6y6RZ0qee90xOuFx1dG0hmRD/VTBIzUtpTMHw87hoGucBu+xJfHe6Tc8Ose5rNOwR1eDFc0/Hm3Yl1V7iz7FghlCGzHUeic6gqU3GEVkiNI6Uroi94XdNIc8zggDkGrOlpQ6DkwuGmnsjNB7KLiEZ8GbASKBlCHjBV3pM3KX5ZLzjXkoNnPFxBgRgCfhiIIriuR1zdQF7YVN1vFXkCxLajX5+Tc6RkA3pyMmRaMPn7WFKM5VGDkZldqRoMicj2EdEZozTMR5FxXPR836nQ7G/Yf/AEgHv3Tniw+ebT2XOAYfNM173KRx/8IRY+IKWQQoseafJts0JFeZBmmuON2InRB0cCfu6LT3h0M2AqXPZ1877XfnPnwr3oWbcNtJn5ZMI5BfPklFh3gX/7E/fwThE5sj7lFh/m44ikHjBYLChd/XC7VLVQjQpuHBAF65eYeX51+D5yW/+7sMDmwpSrYyh2ETkyB88ZDHyD+AyilFk487eQJ87OFhCPNuJiL9hSObpj3LE3yfmCKJTnI5LgCSXgxVdwowO+Ud7Z1rTToIGmPcGv7tbnIXfotMflSOtbfujTv5+L/pxuGIjjiEokLBr6b2IwFsTnYLFZYpZJueo9fjuAYZZpj/Hht+USiY7luKquJ++Zh4Esz+MBBH9kt1ZtFa+PJjzfgx2CxMhJrNfT6O7yaP8YgJfXL/Nm1xBLps0zp6vj+5kLaZxwXlEfsJJxGlFRGB3TcGC5eIioEnZX7KctZTy+3tiTbeZielYZDJfxhytMA2NsueweUKTj7rLh7qo+ycktjgDjmqbs6YMwScPm3mssly2LkNnkAyKJ0bSOpOE7Goz/I6znGgyvDulOq5gzDVWpbxml4LWOSDheGBlIlhld7dFQhGw1WTGr4o+hUTVmCUAw5xjPT7jqT2sRGKnyHeYxal9CFsMUxDyTr50efh4rgNFyzNiom4YUX91XqceXzHV/IAsEpoqEjr0cxTuSxXra0ZFggQnhKi0hC7FUK6NIwwDMt2uuZUNrt7UFtV2yLrtj0qZWtsZC1QDUQx+/evmD/PKjH0PNVyq9pBc5IoMWttQP71oUN9fUQHOJ1md620OBmQbrRpJeExVqODmM0/FfBuIceemrEOyo1/i9mx/mT67+KOvnijwrdHci2+aam7v/lJvmln1rlAcz/kFPtzl//m3MVhhkZtQNj24fMFtB2xsWzhABDe3xb1m4OFmwNMHGxHaciA6ceqbi4GJiDjtKLqwW5ygRmQtLV63IO+cQNe7mTCmJnGsCo3lPcRHE4/MExZOz4MrI836W1G6qzVkbUhMo0x7NhXXb85rVcZAu+heiwGpTPbpI8m8FGAAn9x6wvfkIl9uHSKnCxs4bz+LvZ998Elxtw83MDOWGHNu6kVgmCIzfUC19tul56d4Z91Yt/eN3AfjUm/d/y+/8OsCoOgkV5fXVw5oM6xskBOZiXEvgbneX37t8Ez2KOr0WPnTeUwR+84Mtb18eGDH2rUMMHh6TIQEU4SIG1sevTbPSxpYpFyiFRfRfD0mjbkjFrglhBnPkBKVMWL+gLAS8R4vDhoFGFTdNVaS5vmBe3Wc6eYPd6nWcLChE8jAzWi1kqxqMCjBi51GnoB4NVp1lsuI87vjelyZefvnOC4DxfDxy/EMB4I4/x/nn/rb6rxBqmnDvekoxJh1xjeOtq7cIGjhtTxERVkcR8Dx2fLL/Lu72d3l585DVxT0ebh6iZiz2O0Qa/LKhsS3d+Ov1dBRXL8BytahuqZUHDuf6rz9VjZXWBLpY/U4TNftmHZXYzuA903Ag2XPBpn/BdK3aymAMqfA0H98j51DXsgkV7Y16wvu7Ona5v7zP6Z0LPvfBV/j928cs16cv/n5pSqjXKqgWcD7UIsuDYz4c6PoHBBeIh1uePf4aOI+oYL5hyHvO8hXrKKgklnZDci3vnP0I7y7/CEUirVO+79X6fo1uiXdStTTDNXd64ZMPl2zO70FXWamHN28BiSkb7vn763/3K9r/v13fARjfomVHBiOqwuKMYoaVKj6S8o0jEsGsuhRMhPIN3SNK3ayyOJL3lPJcgFnqWOX544IwHYWPwTIVnlSKfDpuKeYNLY4pBEwEGXPVPfgjZXjUYBRr8DlBavElc9lN4BxeEphhWQCpoMdaBCNqDYUaTbnNixp1zAEQovSIeO4eWrrbQMeIxiqU2IQPwDySI6aRRI0wD6W6QuYc2aeOoPWmI2bMNUCZQeFgEwKsJRCyQ0XIOtPMV6y5BYNDaRBTrvxlTf9TpVCYd0IYj6xN69FFDbgyChisTx/wYPkyG29HDW5h07zE1oxBBdOGebrH4yePKEEJcY2KkqbCrIVJE8FHJC9I+4uqzJcKzmJo6+9JmYuTNaujgGy/HwgKLiwZpaGc5To2y4Flc49ht0XGGahaC3OONYmVq2mfpVRwUnykOMdYPL6MtCK1sKlML0Z3bnFGAYoGcgiElKAUuHiZmAXtF2jXYfNx45kKTh3ZGYf0zTkYz9fm7v0aIHZZmG8q+OudoKXFtEFcjwB7ucGcRxcXqKs3Q6+V/n2+3rxYEh/e56XTjlNXePm04/R881t+5zcyGM/XRzav0kpk0V8gMdQRh1NWBhfFofPxb+DgpGv50N3Fi8du1WhPW+51kf7O1ze58+gJKmy6epoeZ6VveqZUMMs1MfL5c5Lj42yLd1sMRymQ0oC8/BLlpKGcrlAJ5KurymAMAxljdXdN6hv6TUc4u4OqY2xWpNggqxNwRowRPQKDKvSsfwPXHWPmS4R5RxdB+1NojgzGN4xH5F8AGN4XXvjlRQnH17N0PZaNUQc0Kl+++TKNa/jMnc/wXXe+i+7NH8SW99k3H+Ej6bs4a8947c4rqCr9+QWbZkOjgS5s6M9ephHjbP/3Odv+D/j2G6j8ZkVKRzusX33zGEzkxQiyC7F2MVl9DzdTS/DuyGAcuLyqIGGxPnvx+FVb9VVjKlyWev9aLgKqgZPQ4f2ay3n/dYDR32d5ds7p2TkPXn6F2B2vy2ykaUadEts1PnT0m/sEF2Co48G2u4sPLS5P3Lz164iPaOOQDHOY6Zj48GaHOGGhI6jy5OyT7CxgEulUubd2/J7XTnlw7y59cHC4hHFbk3v7BaQBllXzcv/2NxGbaJ78f9j782jLrvK8F/69c87V7O7s0zfVqlSlDkkg1IBFZxssYYyDnbjhhu8ax8bfCAPSOIwvGRAnYxjiYXKdYQbJGMHX/hKHa8fBXDJix85VANlfaAwGGyEZhATqVaqqU93pz9nNWmvO+f0x197nVKcqFadUVdJ6GKLO2Wftvdfca++93vW8z/s88ygUJC1Iz/ycXC5UBcYlwoDKT5WGqI43CRA0BDiHwqLEbTIYUk6EYMl1kFmGL+Pwcx7FuCJYaocWyZb7eEtfHK70D1Deg1cYD4ULJ2SvQ6ZBbkzQY3RtmDpQwSPDqDBjbX2EycuePTlrKWgxRJIj+HBFK4o8MnifAj6kWYpnOa/hvUK8JSZDe4VBQ9pml9SIOqM07TqmaRhN+miTg48QG3rxPQVOHIlVZFphvQotIaNKzYmn7wrw0FeergtBYA1JiIqyQNAFsd2gKesYLIWL6NsGy2oFozWTpUtqtmaJ8yLYjTeEOA3CvgHL2BqbxpiYyXo5py4FzWiC46t7OLFxHal7DW5jD0WWsXw8R6kaWmmKLEx29HWBVhE1n1Js7AqqGQljtPUkiPWSLKORpLQb4aq42+kTa0HHI2SmTVwbxfkxXFbj5BPfobexztqxkzgfXASV1sz6PlG9h5cNnPVEJsGZmLW+wqKIXI+RONhBO9cnK/UEtbFpeiYK0ztpgikKxHriiTkkGkelCapexxehFRREns/PYIxMTYeixQpFLzAKDW1QtrRoLq+ku6YAUdQa1yDlbUZBsUWcdvPcCGZ2lkgrXrGjza6xOqp2JvV7tgKjHaVMJuOktQkkijia5aA0k0WGKixxyZMrDZGOGGsl3LozUPK+bjAjMdffNEWtsdkimYnDGkZrpRFcIdSTOv3CgbM0txQYzmm8jxDlEemjtQ4FeH8dV6+T3XANfrKNqAi7skKqFLrfx3poTo5Qm6lTa0S0d+5AIs2Gz7F7bkE128RJhEgYsx6gPlKOcTbCPvjSKpu4ATo6g8EYtEeAYaGiTMGgwJAyPAugZhOc8/RVn0VZoFt0SU3K/3bj/8Ybd70R2jvxd/w9smQHE50dXD92HbV6KbwdH6MRNZiqTZHGCTuufRcT428gMTFJMU8sz24eyHMIPIf7WbZJ0ijGqHCx4zC085hIG8RE9Dc2WFg4BMDUzN7hfZuJIS5rp9pok1t2jtBoxGjTpB2nJMkMS70l+raPUYbJ2iRxHDO67wAzN9w81Lt468izHG0EbSKa47tojO3AaIPbEBpFjPgY3Z4C7el89xGIYnRqsHmXpSRhPO2zu9EhURnaGLxKWBnbB4S2kxHBuYwfvH6Kt95+XSi08vJ4RjXQMRT9UETomNT22Nk5xMiJZ8JrtO+N4Y19haAqMC4RBgxGosoTV32c0KC3QctQ9goHSZEhuEsocOQmwqnggbFazkE6nZIRklLDEwSHSyeQi6NHmK4IHhjgMWgUtkxwpbxqsaXFtvQsliR8WAHtA33ubBO1HqpjpTfIVIS4GrFkIemxABFFkUQo3yBxo8xkY/hhroqmpnqIcmF8DUEa4ygRTF/T0l1u7B3mxv5ziGrQtw3EK/LQxsThSayiU+am1MSGmf/ydeqVVy65eNpSkIrHSETqgsATk2HFYUxBgwzvNZ28SS4FSgtzNQMIvpeR5uVr0xKSCJQpk0yNEJlwVTs3Mko7WqUVL0NxlFXfQ5SmFSc0Jg6xtnCCw4+tc/LQSSKJKPpBcNuXHO1D5PN6bljqjSMSIQij4xOAJ+32yDLP6GhIfu33+kQKamYO43YyPfKTWKnhnSXRG0H8uuFKMySY1Ak1HPHIKkgBLiWJR3EmopdHxLFh1HRZjmfJ+5bc9rFFOPHXxybJkhpiLc16E1U4lHXUGyPI+gpKg6qXDEbhwthfqcEoXMFqtsofP/HHfOnQl4IYDjBRRHrrHmT3FI3JmPpYyvSuNqoov/DSKZi8Dj95IPxa2wO10cHbk6KkxWOtuWayTnRaQrKq1zkdmyLPzQIjDR8o+qKRKOJ4v0C0ZqrIcJ0OUw+XOgKtQtvHe95w/TRvuXGa8anwHHtr4WpygJkyV2O83IcsVzTiRmAwnAuOkSWKogASdCmkjIwBUfT66+R5DvShlZzCYKisj/WetFlnwzriSDE1twNVi9nordJbXAE8UdmiEbP5fLtuGGPPLROMzpTFVjlWSxpe22GBUTIY6E12YPDZUmpLgSGKZDIUc9FaaJlu6HW+0/kOANeMXIPechIbmwmfFVcWMHGtbN+MjQ46G5hGPeTdjN5JPPbW8NgsDt87p5psbeovBhgUGEkUoZUt06ljWj7BGANa01ldpnA5cZzSbk8P72u04o7do1w33eRVN85RjzUuipkY/2H2zb2DRjkBAzBdn0YrTVS+r/I8Dw5fgC88RV6glGwWZsoSmwi75hhXI5i4gRqbAuXJjh0NDEaqyfprrNdGSJyi6Q8yrQ6DSVmPpqER1tsotRPOl8cvqoPaLFyHx7Pog8uhOYMWeNXSd3DWIY0ZmLn1jNfucqIqMC4RXNnnTcrxRV8bQ3B4Gz7Iujyxu3IEFSh9H3KyKMah8WLplZ8/L3W6ziBiw9Y+zOI7EQpxbJTjm8ZblPc4NNqrMiLeE4kObn+EEU5xcMKOIOVcuFFreLEUooa9PElWKVRE4WKa0TEEi/RjEEVRM0FrQYPEmDA5AChviFUfJ2FWXiH4uEZaT4kzg2202GWPMOWPouMmmWvgBJx2uCQwGLFTSGRoG09b5XSjgYo7ZynvAZ5uBDXrKCRHVERidRgdNRld18MYTyoF3nn62TjiFK00YSIVjHJh5C0Pdsw0NbUIdJwMFfTKlpME7RkSVYDu85X5P8eLJ0mbjI5MYmrLxGlO0WuydGSZmq6R9y2H1XH6Kkf1Fa1sCus93/GT9GSETDW4pt3G1xNaquDo0ZO0RkMGjMstDkckKTFTJO05fBwmDeo1Q60VsaJSul0FKF7ZKk8CqQY0yl9Duz0a9CokGCWM1TI6nZiNjYxu1qEZHQ6hXM057Og44j3tqVnAI9Yyeuw5pN8hqSmkVsc7j+uVeqIoGp6c7nvqPo6sH+Hhkw/zjWPfGL7v/WiK3jfF6K5RGmM1oigl9eEzEMU1aM4GGheopbuGX5paQJeeFWONiEYSoUdHkS00+lkZjPhMBiMtx5K7Sg0ZDImjIQsRl5aP0fT4kIov8OyYaeK0YETYmcSl50jATPk8QwYjVzRrTbIBg5FsngistXgfM7h7mgbn1azfYX5+Huij2rXAYCyvEJcMRuE901NtOs7RasXs2jGHbqT08g7r3SWcy9FxeSwGwk3CCX12XxvdLE9Q5QQWtVGIUihDvvL50jCrvlmcDFok4XugHOE0imgmFFLRchiZP5oc4rl+YAdunLjxlGPQGI2HRQVAXLI5enQMU7ZiTHOzDbW3vQ8nMY0I+pSJn0lzS4vkPAWGLsA7UjWCQkgazWEhI0qYmNg9WMoQU7WIiWZCPDuNiFCMtonjSVqtG5msTQ63m20EnU8cl8mseT6cuPHWUeQFiBCX70uRnFbSxG14ZpjApE3M6DRoT6/oIlGMTjVZ1mWlNkbNC5ocJeBNymq6E8qitVFO5PjSMAyR4WcFGBbjFL1QZDRnqCmH8o6TtsbSrteDurJO6VfW3ryE4MsWSVK+OYvaWGgxOFcyGEFHERIZKdsdQqYFryO8UnRNjnWlCyeGjtUoNgsMAQoUS6vTLOSqZDDC40MYEY03SobCGPLyyyTxOaCYz0eIdRbESj6jNfV1VseeRdefJm0/Q5SuYiXC+YIRcwzxlvTkFIgi06GvqLwnSj1eh4h2cYpI98m0oiZxmH8xipndk0yPTaAiTWzWqatlTK1GIQ0KBRMKxtsKKw7thcQLdzb7CJ4FPYYXjS0s37Pr/P9kCRfXwDq6UqB8YEEUFq836Lo+JhViPMpltPIR9p+8gVorRjf6jJQxAiIOcOQjmlZjlqSWgtboWm14tTc6PstkMQkIT2QLYOqMN3dx271vZ+6mney68VpglKKwtLMR8sxyiGN0JUMVQpyMcHR3wpERzRPuNTxnXsv1jZi371phNio4evQoejSh4VygYL1QnkNwccQ1r7mb1sQUidaM7xjlaT1C3G2yw0+xs1XmFSSKSPZjc0NrdJSRuEWrUaeVCDNpl+LECt3cIuOamuqSRnWSkVcT7d5La2KKHe1JutNB9NlaPc7c/jbNXeOoclKh99gSQAiU0+GLdbG3iJZwov7ro3/NMyvPAAyD0AYGV+JqpKWwLo03C4QoHseY5vBLUwTqzTY7RmtMtxIacRDpRbPl+KMIcoEtkrT87C3GCR3vWcgKUIrrf+pvM/a//7/o/uQP89zbb0PddIC0PAEe6eccLP0udqYxRgn1Qcw6wlRZnIzVaihR9HOhlbToF8Epd2RLi6QoCrxPUOVnPy3jAlZXF1lcPA7iaM5NDBmMtJwiKTzcfO0Mr7h1mvGxGrPNJu25HSCw0jlBka0S12KieJyodmafXTUHrZA4+O8kI0P2wm7k5EeCiVW8b/O+unz9RHIGjrdaa8x4DTFCkiV450GgXRvlJw78BDubp6ZXiwhjs5sFxKDY0KPtofA13lJgvHKkxZvnbmWqVmdDBdYiiDyfr0USTr5xbMLFmYdaOa0TNRqIlMdKCxMTu/ClzmaAwec53r2D0V/8Rbr79g3/Np5u6jVm66HAGDAYWZYNW0rZsXV660F/lDRL8y/j2N3ezQF1DWNuDBM1MKNzgcGweTDESzWZy7BEZOoAudnJseadHJn8EfzI7mEB2IxCodHvH99kdtItxVa9LISe+YsQXRzVGJ+YpeH7rNSm+G9ueuhKe6WgKjAuAbxzwzdIOmAwTHAxxHvEe7QObwTng8bCAw5FGnlaUtCL66zFDl948l7CUrfBUTuOUsGQSMr/WaCrcrJgp4HyHu0Fi2b3wmEaawVeeexorfTAgLrqEmtPYjwjKidRYERo+FX6uqC5fpI5d4j96lliD031THAU7cbU12sgQtc7sJ5unNCdaITs79JATKmCLEqo+ziMg2kTsgh8nbrK0KaP8ZZ+VsNLQiE+REav53gp0Dj25oscSLooPB1JsaJZ1TGiNfnOKUbLz19XcqLCBA/KyGHNMl3fCxbKKiIVR2ELFn0D28jJZg4zOrc0PFa50mT1mDSdY6SVkiQFzXqwxgZoTM8xlexnvDUJEuFqLUbTMZzvoExBXK8zsXMPANmRgmlmw6igCpZqUo+ID+TUVB0kBKLVdMTUqBBFhn6/z9L6Cg0J74f+QkZceFBCPhITj4zRnp7BeM9qfZxuEtiOfRSkyTTKTpOq2zDRNEXmqI+M0enFCLB7qsZ4XOAy6DuPHU+J8Iy0rqePoVerI0ox9sRzjO/Yx8ie/YgJAWBmYoJ4T/gCLxZDD1hiRao3Fer3XnMvt0zeAsCfHfwzPvfM54YC0HRgTuQa3BDHTESGqfrmSaZW2x1+GNC+wOT4KBONhLl2jVrpGhnNhS98lSbIWa7OzlZg7BJo2IKNKOYzR5dweOpaM5ImmLEx0olpbD2hburcVF71f+7kCo9shHXuLdsQY0bzqladN401g1gbaCSGnc2djKfTNOM2mQ26qoEGwzlXjqgnlKnz1OvhhJ7nHaBHq9kiGR9DRGNXVkgAnWVY71lWGmWERClGjGbimv2ggqbLFRlJPSJNdw2vqk95LcoCwxWGTnE33RPTFP3w3P0nl/EeoqkaZnSTFRowGK7IyXuBQVBGIVowEzWm3Axzdif7ewf4met+5oziYoCx2c32VVyKTfXoaIhEB5KRU4uGsdZ1gLAxPoGfuw3qE+TP1yIpC9tYy5D9jQ+VKa+1+tBUa3RmB0lSx+eOYqFL99EF7GofXwwmLBQqSYZTKQATtc1QsJlGaJdsbZGYqToqNRw9eYKs1ydShnY77KNSlrQR4foZeV+joxp6ZBJTFqR9nyNpSu5y6kurNCVHVALje3E6pdnaXOto8zoQRafzNCur3wSg0OH3LDuJ3/0DoWWyEpgkROjvuomRxHJ49+tYKix/eHSRPzm+zJ8cX+Zry+tnPVYvJqoC4xLAucEwJWUkMOA9SunQBymj2iOKUrcQxIUeYVe0QeRTOnFOT3tWsxr9XsK6rbPhG6XA0wcxJQriNTLdC6KnMsskcoJZ67L3xNNEvmBjdw5pjdxoPELqM0ZqlmsbHXabLqOxQ6No2A3q+TpqWbil/whtKbhGHWNWHUWJx5xsUWxk9LMOnfUNlvuGfpSwNFqn23Q48USRp6djnIqo+6Q0z7J0CwDNXG+RrN4PI6FuB0oZJMnx3uE3HIVyRBS0lgt85plLLFprNlRCrqAYadI+cC1TahEfWXLl0KLJjIbY0pc1CudRaQOJGjRrMYhngQYrG9+hN/sk4zcfKqlbTxZp4nQXRhnGajDa6pJYsCtlH3RynJHRfdwW38lkcT3O9ZiuT9HrzQMQx5PsvTVcDfXXc66XV6CTQX/W03xFTC1S3Fq2CRIlpFqjlDA5GU64Tz75JHbxIACFLV1Ep+tkWii8Z2RymonZWR5dj2lNttgbO9T6Csee+DY6u4VGYz9JbQS8Z/HYCN4qUpVzYEfKqLFopfFTE+QiFHIT7cYIHevYGAlfbunCAntae5i9/XXEu8OJP5qdIb1ujMYdM+hS7KhqhpEk3Oeu2bvY197H63e8nrnGHJnNeHL5SZwPx6PVnAJAXItZ0dzQSEnSTQailu4pfxgd3tZqtrlhtsVkK4RUAUS7doXnbp9dGa8aZZjgE09i1wPdHtuCH105iVYyNMmaiTfHFkcGplvpKD841mJHEtNzjvl+OOZ7awP6W7h3ss1rRre0I4ziwPgurhm5hseOd4ctkoEGI+gvAAxxFO5XKwsMj0PrHu3RNnp0PIxVZxnJcjCuKrxnoey5T5b7Ozo3h5QhY4in1dqL1rVThJrD16I1giiH90LOfrK1BhuHJ+k8eJz8WCcw7vtHT7mPieNghOYd3paOnVGEtY7FvmX+cJ/b89dwXb4/tMjOgdZ4SlwLI5kD+3LVaAw1I83xU49frbYHEU3RHCPbd2doD5c24VF0ZoFhdDm62XmYJCkFxIsl49Ieod4O65q5Nuh7ioUeG988TnZonY2/OorvheNyttdt0BaZrE1SK4XGW1skuhFRe800R/UyADvbszSmw/5o40gbgs0zVk6k4OMwdTcVipZeXZMnCd57bv/GF0lZQ4wmGgvM3Eh7c61TjR1MTLwJgMXFr3Dy5P/ixNrX6fePsd55kqPpSfLbfgo3uhvrc06Y4yzaJzkxuYcf3jmHkfB+/95Gl+9tdDlUCq0vJ8z5N6nwQuGcHTIYCo0RofAWpwyFE7TzJNIliSwubxAKjPAfFGyohHV3hLVCo4saNtHU6h1MFiM1h1Ial2lyDKQnSBvzSGeO9vIJxrvHmTi6xryaJ6/V+c6cYnV3TKebUpRUXGNppTToinBSYPAkSrGru8RUf4Fjapwn7Cto+oJ96giFKLyO2NVPWHZCXuQUGzlr9QZTAvWaZS1Zo5MJeRxR6yWYbp/HaxHLDYFYuEbF7Gz0sV1LEa+SN6dYX99JTQSd9FHSx/dSCkmw3pIuz7EQT/C6G2s8/VddMq9BeWZ3JFw3Brumc6I8ZyZOEK/JehE6DtMs1glRfQYQ2rWY6fo4h3rLPJnHjK45RkY2aDc79JdSTNPz1tk9zMR1vuPXyQj99cx7Rm4Y42FvObxnhn0bDd6imxxTHW4cv5F+/xEA0mQORtok9QhZE8wq3LDnWp5qfI2RmqLVgLUOzNLltvybTNcPkPUC1Tk91eLZZ6HT6RBHgrg6yfhOtESs6ODN0Es9zjtOtg8QzdXZHce8YuHbPPfUIUTtYWRylv13voaiOM7y0RlqaYMf7T7I/p3LZEuH6AmMNxOWpt5GzxeMt3bhlPDoRhe/7zripSUmY2gaIdq1C91skh08SLw3qPDNeErjtXMUJzvo0ZQfkh9ioRcKEgCtND9+7Y/z5MqT5DaczKfqU7j5hEbT0Vlo0ZNw4orilMISJkhq5ZXwFgYjqrWgD414U0AYzc7S/ls/jh4bO+tnLb3hBrrf/jZ2YZG1z/5P2j/xE2TPPMNMkfGDeZe/LLebTTZPjjdP3kwrbrG7tRujhHdMj/L7RxbYsJZUKabj5/9afNP1U9z37Xm+d7zUD9iCWnni6pejzyJCmk7T7x+k2dxcY7P5CEaPYeIWuqWwq2tEf/RHAHRNzMOdcP/Jsj01MjWNTmOKbg8RRTu5HgrC2M1pkFqLxo7j2F4MN7wWu7pBvtIkP9ktX8sGuhWfch9tIm7+wbewvrRAlq3hnukDTR6475mgv/GeRs2glT9ldPSM51bCjT8wR55ZktrmCO2B/TtYOXyMHXPjp2yvVEytvpfOxlN0Ok+idYr3DkShdeOMx2+376Sw66yuPkI0OYHP+szu/SGatWtJrt3HfqC3vkrDjLIxf6yMVADdTiiWN6eexIQLi62YrE3yEwd+gla8ybJsbZEAHDk2jxtRjIxOcu1NN7GweoiJnU0md9UYm4GkXmCLxpBlq+2Ypbd4hPmoQ/f2H0c+/x+YyDMEB3EL05qChROMbmUwIk0cv5Ksf4y1tUdZXf0WsYnQpkFuhG52hOcWjkDbQ+xAh+8Ra3ezf/yV/LxEPNPdXOuIufzTJFWBsQ049u2/4MgXPkeqFfNPT3Kw28MWx1hYP85Dz3iWipzV9FF6Iz2897R8RM82OWFq+LyPkuCQb8VzWE7Q52vovmU1n2aCE0xFBUYtEGnN8WgGj8JbQ2HrQMH0xGNMnjhGwzdBF/RNwbH2bp6b3MHSzB7qeZOM3eSxQamCUfMcun6MhTrEeg3fzdCFQzlPO1/lYG2Ww2ove9RxlD+KWMdht49Xthfx+Y14CZbPRZwy7jfAzmObNY4sj7HSHKfbc9RcQV6LafYLcg1/Iddw+8YxOtGrcMkCGwmkSwmNokeULLKgVzkZK0YkYSQzjBNTW24w+izM2jYbPmcttkzEmuy5Z1hPJhmtpbRGJsl6GtPPWdcNNqiBs6z1J4F1VN7nuknNYdXgie4tnHyiwY0zXXq1GLNSMD7WIzn0SQ6tTeN1mIPv6xr/jYyRYyscXenB5ATd62YwK/PsXG6SRU/T6TwDQJruoOMco1NtOmt91peWeM1db2J5+SF2pA1qvUfobqyyI1qmjqFpPKur3wKgXq8zOzvL4uIi19y0kyPHHIvNlFo94ugzy8w/fZJ5b3HOY2o1aq02P3zjNPGzS8zPP821t9/FjutuQESY3ltQZJrZfU127Pw6qtdlyddZWOpx42138hU7gQNuHW/wPeXpOYfEEc25WfbPTVDbclJNDhw45f0tWojKSYEmTZpbBIYQRj1vHD9V+Lcx2SetTeLK3reJNaOT02QLDWq13UPRHkkL39pBLzpJ0mjC8gb15NSvpfiaa8752ZM4pv1jP8bS//0Z8vmjLP5f/xeuHNN81dQYtt3kodUO19U3WzuRitg/un/4e8to3jE9yh8fW+LWVh31PCdSgBtmWxxb7fHXj/cAwdguR4/OMzs7y3e/+93wHFFEo3EdeT5Pe+QArea19PuHwhWrCPX6NZj9fboPPjgYUuD47BxHu30E4YZG2F9tIkZ37uLk8hPU4kmkCEFnunkWNiFpoefm0M7CjdeCUsSrGb3vLeJ69gz2Yrj+iUlaE5M4t8TKiWeotcKxiVLD3I3jNF3B957xZ73vVqTNiJRT96t1w3WYbod455mtlUb9AJ2Np1hf/y6+nA4zpjnUU2yF1gnTU2+l1byJx1aPkLmc3be9FVM6zSZAUq/jcxt8JxJN7aZx9EhCfrJL73uLiFZIpMEWZzz+6a2frQXG4cOHOXgwMIzX3nCAeLqB6SWkzYi8v87C4acZm+lRG5lGGUNSN9Svex2Lj32LZ6fg0WgR+dF38CPPrsDT30H23Mnojp1srCyze+cuxjuWttEkZXEyMfHD5MUqeb5M+5q/Q7P/VezsDWS1jG73IEHAO0YcT9Buv5FHvvMQIobxKPx3JeHK2purFE9/9k9ZO1kwyiG++bVlekoTd46yMHKARXec+XFhQ09Tq40jeLSHfTZiIWrRsUfRxTya4P64KrOssMLs6s3Uiw7jRcR0x9M65ngiWeJko1HqOICsjrWa8eU1dqwc46mxm1idqPH4rjE+N/HjoBQTNscnjhWVoCNHo77KjsZB1Nwi1hboXkJcKOJM6Ks6sSuI6ZEryzfMDbyx8ywpwheT1/LknmluzyxjUZOiodiRFxywRzmmInYpjdIJT5kabt8c9bxHvKDY2XGs0MMT8zd+gsj3mXLzuPWY1lqPHQV0zSoH5QjHRmJ2dadIooS2T0gF5EROyyoebsSsNNtc21uk6PbJ4gYjO15JRwS13sEAJ2ixLA28h85KqN5V1uN6tcyxeJXO6HWs5TN8c74MPJnrMFl/nBMn5oHnqDc1k3N7ONzdTacDnZUekRbu3j/Bq3ePcfz4t+lsPMOyOzZUqSfJHEXnJKOzY/SfPYHtZqw/eYhfeMOv0Cv+ho2NJznQmODw8neQfBftkVfR6X8PvEfrlJtuugmApzp9HqgtsiSw6D1qR41nD66S5xZBGJ8IVtR7Jxrks6/n8YUVpvftH15V7rhujLkDo+F3//8GmzEGvAZF3yu+9qWnsM5zy1SLt7RTisFoqcimm+I2ojGacPtb9w69F1Q5Jr2n/p5Tr4RF8Lf97zx75D7mkhjYOGUi40KgR0cZufceVv7H/4Pr9pAkoXH33aS33MwPivCmsebzXn0D7Epj3r9n+rzbDfCGA5McX+vzdG+WpHeSxx9/nBMnTrC+vk4URYyOjtJo3EC7fTMiwl13/UOc65ePH7IseAM0XnMXtp/z+PwCPoqYiiPunRg5xUV0ct91rB1bYWR0lmiqRnrjOCo9y2skAre969TXZiSmcddssBw/z9p2Xj/G7LUjQ2dhpYV8foONh49jL7KZ3njNa6jfdddZn7te3xc8dfIVlpfDJFJ0Fv3FVtRqe/jRV/0fYf/OqsnRNN+485TniyZrmIkw8iwiwTL5PBi0SKy1PPbYY2EtjQbT02H8NSot6LurK3RXVxCBmX2T7Lh+d/k8O0j+P7v54nNfpNNbwGtD4973UK/PIkqxC9h5wysQEX5x7NTiTamIudmf2tzfqddiRJgjuMFujhPHZUvuofMv6DKhKjC2ASP797K4/Bxr3SZPuHGcMnTZYMNHRIWlbk+gXcFEVtATsE5RKybou2n6boSaPxoEnr2C79hnkP409azBZK8XxpCUIbKKu/Kch3SBDIzElcKtjDP1nXWsrbHYGkXVNYe5NgSauT4H+gcx1vJsVAfa1LvLONdG+zqZK0h7EVGuGO2v4cwKhYuYcAusumlWO69kcWU/faNp1Hcy7eC2rqdncx6v1bhxbZYdcjOz3Sm+uTHJeNrhmsbTrNVGSKd2c1d9L0eXH6eVxCy1Yk5gWehrVvOMdu1abmq1MTqjVusz3fd02y3MgRnyQwVz+3bhVi1rJ08w0TvMrG3zple8ima8k+8tnqA9OoMejN+1YjqH10muazNjX0tvbYkWOyga8+yfHmVipMa+pWXu/cnX8uffepaTq4HajvQYt07vJZbHMdE6kxOTmCjmlSOv5omFOsfXetyxd5x2LVzNjI2/HlExvvQWSdMdRNEIzh1HG83em3Yw8pQj75/gkf+1wDW33c7M3CvY2HgS3U0R32Ji4gcZ4zZW1x5mZORVw/fQ3lrM7e0Ga0X57deocftMm6ePrLKrnvAzNwbTqefD8EtVZBh4JEAKvPXmWVZ7OXPtFLlERcXpUEqGltRn7OOpN4IIN8w2Wc8dt+x84U6E8TXX0LrnHorjx6m9+tXoLVMLF1o0XOh2ENb29lvn+FojwqzVKdaXWVpaQkS46aab+OpXv3rKY4oIeotAdvicccxMFPGaSUdTK141Uj/j2Oy861Vk611mb7ye2v6pF7SfL3Rt+jRaPZprEK+PsLacn+MeF//cWqdMTb6Zjc5TYTsU7farz/t4Zysszvd8L/Q1i6KIAwcOsLy8PHzO3bt3D597ZHqauQM30O+U2SlxwvQ1+055ntnGLD99/U/z8MLDdPIOc425MxxKL2h/t/w8mKa5WlAVGNuAkdvuovOsZeF4zJ+3X4cWYeLIOkdcg1ZvmRuiB+ipjDtWmvxN7HDOMp7fzjcb42RmjZZVTM7nRCs5rV7OrhMZ7X6Ccn286QcFtVNMcYQ9bk/p8alRKqG96kjWxpmPpvnm1Ou5q/MdlozBO0WjWOBnFj6LL4Q/ldfiohprIzM8q65hpttjT6a4e2MSbohp5H/Ihpmmv1zDOMs12VGaUco1chsLIymNVo1bjwlzeUbsYeW6KfRjws6jN7MRjaLSHn5qjBvfcDvf1Ck5MDrviW5tsP/2aSZ2NtnY2OBTX/gyx+xt3PzGN7Lv8Q2Ko0cxuSPpWmb37+Puu+8+9cVd0PCtVW5s1eDOawF4BTc8z9HYf8YteZ7zxNIa7WaNd/7g2Yxo7jjjllt2Apx6okviSWam33bGtrakd2f37uRNP/AWnvrmX7E0f5j5x7/H3IF3kCa7ecIfB4L7ZmRmmEpmTnkMLcJbJs5y9bZz4szbLgI3zJ45+neloR4b3nzjzPk3PAfSG66HG67fxj16ftRizQ/fOENRTPDggw+yvr7O/v37GR0dfUGPIyK8afzcxydupNzw4z/0/e3sRUKUEF/bJvvupRl/bLVuptW6+ZI89veL3bt3s7sUPZ8OpTT7Xn3neR9DK82rpl513u1eqqimSLYBaSshqtXoxyMU1oeJjkHqp7W4Mv00dRoGcVO+CFkiopg5ntFetjSiglfvWebWVh9teyifQbKBUprCWbx4rs+exXjBociMQVmPE+gmDbIoRWmhaxpkEnFM6hyJ97FGiiLEvysxrNfaoBUKoas0B7sdMptD3sBKyPTQcYPaSBs/8M5YWWN8xeLwnIg9nabh6R0tzA23wuvuZKneBISd9Rrl3EywUYahH4DWmo4L4VATkQlup6LwYhEcWp9FlFS+jqc42l1hcKWxkxJFUq+z55bwhWLL0clB/geA0lfuOipcHIwx3H777dx1113nPCFVqPByRFVgbAOSNCapJ3glRFmYix+kViofTsp4j3GqPPkK4oJPghNF2g9OW6u7wBihlvQw+QriMhAX0j69Z0H1mfSHiH0YU/WiEOewBD8HL4LR0C1HrQr6LEQTrPsEIQo+HKJJvAlhal6wIhRRgfKOuGiVMeyC0hGCG7YrzfoGzjvWcHQ1g1UQjc2hGo2gAPee1GjSkso/W4HRtWG7UR0CvhCF9zZE2J+1wCgFWXL5FdHnwqDAGBhPmbJ/W5QJn4MCQ5S6KHq7wpUPrTXNZvP8G1ao8DJCVWBsA5SKiOsOiSKiXHB5vnlV6xwhgFRQViNovBcUBeId4hXig2lWXodcg1KOKF8EHCiPMtAn5llJAEvighMnolAujGYW2iCA8YZeFAOO2Occ0ZPkvh7C05SAMqQ+pLJqDyAcG4NUOerUMD70iQUNzlEGymOco3AZBWAlNGkiKDNOypOsh8RoamXfvV+66amy4OjBUFw4qtUwOM0T0hHPWmD4K5/BGLRIVKl+H+Q7eOdw1g4LjIq9qFChwssJVYGxDRAxRKmFKCIqBIocV7YJVNkiUV7QPmRGhIaJBV+UegrBGoUST25UcIAc+NFHsCaerhSsuoSudqiQ7R5SFZ0LBYbS4ZGswSqDF8dI7ph3UzhfQ6lBGJoi9mWaZGny1Yst3nTxojC2FKKJAl8WR2E36Oc9HB6rBDwhyEwLVg1izj01Ew0ZjMyeymAsFYMAOEF5V1oQK1xZbBlzlhPwgMG4ghICT8fpDIbesg6b51sKjCt3DRUqVKiw3agKjG2AUhFRrQCjSKygrC1Ns0B8MbR1UU5w5Zy4chbxlnAIBKcVRjxWCz5Sg1gAiDQ5nr62SC50jUW8hCkSdAjJwmNNSB/NqCEelOuTWljwLSwarx1WQeBQFI0isCxBH9LBmz54g5RBUIIB7zdbJEBWhALDKcB5DCBaYUWGo7Ox0dRLpXU/P73AsKAUNaWw1pYMhpQtknMwGGUqLWeZjb9ScDqDIUoNWYwiz4YFxlnXV6FChQovUVy539pXEQYMhseTFCpcnQ80GGUsuwDKKhxB/+B9jogbMhiuZDCcgDW6TBqBMJUUwty9VfSVRTx4r0CCyNOLJy8ZjJzAQBjbQXnoeU1PGURciGlHUJJzbfcYiV8nV56m7eLF48UwnLH2OjAYYYFoD7nt4RGsFrChwEALTgDvUIST6CCFMh9oMMqWySB0qq4VtrBDBsNTFhhnGz+7GlokpRB1a4T1IEQqMBilTXFVYFSoUOFlhKrA2AaEAqPA4zEZUFi8KJSKMQMqwg+4ii0tEjw+5I2CCc0TLzKc3ADwkYTUTx+svfEq+PYP4s6cx5UaDDz0JAEBZddRHqwV1lUU2i7eU2hBSYF2Cdpn5MpRLzZAPF7KGWsJM+mDAkPqDTRgXUaOxSrBO0+MIFqREQoq5cO8eE0p8J582CIJb7PFvEBUKEBsPhBvqqGU1JzN5+EqaJEMGAwtZykwinwLg3HlFkkVKlSosN247AXGJz7xCfbt20eaptxxxx18+ctfft7t+/0+v/Irv8LevXtJkoT9+/fzu7/7uy/S3p4doUViAYdkPkQF6xStkqHlrPYyFHR6BLxFJLQ7xAuiPVocXilEgdV1wCNREGR6INcJ3gcvfac0gkH50LLITURSQM8E/QVuDY3HWk9PBV2HoSBXgBSlEWVBJpZa0QE8lqgMZgvjrLjQIpEoJolSxEMu/aDBsK5skQiDR1MIWoewLhzkgzyWskWymBebLZKsvKoXFcZVgbP6SF1lY6oDbLZINgsMOY9RVoUKFSq8lHBZv7U//elP88u//Mt84hOf4PWvfz2//du/zdve9jYeeeQR9uzZc9b7/OzP/izHjh3jP/7H/8iBAwc4fvz4lgTDywMRg44cXjvIIc486DAqanCMxQVz9QI5XqBJwkSHLwj5qaHgUNqjxOOVRgohq+/FF2s0k6MgYUKjUAniQ7tlQykebWhea4MGI9eGWi50E42XDcR2wAU9hkOXJEkBkqNEUyghcR4rXWpli8RJRBB/CMorIDw2SlFPGnSBPhlWg7ceg4BRZCXLoHwwDappBc5TuM0CI3OOlYEGQzPMqMDoMOIKm2zPVlwFY6pnYzAGo6o2z4ejqRWDUaFChZcTLus33sc+9jHe85738Eu/9EsAfPzjH+dzn/scv/Vbv8VHP/rRM7b/7Gc/yxe/+EWeeuopxsdDOt81zxOE9GJBxCACPs6QPjQyR68Mj9Iqp2UssThIMpRPyhZJAeIDoyEqFBh4vOhwotYar9qhVYEHD1YixJUx46JZ1wrl/HCKJM2h39A4laHsOuIn0H5TcBp5S81v4CTCSnC5EFkhtcHudqAPEQTFFg2GUtRMSs+DFYsTKQuM4PSXu80r+FMKDF9mUIiwVDIWsdZE4oYtEtEKW07c6NNspYEtGowr9+r/+RgMm+fD6ZFKg1GhQoWXEy5bgZFlGQ888AAf/OAHT7n93nvvHfr4n44/+ZM/4c477+Q3fuM3+P3f/30ajQbveMc7+Ff/6l9Rq9XOep9+vz+MUAZYXV0Fgn10nl+8v/5WeO9x1uFji+Bp9S2dpBwFFYuSwFQgHuVVyWCUJyUfxJVa9zDi8KIIYUgFOEF5HxgMBCcG7yKELrnSaKvQzuPwFMZgHHSVwqkMXAfvFJEvCM0Mi8FS8x2squNEcCpHyzpJHlokgekIoUjaa1zpg+GDTRfiPU4cuRJcYdFOsFh6eQ4exAt5nmOsxWWWzAbha57nHOv2cNbR0hrnCvJ+RuLCY1vnQ7y9K844JpJniLN4B/4ij9fgMbfreJ+OLM+wNohWh88hgrWOfq+LNhHWutDm2oZ9uNTrebFRrefKRrWeKxeXYy0v5LkuW4Fx8uRJrLXMzJyaPTAzM8PRo0fPep+nnnqKv/iLvyBNU/7oj/6IkydP8r73vY/FxcVz6jA++tGP8uEPf/iM2z//+c9Tr9e//4WUiOJnsPEM2Jxaf5M1UKpAiUc5EFW2RDw4cSAWcRqnDEo7FGGKRFAoFVgL5cMEiYgBTDm+6ilEo62gncPhyJUBpRAcxm+Q+wLnFYmzFMog3iK+wNiCddlgWXvGWMfllnzlBN2iy9pGF+cd3juUF9bX1ugWHVbnj7BjUZH1++RWs9rdYOWE43in4C+PP8GDqqDb7eCyPvfddx/ronjaNZk56fnewiGO5N/muzrlcZOw+8QR1MYqK8+dZNf6GEXkMJ1jqKLPt//yq9B47JTXdXblm7Q7z3DyaMTCI2vf1zG6//77v6/7nwvfyb7DUXsUeUY4Yo4AsHHkOXonj3NoeRXRhs7Rwxw8ucjjJ5e37Xkv1XouF6r1XNmo1nPl4sVcS6fTueBtL3tT+HTr5OeLFXbOISL8wR/8Ae12CKL62Mc+xk//9E/z7//9vz8ri/GhD32ID3zgA8PfV1dX2b17N/feey8jI88fDfxC8Myzh3h85Ript8TeDN0ulThUOR4atBQaD8F8yxUoUXg0ogQtwZcCLyhxOBUsxT1Bm+FRSJlrkotG+0GLBHJjEB2eMy7W6SsorKHhPFY0EWCUp+5zVrTmWC2m3SlIdI+xmiYtajhGkd4RlNYYJzQbdXxRMLF7D9fWhWeWl9hwjqTVZGK8zd5Rw+uun6K7ssDDx7/BaL3Bj/3Yj9K1jsOPzBOtrHDTjjav/KGd2BMr0Olz43iL5toy+8Z2MXYiQrViFp+ew/dXufYNr6M1d+CU11W+65HjEQf2vR6/+7UXdWzyPOf+++/nnnvuGYputxPmWUNrpcUbdr6BmydCcNOhRx/m0CMPM71vP3Fa49CjDzNz7YELCkg6Hy71el5sVOu5slGt58rF5VjLoAtwIbhsBcbk5CRa6zPYiuPHj5/BagwwNzfHzp07h8UFwE033YT3nkOHDnHdddedcZ8kSUiS5Izboyja1gNiTIJNMpIix1iN9Vk5jVGgCK0RxKNciLC2eLSzoMFpg1Y+jKmq0GpQyuK9LnUZDuUMeBVGVksGQ1nBlC2S3BiUESIgchs4URRENAtHyzt6yiM4UpfTlSapzvCA8RvEtg8iOAlhbGH8VSPicYAympqEFJVgtBVcRCOlMEmM0xJEpEoTRRHaeDQqWJObcNuKD+OqY7UUu6HKNWpMbEKmighppM88Joowohqn8H0er+0+5kOo4P8RR/Hw8ZO0htYq2MELaK2I43hbn/+SrecyoVrPlY1qPVcuXsy1vJDnuWzKuTiOueOOO86gdu6//35e97rXnfU+r3/96zly5Ajr6+vD2x577DGUUuzateuS7u/5oMTg4gLtbDDUKs22RPKSwSDoGwgaDCcg5QhmYSKMJxhtlTJLLQ6UQ1woDMQZ8LqUQzq8aIwNDIcTyMWQG4UDIrsWtA3EZWZIMPMy3pK6gq5q0Neh6BJyVDmp4TBhikQE4wS8CwOookjQpdbUU5RiTOODVfjQEnxgjy5C6ahBIYGVWi5FnSOl+NUVpXhTK6wvRZ5nI67cpl/GlYrTrcLhVKMtP7AKP5sVeoUKFSq8RHFZv7U/8IEP8B/+w3/gd3/3d3n00Uf5J//kn3Dw4EHe+973AqG98e53v3u4/bve9S4mJib4hV/4BR555BG+9KUv8U//6T/lF3/xF88p8nyxIGIolA3pp97hS0twLUEQI15AlVMjBCZAlxMSVkdoD5rgthkmQ20oMDwIvmQwAqvgJZhmxUUQf3rAGU3fKAoF4taDYReDSjMITCOxxN7S0S0K0eQqCpMe3uHE4MqhWSWg3RajLYRUVDny6ijKd01E8MHIBlbZqODOCSRlsVEo2LCOwgdz81Y5vunLMVUfos7C/c82plqevK9kH4yzjqlGmz4YdlBgXMFmYRUqVKiw3bis39rvfOc7WVhY4CMf+Qjz8/Pccsst3HfffezduxeA+fl5Dh48ONy+2Wxy//338w//4T/kzjvvZGJigp/92Z/l137t1y7XEoYQMVgPTrlgFV7abiu16RHhyykSvGDFowYMho4x3qHxxLkKgkzlEArEBwbDI4HFgGCkhcKUF/eBVYgoTCgQtN/A0cb7GMjwEhiRzKd082vIJcYpRV8SBqEnVkc474dTJKGVE3wwvAhpeXL04ocBaMEqXFFsscp2zqOVkHjoEBiM5ZKtGDGaqMw6seVtwaK8DAl7Ph+MK/jkPBxT3TJKq6NNH4yBVbgyV+4aKlSoUGG7cdkvC9/3vvfxvve976x/++QnP3nGbTfeeOMVqf4VFeF8OCkPRJn4TQaDksFQTkCDFdDlicdqg/EeYzXaKQSLEouoMH3isDgU+LIgkDAOa/IcDxRKcEpRaAHniHwXL6MwaFQoQeHwLqKfTyMOrCj6Kh66aBY6KdmHssAox1RDbooiFTXMV8klTLZEZZpqPmwRSCgw2MJgCMFgC2hHGlXSH4MWiRMffEBEoThbgVG2Uq4yoy0dhY/WVqvwKq69QoUKLydcuY3tqwwiBucF6y3WeygNsnTJYAhhTFX70vuBTQbDqZjIb7ZPALSyoGypnghtBGVrxNFS8K+wGSO9YwB0dYQtr461L1A+pxCD9hHiFQ6FwmJ8EbQVgFVCJgm+ZA1yU8fLpruoOMF5R5ZZlo90iFBlAwWcgPMMrcLzrQyGLVsk5UJyNvUXbaOHiaK+3C4wJKUg1J3FkfUqCDtz7txGW1utwqu49goVKrycUBUY2wQlBu8EL6W9NgOjrbLA8EEHoT0E06zNAsPqCONd2AYfdBDKolSO8xJaJKJQTiPKgoD2DuNDYFquNLbMuUiLPuFRDNoLMQarBIMl8X2axTriwSpNpmJ8sNugMLVwgpcw9TBgMJwHbcHmwa48PHaYLokAjCK3FpRgROFKwedA5JmrLQyG0cM2gs/LtfsgWFWiNtmKrRi2SK7ct+rzaTBsnuNKK/uqwKhQocLLCVfut/ZVBhGDdZSum0EYKd4juhR5QinEAO9Di0SVV7ZOR0Ew6QdjFIKIResM7wXBYr1CvApeGN6X6agAISHVmhBoltqsfAyN9kLqI5wImoLE50zlx9C+oFBCX5JQvHhPZur4Mh9FiSBWsM6BQOQVec+CKESC0NP5kEUiSsiLsugRNWQwonItOZsajK0MxqAQcVIWGOpcBcaVL/I8q1V4NCixPHkWnGSrAqNChQovJ1QFxjZBJML3Haw8TFY8AT6MkCrxKJtgi1aYlvCh6RFaJOV4qIrRpdW2L+NMlSoQybfEockgsSP8v/NEedneUILTocCo2W7JMmiUFxqME0UJqcrQzpJYS+L6WFHkYrAlM5DFDbwrkNIUTLnNE6dByHu2LICCQNV7SATQEkSeIpgtLZLB/EomsFKyFaORJi6nSIoym8R5H4qmc7VIrtKwM6U1UhYcea9X3nblFkkVKlSosN2oCoxtgHOWE08dJXlsCekvAb2g6XQOUQ5lU7zXWKWDmacvC4wBg6EMGkGVV/2CIKpAqayMZw9JIaFyCIdMO9CuNN1SckqLRHnPgMFo+hhrWoCgvSNynsT2QhaJCB3dxIuik47jGTAYoKymTFsnQpH1ihDSJhCC6T2JVmFyxoZ900qGY6pRqfXo4Fm3AwbDDAsMl4fnsmxpkfizMBhDDcZVUGBs2UcRGXphFEMGo/q4VahQ4eWD6htvG/DEX/0l848dxFuPE1v6OpSBZuIQrxioKyj/dYD4zRaJdrKlRQIiFqEAH7JLfBnZTjnmqSnbLgTBpi1HVJOiGxxB0RgPdVH0VDDoUt6hPDSKHlYpvMCJZDeHxl5FHrdxrhR5iuBdKIIgtDuyfhFMwgSQoM1IlCLzHlzw79jKYJiyOlkui4tEKWpKhi5w3nqsdYEleT6Rp7sKRJ5nMdqCTR3GABWDUaFChZcTLqrA+Omf/mn+9b/+12fc/m/+zb/hZ37mZ77vnbraMHvgeuIkpTPXoJdoXHklK84h4oPFN5TSz9JUygrKW/wg3AxVTpGEE7PSOaI2U+tsqe0YHLKlaJzjI2PggwYjtEggtV2Uh8R7UpdTQ+hLOdHiHQpoFB2cBNdPRenZYWIKH4zClEhIffXgJSSpel/mxkgpOvUQaSFzZTiaCOoUDUbY25JwoW10uKrXwQ5cPFhrNxkMpc7TIrlya2FbFkHqtH3UZxQYVy4LU6FChQrbjYv61v7iF7/I29/+9jNu/9Ef/VG+9KUvfd87dbVhZHKa69/8erKRmFxUGXQWGAwZvMS+VFJIaZplBXyBUwKigwFXieDWHaZIwn0Zikcp3SKO1HZxeGKSjbROrhVWMWQwEGi6gtjZUGDowQhr0HKkNgdxeBGEPBQ1Osa6IBAVAoPhKQsMB/jS5lyFhFcDKKPInAdrUaosMEpR5kDk6Uv/7/YWk6k4jjcLDO+GPhhDQedWXOFOnt77czIYg1HVAaoCo0KFCi8nXFSBsb6+Puylb0UURS8oae2lhEJFFNZSKI9Twa0zsY2hNBMYtk6UV6Fe8A4nAihk4HBZ/iuqgIEmAodTmwWGxQRhJLDaaNNNk9IcyxP7DqUCAxBSEfoDp0zvsCQY69ESGiDKhyJGSRQi5AlZIt4JzoMXReRKXkUkBJt5h/EgerNFMiwwSgZDDww9ytyS0ejUAgM3KDDsuX0wvN/SIrkyT86+/B9UDEaFChUqbMVFFRi33HILn/70p8+4/Q//8A95xSte8X3v1NWIzGushUJ7nCgEhbZqeNKR4f+HlomyggwZDFVOl0DhQmGgVL458uo9TopBc4VCojKh1bPaaNOLU8RDUjiEkq73GryQCmTl1b/2joKUyDqMz3EiKIrAkOiIQgZUv+B8YEq8UqRaDRkMVGBmlPegJTAYPhQYIgpblJWF82iRYYHR3hL0NWAw3JDBGPhgnFZgbB1bvUKnSOwWYeqZGoxTi/BKg1GhQoWXEy7qG+9f/st/yU/91E/x5JNP8uY3vxmAP//zP+dTn/oUn/nMZ7Z1B68W9L2mcA6rSwaD0r1z2PoILRIlHuVDi0R8UYom1bCVEgqMwGDIKQWGLQdUhUKChkG8Z7XZpudCWyUtLI7S1AlNTcJVdSZl+imWntSI7DoR+SkMhoge3hcEvC9bJIpmrXybiOCVQpxDuwGD4QKDoQODUWSlcNV6jAj98pw7elqLJBsyGP7cUyRbf79CWySD9ghcCINx5epIKlSoUGG7cVHf2u94xzv44z/+Y37913+d//pf/yu1Wo1XvvKV/Nmf/Rk/+IM/uN37eFUg85rCegpdCjd90Dzo0jJ86NFZBp6JAzmlRRKu/IcFhmxahSvv8MqW7RZFQYQqzba6aZ2OD9kkae7wUqDFs9v0uUMFT9F+2V4wzpYMxhqxz3CiUeTgDah4KCRVg2h273EiNCITAllFhSGWksGQksHwzqG1QkROKzDYZDBOb5GUGozCPY8Pxtbfr9AWyUDgKciZBcYWDYaIqtJUK1So8LLCRV8Wvv3tbz+r0PPlip5XOOdLDUYYCxWxbM6PgIPNsVUH2m0yGIMmyikMhhowGA4nw1BzcomDm2fZjVhrTaK8JyksTsJjXhv12CuQe+hL2B/jHZYUbUFTgCiUK1BOUMqQMzhZapz3OCk1GAImVvguwxaJdgJayF3QYGgdWiRFFvbZWkckgldB8LpV5BmmSCQUGFsZjNNFnsOgMwUiXIkYtEiUhAJrKwaBZ1DpLypUqPDyw0Vxtn/913/N17/+9TNu//rXv843vvGN73unrkZ0rcJ6R2FsYCW8x0iB8YF38NaUUyRli8QJyjucGsSLBRR2UGDYMOIKKBdaJAMdx0CDIWUbIzcxAtTyAq9yQIi8ARS5gkIZ8GC8xaMRG4W8EXLSYpGdSw8R5V1smXMiosGHUVSvFLH3mFgFZ8pBi8R7UELPOvAePWiR5FsYDBU0GC2jgh6jRKzLnI4tIs+zjqleRVHt+iz7uFWDURUYFSpUeLnhogqM97///Tz33HNn3H748GHe//73f987dTViwyqsc0HkqcqGiA7+EMH+0iA+KC2UN6HAcAW+9JYYIPODE1GY9IDgCOpkcDUv5BKjPGhng1hSCeKhVlhsyWDE5XNkCvKyTRMC1cC6BKRstvg+eEetuzichhAU3gczMC+KRBRp06CNQiVhikR7sFroF0HDEVokgcHw3uOsJwpVzCnsBUBsthQYzuJFn2OKZDCieuWenLcyGKdjqwajKjAqVKjwcsNFFRiPPPIIt99++xm3v/rVr+aRRx75vnfqasS6lSBY1IIr80S0K8oX2ONd+CnxCu0GLZLgReGlbJ8AGbo8zYfxVMppEa/cMC59oMEYW18DwEn4Sy23WBXGT2MfAUImnkGjxhBYEOdqgMd5iClwCEm2WqbAAqgycj48duw8OhZG9ihUEvQiEZAp6JdBZsaEOPc8s8Eu3HtiCW2U8ejUTlxUMhiFt+RFsemDcbrI8yp28YSqwKhQocLLGxdVYCRJwrFjx864fX5+HmOu3JPBpcRGITjvsMpjy1dVKVtOgnh82fpAQqiZOEFhcRJCVl05YZB7hXcaJBQYAlilsDLQRygKDMp72utrGJvjVAgnS63FUoAIEQbxikw8GWoYta7wdBjhZDSFKI2VCIuQdJdKV83QIikG0pFSg+G9R1TILxHviDxkbBYYUWQQEWzuhl4Y00nE6ydGeG27ccprZUqNCgqcc+f2wbgags7O4eIJp4o8qwKjQoUKLzdcVIFxzz338KEPfYiVlZXhbcvLy/zzf/7Pueeee7Zt564mdHOwuGBGVU5OKF+glEfEhqIBQDmUDSf8gVW48lBI0GEUUHpQeJT4IPBUGq9LkadAIXEw1cozRjZWcUBUOIz3WBWcORMfIygysVhRpcUXKLGIUyyYSSIpcKLJJSLtnMT7QYtEMwh9F6WQcqJEtMIS/DQiYBVHVmaNxHEoLL3z5P3yNq24e6xJ+zQGQxxorQfWH+eOa78Kgs7OFtU+gIm3ajBenoV3hQoVXr64qG+93/zN3+RNb3oTe/fu5dWvfjUADz30EDMzM/z+7//+tu7g1YJOUVCUjY6iZCPUwFdCPL5MFxXl0UV5MhIY+HuWHRTycoJDpEBhEQx4X7psBjloLjEKT1L0GdlYBtFEhUPhsarY0iJR9MVjKedYPKWuw6M81HyIg+/qGvU8w4kvs1E0xSCaTRQEHSdowSFoCVkjxwtLX4U1RpFG5QpXOLJe6cWh5YzJCghBZ1prvB+IOAP7cUaBcRWIPM8W1T5AxWBUqFDh5YyLKjB27tzJt771Lf7gD/6Av/mbv6FWq/ELv/AL/N2/+3eHaZkvN3T6GRaPZzM6nYEw03v8QLwpHjW4WbmhK6bToSdhncb7YD8dhlc93jucKkAs3pdTJB7SrE9jfZ44W2NitY8Wi5WwD6lLEIS+OASPRSPeorF4LOOyRJ0uDmHNjDNpC9yAwRBNVo7XqkEEu/corXACBo9xnqOFJVcDtsJgIkVWOLJu2c5RZx8t9a4sMIYazijM0ZzRIik3uJJbJGeJah+gGlOtUKHCyxkXzds2Gg3e8IY3sGfPHrIsEOr/83/+TyAYcb3c0On1Q4sEj9UDtiKcfDw+sACAUg7lBkFgweNCURpuicd6HQLDxAf9RllsOGWDPTeKnEC9p1kfKTLaS8/S7u5H47AhKY2ElMBg2JB5Ugo9tTiaI88waXq0ZAUvsBaNoYrl0pMDGDIYpTnUINBLB1WIUYL2jqNYpCgZDKMxsSbrFvS74TZ9LudK69BbTrg6Ctkk53TyvIJFns/LYFQizwoVKryMcVHf3E899RR/+2//bb797W8jIqE/v4UKt9Y+z71fevir+b/ieyf+CofFI6U7J0SDFoD3DNNIlEeVLRKvfJm46rFK4QW81zgP4Mrc1M0CA+UY+GAYL6RFn74XUAYFQwajp1I+O7aDcVOjm3eD1figwKCgVjuBcTXq9PDAajSObJzE+dAiUaIpyj02onAebGGDZ4dSmEbE6t4W3ZrGLYUx1URrojisK+tutkjOhmGLZBiUGgfFqC0oc+HDH66CFskgPfZsGgylNEobnC2qAqNChQovO1yUyPMf/+N/zL59+zh27Bj1ep2HH36YL37xi9x555184Qtf2OZdvPJhlCG3+dAQ3A5EnmwyGMEzKxhtDZLXQ4ERbL6DBsNjbYTzqjzHBjtw68GVEynWK6wYxHviIisDyXRgO8SyHkUsx026UcqRuuaZZoTyLrRIACQjTRZJsKQ+FBgrZhxVlAoSEQQTpkiAqCxzCmfJlaC0QYyiPZOGNZRVQmQ0urQDz3vPX2AwaJEM/hw3wcShoDj+6JbtBt4fV+7J+fkYDNhkMaoCo0KFCi83XFSB8Zd/+Zd85CMfYWpqCqUUWmve8IY38NGPfpR/9I/+0Xbv4xWPZtykyItw8e1kaJ5lfCmvHLh5Elok2kJJJ4QCQxwOXW6rcS78LGXeiFPByRNxFGLC43mIimDUJWXiyUbkyLXCe8WrOgW7ugUOF1okPig64mQREUviirLA8KzrNt6WQtBBi0TKXVRhoqVwBTmCigxahLnBOHJ5BR9rjSkZjH6pwXg+BkNpzSAHTkcx7P6B8MvTX9osLK7yKRLYFHpWUyQVKlR4ueGiCgxrLc1mE4DJyUmOHDkCwN69e/ne9763fXt3laAZNXF2EJM+GFMVtITIde9U2SYBUS4UIYBTHuUdIo5CwhW9dyYUA6VNuHhPoRxeOZQ4cgmW45EtEAmtFS3BqbPQYR+mehk/sG754YUNbp9fJM0KcGGiI0pOAJBgSXwGeLoqRWwtiEtF0KUUFCAqWyS5LcgBZQxGYGpQPJQFRmIMURwKgc0WyXk0GOVDGGNg110Q16G7BPN/Uz721VNgnIvBMHFZYFzBa6hQoUKFS4GLKjBuueUWvvWtbwHw2te+lt/4jd/gK1/5Ch/5yEe49tprt3UHrwY04yauCKdkTWkVLoImx5cFhniGWSRSajK8DjkjIg4rwbdTOY3z4WpXlRMguQouWV6KMldEEdsc8R4rwRkUCJMmQK0AYsFGlumNDs1uBj44bZpkAYDU5SS+D3h6PsJIo2xZBEYkLwWmWiRYoHtLjqBNhBZhVCuMCLgwZhtpjS4ZDGfLq/rzaTDKP2utQ4tk7+vDDc9+BWx+VbRIMhcEzuYcQtQhg2Gu3DVUqFChwqXARRUY/+Jf/IuhuO3Xfu3XePbZZ3njG9/Ifffdx7/7d/9uW3fwakDDNEoGQ9ADBkMEQ4EXW57cSwNwEUzpl+GVR5UtEis6aC+8Ci2ScopE8NhYhQJDF2QSQsximweXT60xqNLmu0ANioK2C2OlhDaMJbAiJl5FgLQYGI87Mh+hpTW0Le/7jFW1Qc/3WOqd5OnVZ3FSpsSa0CLBWWaSKCSpiqC1HjIYA6jzjakOWiQDfcLcbZC2ob8ORx7aIvK8ctsLq/1VAEbikbP+fajBqBiMChUqvMxwUd/cb33rW4c/X3vttTzyyCMsLi4yNjZ2VmOllzq00uBCVFjbxuRJAl4wPhQY4hKUB19esms8OcFcSw9aJCgiBOUUrgwnC8mrnjwqM0JUQS4ReCEuwpVzoQTtwwQKKkd7R2H6WK8xJqKQEHDm0JioT46iyBrEkcGLkKkIbcHpsdKyW9H3IR8EQIunl/fJI4G4gRQeIyFqfWda51nnMAJKqaEGY4Bzijxt8NdQRgF2015eG9h5Ozz5v2DlOWhMDh5o247VdmM1CwVGK26d9e/jO3axvnCS9vTMi7lbFSpUqHDZcVEMxtkwPj5+UcXFJz7xCfbt20eaptxxxx18+ctfvqD7feUrX8EYw2233faCn/OSwHnw8JruASbVNCKlH6YqWyTicKXZlpIwzuoVKBfGT53SOCeIV1hvggZDwphqbgatgqDVwCviohiOtw4KDC85TnJEwBcGpU1w5iynSHTUQ7wj602QZqEg6klCZC2eGBe1wSRYF/iQVGLqKsZ5T8/3IYpBK4xQFhiBwTAlg2Gi0xiMc2gwvA0tIlPai2/1xKAxFf7tLFwVGoxBgTGSnJ3BmL7mWu78W3+H5vjEi7lbFSpUqHDZsW0FxsXg05/+NL/8y7/Mr/zKr/Dggw/yxje+kbe97W0cPHjwee+3srLCu9/9bt7ylre8SHt6fnhnqfmEmosDEyAKLWWLxJrgyFkabBkJJ3evPbEDJBQADkF5VSavlkZbCNY4nHJ4VZCLAYRo0CJRCuUVTjxCYDA0grMGow05oc3iUeiohxJP3p0kLYKgs6cixA4szcNIbamgQFDUVBQKDPoQRaBUaMFYy7W1hOtrMdfUkhfGYJTttYEA8pQCo16eiLtLQYcBV6wGw3m3WWCco0VSoUKFCi9XXNYC42Mf+xjvec97+KVf+iVuuukmPv7xj7N7925+67d+63nv9/f//t/nXe96F3ffffeLtKcXAO9o23rpXxEmNgw5eAdel5bfZdtBhZh2pyApAlMRCoygwcgxOBUEocbnWO1xyiFiydWAwQgTIFYE5cshWJWH/BJROGvQxmAHwx6AUjnaOWxvnDgPwtFMIqQ84YfYeM8gx1UhQwajSxdMBEoPWyRKhOtrMW2jA4NxugbjeUSeALVGHYB6vb75x7QdWiXOBhYjPNA2HKDtx3q+jvceJYpG1Dj/HSpUqFDhZYTLpp7LsowHHniAD37wg6fcfu+99/LVr371nPf7T//pP/Hkk0/yn//zf+bXfu3Xzvs8/X6ffr8//H11NVxx5nlOnucXufdngbeM2npgAMQjXlDSR7yU8eswGJsQNfDKgCSoMHGiQ4S7U2WyqicmJ/ZCpgTrHUhR+mAotOthVR+vG6iBWtJnaO9QIthco0w5DYJCiSNxljwXhJiocBB5eirCFcWwLeK8KwWhwWCrriKc83R8FysqGIh7T7/fJ89zsiwLkeveY10R1h+sSHHenfU1tlmBc5Ydu3cy3dpFvV4/ZTsVt2HjOKzOg7OhRvs+jtXgsbf1eAOLG4tYa2klLWxhsbw4DraXaj2XC9V6rmxU67lycTnW8kKe67IVGCdPnsRay8zMqeK3mZkZjh49etb7PP7443zwgx/ky1/+8qYw8Dz46Ec/yoc//OEzbv/85z9/6pXz94ECQoHhmmESA9Be0JIhHlQGrfV1es06YFGmbEMIJAUgDicK58opEsBQkNLFe0MuCqscoh25RPhS5CnicFqVBYaj5lfD6Cqa5aUNnGzQyTPwKaiQSSI9Q55n+I0utAv6RGS9Dk898SSduQ2QPoZwVV5YS2dhkW6vz2L/GCcef5y1LEMtHsedOMbjjz/OwsICWZZx8uRJ0jRl7ekIV9qAHlouiL/rzni9Jo8lRJlicalPv3bm3+eWDzLSfW74+/GjKUsPL33fx+n+++//vh9jK44UR3g8f5wJPcF9T963rY99Idju9VxuVOu5slGt58rFi7mWTqdzwdte9vm/04Whp+eaDGCt5V3vehcf/vCHuf766y/48T/0oQ/xgQ98YPj76uoqu3fv5t5772VkZHv65qtFwb/7/36BUVsHBmZVHlHB4Kq93GVieYPF8ZRCAxp8OZIaO8iETQbDC94rGrYfPDPEUegQ4a7EkksdvCIqcpT3eB10G7HrE/sMRHA6pdkYY260hu4+h4iEkDVRGJuS1mo0lEK0kPmYSBTX7j/A3/AouXWoKEUKITYxe2Z24NfWsPWY62+5heMnF9jXTLlxxyyveMUreOCBB9jY2ODWW29lbGyMR758hM5aqHCvuXWCyd3NM16vzteO4jo5tdun0aPJGX+XZ9vIs38x/P3A/jfid95+0ccnz3Puv/9+7rnnnm1N+/360a9THC+4eeJm3rjzjdv2uOfDpVrP5UK1nisb1XquXFyOtQy6ABeCy1ZgTE5OorU+g604fvz4GawGwNraGt/4xjd48MEH+Qf/4B8ADKl5Ywyf//znefOb33zG/ZIkIUnOPIlFUbRtB+Svj/wVdRZJ/C68FDg8yoNIAR7SbogOU0UQbaLCyKpyCcrZYZy6KgzzU3PEa+toLCiPwlMowViF131yNYa4iDjPUXhEg/aK1HcxZPQloqYU3mqMjigGjqDKgRdUEaMTRUyORehLgiJHScgqcfiQdQJohFQieghWHD1xKGOIS9OoKIrK4kURxzFRFJHUYvobZYR7cvbXWKFAaaIkOiVxdIiRmVN1F3EcBKbfJ7bzmAN0bAetNeP18cvyRbXd67ncqNZzZaNaz5WLF3MtL+R5LpvIM45j7rjjjjOonfvvv5/Xve51Z2w/MjLCt7/9bR566KHhf+9973u54YYbeOihh3jta1/7Yu36Gej2LKMuARwd6VDgQoGhCpQTTBbaJiYfOFx6UIKyaemD4bGiORrvIosT5tujCA4RUDgKJdRdijO9MEXiDTqzKHF4o1BOkfoeipxcYhQG7wUvQc8BHqXD1IkqIsQoYt9FRNFTMc7nwyRV5x2F10gIa0esQ4kBI6zZ3nBMtShj2gfJuYNJEB1tvqXON0XCOYy4qE+e+vsVOkVSTZBUqFChwrlxWVskH/jAB/i5n/s57rzzTu6++25+53d+h4MHD/Le974XCO2Nw4cP83u/93sopbjllltOuf/09DRpmp5x+4sN49uM2hrgWJd1rDi0c6iowLsynl2Byl1w9dQujI26ZEuBISybaaQPfRXT0QmJ38CIJRNh1KasqQ36ovFe0HmCEh8KDC8kroeih6WGEoN4sI4yqyQPJ3MvKKuJ4wJVhDmRTGIicVgkiE1xFBIBQiQChUVhQAureY+2SodjqrAlrlyFwmKrm+c5fTCKklU5V1ZJbSxEtvuBwdhl7+SdFWvZGnBuD4wKFSpUeDnjsn5zv/Od72RhYYGPfOQjzM/Pc8stt3Dfffexd+9eAObn58/riXEloNtVjNqgNVhROc47lPcoAecFXQAxiA2B7qI9WIVyMRqLkhA41qGMQEdYNGOMFQtoLIWCVlGjo/pYZcELUZaQkIMYjAPjc0QKLClGxcG90zmc1kSqgxNBSFFGkZqBC2iKF40Ti01ifG5BwKrQIjGi8IVFi0YixVrepa3rGDYLjNMZjK1eGGdjMLz3+HLKhHMxHNpAOhq8MMIDXfzBuUTIbEa36AIVg1GhQoUKZ8Nl9cEAeN/73sczzzxDv9/ngQce4E1vetPwb5/85Cf5whe+cM77/uqv/ioPPfTQpd/J8+DoyiqjtoUH1nSOwwdXC+URB1IocmOQIlyViwKvkjDKWkaSexEGh8OjOGHGQzEikCNEeYtMCU4cxnti1yBVBWhD5PMQqY5BeUOko5DCaoOeIlJ9vFIIdVSkMAQVcK6DKNXhKKIY50uH0bLujBCkcCjRWKPoFX1E6yGD4Zw7g8EwpzAYZykgSg8MCOO650RjS5vkCmQwBu2R1KTEOr7Me1OhQoUKVx4ue4HxUsDS0iqpSwGhj+BwaBxRNkLUbyJes9psIYUPDuDaoyUIT8WHSHdKg6ux9TU8nuNmEk8oMJRLWc8bWKWwymKco3AtxHu8ioh9SG3tqhoGTRonweXTeqxWGJUFd1EbI96i8hUAXDxa2nN4+kmC90H3gYQTZkRgMBQabww928dojSqtwgfFBbwABsNtFhjnZDAA6uObP8uV9zat9BcVKlSo8Py48r65r0LkKz1Asap6FLoeAsicAS/ofsKaHqGbpjDUHni0D+FY4ntlLDs4FDNLiyhv6UvMihpBaajbJos2ptAGr4K+w3uD8ymiIyJfUEjOstbESohMGjQY1uFMjUhloDSKOiKWueIxQOjXdgCeQhzrucZ5F1okpagyFjVkMFxkyGyfuCwknHNDoSdsYTCi82gw7GCqRc4+juwsB1cPUqSjmzde4hbJcm+Zk92TL+g+50tRrVChQoWXO6oCYxugOjkgLOmc1fpe+lETJTFeR3inWXJT5MaE+FR8aJ2IUJgNtGRESlBKGO0XRNbS7G9AyWIUIqS9UdZdRK41QaGRg4eCETbiUSKf01d9VpQiEqGmgoGYsx6fRGjlsFoTR6MYY2mwBCblSPMVFFgyKfhecTy4eSrFmgljSAkKChtMw6OEMnptuO6Bo5vWelgsnJfBsCXrcQ59xuef/Tz/46n/wX2L38a9CCLP453jfPp7n+Yz3/sMB1cvXO9zvpCzChUqVHi5oyowtgEnXY8jeoU1FeHRaBeRK8tGqrDO0LOGrFOjr02IDFEhvKwfLzCmU5R3OBRjaw5BaPVXUXiOmSnWbY29j25wzfwzQbMggpAjzpNLmzGvGHGakQJm7QTX5dPsjUIiaeE8kQmZJYUzFJnHudAGOdp4JUdXDuNViIX/rjmGswULjNFRGu2g3emBdXiBWq0NgCMbshVZFsSig9/hAjQYbsDinPm3B449wNMrTwNwKFvha73SI+USjal28g6fffqzWG/xhOJmpb9yQfetWiQVKlSo8Py48tRzVyGyY99kte1JXY3xrEehM7xaItMdtIwixOTzo7hUEBZAK+pArddkuutZKtbJVMz0Ugfbb5CsrXDcwUkmWFiuU+v22emPoJYTlsfaJLZL5DVWTfEDS0fI+zvJogbjG3MY5Vh6LEfWFqDjMSMLaK1x/Trr3UXw0O8lPNHVuN5xGolDWcF7Ty8fI1cjpL2CfeuOWtQjV308wsbRHpicEyuPcfzYMs46vrmyyuLiMsYYvpEFNsN5z/GDQTbxzS8+g3BqIaF7kM4rXOzpyOPD25eKZb62/g28h73JLp7tH+MvVg6DWyWWb+JNetHHp7CWk0ee5Rtf/SJmmNzq+cb633A8P0lLN4nEcLg4zCcP/Z/c3brrjP0+Hd9b/RbrdoMTq0/zaLR+0ft2QYjkFM+QoshZm1/g0QcfIdpqmZ91Q7je+aAEaskpa/TOQjc7Y9M40pgtlyHee1bWu5sjxNsA6yxrzz3Ht7/8F+grcGLohaJaz5WNl9J6LnQtO/cfYHL3jhdxzwLE+238prgKsLq6SrvdZmVlZduswj/4f/4axydHua77HKnVPF7fw/7OQV6z9jDRRoveMyH11cZ98usfDCOgJGVAO/RURCGKkcduochriO/wX1+X0U0UkQtTJeL98HRw45EN7n5sNsSrp5qeiugqcCoPJw0vgODFYXUfcGAL9vp5AI7bJut2DPDYRgxbTjROKep+lGYBRkds1Gog8J2RDTIyjOsyub6Oclvv41lPNwPltNMhOE2dO/xrJeryxYnvnnF7Q00xavayYg/RzQ+hcWTq0k1pCIqp6CYUmuPFozj/wkKDZqJbMXKmU+x2wuOxfvO11BKM0NiqYXmhH2MZTC6FZ5DQ/zr7pqc8zfNsWKFChSsS7zzW5K3v/8VteawXcg6tGIxtQDPrcMyPsi5jpD5c3dVsl5qFZLmBuC4bklD0a7A+CrUuwYgbwJPaAnpN6CV4VaDcCtcf7fLorlG8aAodigtjPbXMsvt4htg1CtNk3UfkorF6HS8e5aIw3qoynMpx5ZnDuZxVIhSOBUCLQzsNtsAavVljKIPJHV4UNgKvLCuRUCiFwyFug57JSYrNt07fFFi1edKxalP8eTZ4PIfTZeS0Dl2qRmnr3QCMqJ04U9B1i+fhEi4eSgyjeg+R1AAY1/tZts9g/ZlX8mdDolpoLu2IaigVBbvlpD5kHrw/9ez/QuDhlBf2+WqGU7a9RMXF6ftztaNaz5WNl9J6LmQt6vKoIaoCYxtQP3AzS1mfYz7BOceC2k22njHxyNO0Nk7yaPsakKdZr7X42sxbqes69yw8hLPr7NpzgNYz/4mVZINP/uQbmDvpubfIuW33tzlQg6/VfoGnNpYZVTkf8q/nTzc6fOfWGkf1A/R7R3jt3M3sS4TlpS8TxzNMz/4dup2nWTj5WQAeXjnKvJ/iLde8gz0jewBQ633+fHGd6+oJb5s8M4wszwvu/7PPcc+P/BBRdPW/RTbX89araj3eeTa+fBiAxut2IKUN+/qn/pTFY/PMvPPNJHMHwsYP/SFsHIEb3wETB875mHZ5lZXPfBoRw+h7fh4Rof+9x9j40heJduyg9fa3D7f980eP8djxNe7YO8ZrrplgcSPj07//f6OyDu98108yOjm9Leu8Wo/PuVCt58rGS2k9F7qWuqm9iHu1iav71b1CYGzEiF/iOZnExeC1JksiJjrzrJnrUVlKZHusNccwRjNbb6JOeDyQJHU61mKdJ1GC9g6jY3p4+j74ZIgo0qiG6kYYiYnjhB21XRwpTrJRrDM1czfd1a+DXaKmPcsbD5HomHb71ax2H8O4jNnmDK0kFBOvjuqgE65vpLTO8qbMVU4qKa2k8ZIIA7qq16PreOdpmjoqMXjnKUipOc2ISYjLY4oCJIJ0BJIzi8YB/GSNnBicp1EodLOB6uR4H5GOTg/fIwDXThY8fcKyvK5pJU2eObGCKRQjcY2x+ijN53meF4Kr+vicBdV6rmy8lNZzpa+lmiLZBmhRtHtr9FRCP6qDqOA9YaBPrbT2zrEqQithIqkhpUmVt9C1Duuh0esgtsCj6HuLeMd0ZFGA0Q16/QILiBEma2FS5ETnBMY0SdM5AI4f/yx5tojSKY2RV9N3ge5vxa3h/iZK8QOjTcav8ur9ZYFy2sYPHFCd3zJVs6UVZcuf1fN/yYjW6FYoDNxqmJix5b+6fWo/da4drnqOrvZwznNkpQve0koNSl/d4rgKFSpcelQFxjbgJrNI0VXBJ0KkbJw7vAi5S0AsoMglRpynhkZJiG4/dvQwtiw2Gt0NsAUOwavSdcJmKBGMtOiWiaeiFZO1YKW90l8hsxn1+rUA9HpHABht38FGEYqLRCeVnfVViuE4rx0UpA5E4cXDVkGqK3++gOOsRsLIsV0No7au/FefJtiaaMTERpEVjpMbfeaXu2ALmmmENlfe1VKFChWuLFQFxjYgajTZyFM8QlIKBK0onNdYInA52oOTCF1As+HRukBEWF9YwvsQjV7vriPWllYR4YSyVmRoQKk2PcCZUMA04gaNqIHHc7J7kkbjAOv5OvMb82hdZ2TkVcO0z63sRYWrC4O8liGDYX0p2HIot5XBGBQY5z/xD5gKu7J6yr+DwmMApYS5dhgPfurEBovrfbz3tBKDMhWDUaFChedHVWBsAzYmrmdJBdp51K4Hu200hTM4JWhfYJzHKYNyHruxRDyyiO8rxBfUaJCSkPTWEBtMnwYjhBs+RkSjXZM+HleaEmhgatAm6Z5AmxEeWz3GobVDdKLdKBVVBcZLAeXxHhQY3pYtEnGwtcAY/HwBrqcDpsKtreLzHNcJ4Xent0hgs03yN88tgyuoxxqjBW2q9lqFChWeH1WBsQ04/MwS3iva+Tqp74N4CjEUTuN1aJ0g4JVBEDaOPcd4c5F2fYHrZ6YYj0dAhChbR4ocJxavhALBYTCmTuzYZDAALcJUfVOHcXD1ICf1Xtbi61mTEBS2llcFxtWOYeLssEXig4uZuM22iLPhP7ggBkONbDIYgzaJJAkqPdPMbMdouK2TWXCOZhoholBXuUFRhQoVLj2qy5BtwGJegFfMZSfIkhqIxyL0iEAZvFd4DF4ZtBJcZ42lY13qzT6JUoymI6yxgC6Fnd5bvChyIkSEhq5DAX3x+JKaVnIqg5G7HKdqZKrGYm8RYMhgNKPtUftXuAw4jcFgoMHAbbZFtjIZ5xF5Auj2pgZj0B45XX8xwGw7RaT08XJF2R6pvjYqVKhwflQMxjbgJ2+6kQPrHQ5khxAPWizaOtaiOiiNF4VTGqcMcS2hFocvbGNS2uMTxCYJ7owS7JQsFkSR+yhkkyRNfOHow2aLRITpevAhWO4t88zqM8P9WegtAJsFRpWXcfVik8E4vUViNwuMwb8iF5Q8O2yRrK9jl0Ixerb2CEBiNJPN0qnUOVqpQVcTJBUqVLgAVAXGNqDRrDOicqZ6G3gE7S3KOzaiGs5E4YpTaayOEDyjE4aJfSkTe3awZ98BlI4xyqAl0OBWLF4pMiKUwFg8AoWjh99skQD1qD4UenrvGUvHgBAlntuc9SxkZFQtkqsXMhxT3dIiUae1SGzpPKrMBTl7SpoicZg2yQ8dCnd9HsvfQZskUZ400qhqgqRChQoXgKrA2AY0m01SNogyoWYzjLeYwtIzKUUUoYhxyuBUBM6i6ZKOROx/zatIogSjY5QyKBzee7wCCAWGiGYsbePLAsPrTQ0GMBxXBbh9+nZqpobHc6J7gk4RxHvNuGqRXLU43QejbJHAFpHn4N8L0F8AiMiQscjnQz6NPm2CZCv2TjQA2DUSIwK6miCpUKHCBaAqMLYBjUZKjQ4+j7l18XEOdA6ick8/TrBxhJY6qBZWG7CWWPXQkSGKmvgiR5QhUgalQoHhVMiYyIjQus64ifDWB5GnDodscKE6aJPEOuba0WuZqE0A8OzqswBEKiLVF59EWuHyQsrjfWqLROHFndkiuQD9xQCDNonPQ3FyrhYJwP6pJj9z5y7u2hu2qTQYFSpUuBBUBcY2QGtN069hi5jUFozlazg0/TjBp3U8CqcbWCXgLUb1MFGM1nUoCpTXKGMQLXjnsUrwKHIStG4wXj5PV/yQMh9EpR0YPUAjanDX7F1EKmI8DVsPCoxW3EIuNhCrwuXHgMFwW3wwTh9TdRfugTHA6Z4X5xJ5DrBrrI4pg860rgqMChUqnB/VN8V2wOY0ZIPlYhKPUCv6OK/opU18rYGQ41WMVQpcQSR9dByjdA1fbCBeIZHGi8Gve5wGj6ZPjDENJnw4yXSNUEowhi2SsXSMn7/554e7MpEGBmMwSVK1R65uDJ08iy1OnqXR1iaDceEeGAOcwliIoFrn1+m4oiifpvraqFChwvlRMRjbge4SShVYF64gE5thvaabJBQ6RKF7SSi0IL7ASDcwGKqGLwoEHbIdkgi8xypPz8yR6QmiaJxxW17Fms3Dpc9BSgwYjAGqCZKrG4MWyYDB8G7gg2GRoQ/GC2cwtjIWutVELmAyxNrgtVExGBUqVLgQVAXGdqC7hNY5hRici0jzPhZNL0koyi99r6Ihg6HpYuIYrWv4PA8MhtFIHOOdZ91outRwZoaWiahn4epVSvpCENQ52h7jtXGEzb9VEyRXOU4XeRahRRI0GCVzYS88h2SArVMjp7dLzgVXhOepGIwKFSpcCKoCYzvQWURrSyFCvzNB58R+nBd6SUquNV7AicYqhTiLoRhqMHxeIF6hjCaOIk684jV0du5iubCIGEaMRvqOyDM0XToXewFB1DmSbJ48KpOtqxtnhJ05dxYnz4HI8wW0SFqtoVJYj1xYEbrJYFRTJBUqVDg/qgJjm5CbCCvgvcL0whd9FkXkHgplsIPpD1cQYTFJglJpmCLxGhUZlBRMRwmIo3Aer0KB4fsFKTKky/V5RJsDHQZUDMZVD326k6ffMqZ6mgbjBbRIxBhUI4yfnk/gOcCmBqPywahQocL5URUY24G9d/PFHW+hY3TIFMlzxFucUvREKEyENRoQtC3QIkSD6Y6iZDCiCIWlWVhaujyZSETbaFzPkiDDFsn5DtpgVBUqDcbVjrM6eapyisSezmC8sBO/GQ/GbHp8/DxblrtgBwVGxWBUqFDh/KiaqduEGEA5cArtPFFekKmYrijWGm1MnOGVYIocLQqj6wBB5Ok1Ehkkc1AU7IzhCQAMLaPxvYIUWDUXxmAMhJ5aNDVTu1RLrvAiYFBUbjp5uk0fDFcEz/mhBuOFfZwbb3oT8XPPEe/bd0HbDxiMKkm1QoUKF4Lqm2KbEFP2xVEoa4kLy7pKybRgtSFvxkBGbDPEC1qHE/9QgxFHSFaAzUmVo64VXRWxKzK4zJGIIBegwQCYa8wRqYjZxmzlgXG1Q53u5DlokZTpqTbfEtX+AhmMsTHM2NgFbz9skVRTJBUqVLgAXPYWySc+8Qn27dtHmqbccccdfPnLXz7ntv/tv/037rnnHqamphgZGeHuu+/mc5/73Iu4t+dGBIHBEEGcJS5ynNJkOkRReq1C+8Tl6NyjBgVGUSAodJIggLiMwmaMR4a3TE4w7sIJJlUyPNmca4JkgHpU5903v5u3X/v2S7jiCi8GBkXlmWFngdHA5ZtZJC9Ag3ExsBWDUaFChReAy1pgfPrTn+aXf/mX+ZVf+RUefPBB3vjGN/K2t72NgwcPnnX7L33pS9xzzz3cd999PPDAA/zwD/8wf+tv/S0efPDBF3nPz0TkBVS4qlTWERVZCCzTCvAErywhdhnKglaDAiPQ2yYJLRNxBYXLEIG6jrGr4eRRr0UMpk8v5KAlOkHJZa8fK3y/GDAYzgcPDOuDr4oaFB75RVmFXwxcOUVSMRgVKlS4EFzWM9DHPvYx3vOe9/BLv/RL3HTTTXz84x9n9+7d/NZv/dZZt//4xz/OP/tn/4y77rqL6667jl//9V/nuuuu40//9E9f5D0/EzECUuBFMLYgyjOcUmRKEEr7bykLjIJgEw5QXhWatIEAioI874XbdIxd6QNQb256HJxPg1HhpYNhFgmA9UMthh28B1yxJezs0p74bVkMVwxGhQoVLgSX7ZsiyzIeeOABPvjBD55y+7333stXv/rVC3oM5xxra2uMP48Kvt/v0+/3h7+vrq4CkOc5eZ5fxJ6fHcoxbJEoZ4mLDCeKTAfbKyeAQOQyyB3eR+R5TtHv450FHYUWibf0+z2M9ogXsoUNnLMkdYMbUOHObuu+n47BY1/K53gxcTWvx3uPcw7wZL0+Ni+w1uEUOOtw/Q6S9RBncU7gUr4vsiw8t/fb+lpezcfnbKjWc2XjpbSey7GWF/Jcl63AOHnyJNZaZmZmTrl9ZmaGo0ePXtBj/OZv/iYbGxv87M/+7Dm3+ehHP8qHP/zhM27//Oc/T71ef2E7/TxYPH6MmhQhDirPUFmfTl5gi4Iid3RzhU08dNdZnD/Oka/8Nd4eZOLRRwFY3ZeS5zlZf4OFk8cwccEDRx4gOzgOCA92Cx5Pw/4uuIL7vrmxbft+Ltx///2X/DleTFyt65k9nCJOOLH6MFPHQjJumiiefOpJDq7cz9Tad6hlCxw++VXW02cv2X4sPfIdXFFwQiJ0uv3TSVfr8TkXqvVc2XgprefFXEun07ngbS8713n6lIP3/oImHz71qU/xq7/6q/z3//7fmZ6ePud2H/rQh/jABz4w/H11dZXdu3dz7733MnKBBkMXgmf+n0+z+NxBRBTGQ+pz4loNMQlxVGDSBKUzGhFMtyfY/0NvJdHTLD4bTgjZKyc58Z1vUrOG0ZEGSU1z53WvZTYBVTOMv3qC5WPLAOxOY35sZnTb9v105HnO/fffzz333EMUXf2mSlf7ejb+4gg+s9x62xS9h05grePQEWH/tfvZ/6o3oJ62sHGc/bf+CIxd2MjpxeCvsg2ctbz6rT9KUpp0bQeu9uNzOqr1XNl4Ka3ncqxl0AW4EFy2AmNychKt9RlsxfHjx89gNU7Hpz/9ad7znvfwmc98hh/5kR953m2TJCFJkjNuj6JoWw+IweOVw4tHu4K4yPHaUFiNlxynAAWxsygLSTKCKUCrYFoUJXVECVo5xOWIMiRdjVIQj9dpxTGq7MfHRr8ob6btfo0uN67W9ejY4ArQTqGUBqXwSqO0CkafEsy3dFyDS7Q+7xyCR2tFUksvyet4tR6fc6Faz5WNl9J6Xsy1vJDnuWwizziOueOOO86gdu6//35e97rXnfN+n/rUp/h7f+/v8V/+y3/h7W+/csYwjfcgLgSROYt2BV7CBElugijPC8S2QOUuBJ2VAk8xGqUilFIocrAWPLBSjgW2kzCmWqISeb68MMgj8XmY4hAjOCmvDbZOkVzCMdVBDglUUyQVKlS4MFzWb4oPfOAD/NzP/Rx33nknd999N7/zO7/DwYMHee973wuE9sbhw4f5vd/7PSAUF+9+97v5t//23/IDP/ADQ/ajVqvRbl9YIuSlgrIOxOOURYtF8CgU1kMeCa6cIjGuQHKPUim26IY7G4OoKDAY0scWBevLixz77iOM7LmO5mhCumWaQFX1xcsKw8j2rDzJK8FLaddts4u2Cn8hcIO8EwRVhZ1VqFDhAnBZC4x3vvOdLCws8JGPfIT5+XluueUW7rvvPvbu3QvA/Pz8KZ4Yv/3bv01RFLz//e/n/e9///D2n//5n+eTn/zki737p0C5MD6YNZfJDFjthqHpuVHY0igrcoqECUQEnw8YjAglUaC8ywLDWYitIs/7qEZELKAQHB5NVWG8rDDwwsjCe0y04AYFhiu2hJ1duo/zVpOtyh22QoUKF4LLznW+733v433ve99Z/3Z60fCFL3zh0u/QRcBai3MOqxQbEyeJ2k2y/tDMObRIVGiRJPkYdTUb/lD6CkgUwZYCQzx4iTHeYxM3DLxKtaJj7Xmtwiu8tDDMIxkwGPp0BuPirMJfCDaTVC/7V0aFChWuElRWj9uAh5ZWOZRbnAgUIAKZ0Sw7KAgMhhPw4omcQ5zH5/kWDYZBlCFKEtIU4rhO5OtowMabve/kAq3CK7zEoAYtkgGDoXCUBUbe3dzuUmowBgxG1R6pUKHCBaIqMLYBq70Mj0eUo9a3NJTgtUacp5CyRSICEsSgohWu19ssMCITWiSRJo49SmkEgwBFWgyfp1aeaKqD9vLCQOTpzqbByLfMpKtLxy4MbcLNS0N1X6FChUuP6ly1Dbi1HrPDCNoXqCKM80mkkQI8Qt8IthxTNTqMGrpu9zQGI0JFirjt0a0Y3UpZnV4l19nweQaTJNUUycsLZ0yR6C1TJAMGQ5tAnV0iDGzCK4FnhQoVLhRVgbEN8LZgTAHKIRY8jsJo4rLA+P+3d+/BUZXnH8C/57aXhBCECEm4hoJyNdJArVxKb4R6KbV2ysVymUFnShUhQRFaZLR0WhCFIiJkaEHHsR2YUWS02EqwkMIvWmkugpABfjQlotAIPyCB3Hb3PL8/dvdkTxIwkZPsbvL9zGQmnHN2931IcvbZ933e973qEfgNAbQAXEawSE7q6qwiT+jBHgwFClTVD0VXoLvdEF3gj1jmPDyThAlGFxOeReIPbdmuKTBD66egIbSiawdtdMZ9SIiotZhgOMDn80EVE1AF8IUSDE2D2x8s7KzzAPVJJhQVcIcWKTFr6xqLPHUDiqLb5oboWnBxMH9DYw9G99CnRy/nqXYpSpOqXiWyyNPqwWjnBINFnkTURrxbOMDn80ERE1BMqAFAxERAd8EdUHEN4U+bwU+fhieYOEhdrb0GQzVsPdy6EbzO19DYgzE2ORE9DA23JXo6JjCKDU2nDWkqTDQdInGhPUVOUyUiag3eLRzg9/shEoCimKG6C4Ff1+ARFZDg0LgIoEJgeILJgVlbGzyIUA2GYjTpwfAA8Ad3Ww3tz+LVVIxOcm6DNooPti3b0aQHw5qi2r5/ylYPBlfxJKJW4hCJAwYNGoQhAxOgJl6DGgAUAAFdhQYNhhmuvRPoItBDO7g2LfJUVXuCYRjBRETEtD49UtfUdIgEasRCW2HtPEQSCLAHg4jahgmGAzRNg6b6oagmFB8AEQQ0FQo0uEwzuPKhCHQI1ITgLpRNizyDNRiNbySG7rI+LUYWelIX1EINRrMEo72LPK0eDM4iIaLWYYLhEDPggyoCNbRUgV/XoECDW0JTDAXQxISWGO7BqINEFHmqqstWg6GpLhjucB1GXccFQjGn6RCJbSVP61j79iwEOIuEiNqICYZDTNMHBYAamkoYsBIMgaYqAASGCLRQD4ZZVwtEFHk2nUViqAZ0V7Bwjz0YXVyzHgy1cR2MsHbvwQivg8EEg4hahwmGQ0yzIdiD4RcAgoCuAdBgQEGCpkIVQYIZgJ4YGiKpjVzJ04Ci2N8gNNWA7mo+VZW6nmY1GC32YLR3DQZ7MIiobXi3cIhphodIBAoAUzegmApcEqzRSDZNeMWE3q1b8Pq6WogvPESiQ1E02y6Vhmo0DpGwB6NLU9QYqsFggkFErcS7hUMah0gAiEBzu5Dq9kIUPy4qgJgCAwItlGDAFJjXgqswKuEtsBUDQLC3Qtdc0F3B4RZ/AxOMLk1v0tGoRqEGg+tgEFEbcYjEIWL64L3ig7vWB1GAgNeL/j0T0N3QQutgmNDFhO7xQAnVVgSuXg0+OLSBlBoxTGJwiIRCmvdgqFGcRcIEg4hahwmGQ0zTh1v/fQ0CFefSboWZ4AUAuKEGp5+KQAegGy6o3tBKnIHQ9ttG8KatRBTuGZqbQyQU1EINBhTVvrhWey8VznUwiKiNmGA4RLlwBd3+zwdTUXF6yADooWTBUFRoAEQk2IPhckHx2Jf6VkI3bUVt2oMRmkXCIZIuTVEUW6Gn9X1kr0U7r+QZ4DoYRNRGTDAcICLQT1yAIoJP+/dGjdcDQw3+1yqKArciEDO4kqemG1C9XtvjrQQjYojEpbmgu8NDJEwwujrbWhjhIZPI4Yp23oukcTfV9u0pIaLOgwmGAxrKy6FeroGoCk4P6gcIoIc/USoqvCIQhIo8Xcb1ezAihkhcqgHDxSESCgn1Wiiq0liTEdmD0Y5DJCLS2IOhsweDiFqHCYYD6svLITBR3c+LOrcbIiYMNXgjVlQVPcUPRQTdAz7ougHV22TDstAW7vYhEldjkScTjC7PGhaJrMeIHBZpxyGSYO9FcEYTazCIqLV4t3CAZ+JdqK1IQZV2FQFFhyKAoepAAICiYqS/DqkXzyIl0QtFVRuLPEPCPRiRs0jcugE9ND3RNAMI+P28uXdl4R6MiKES0TqmB8OM2GyPs0iIqLXYg+EA09+AQIoXiq5CoAIicIWL4RQVqpgwxIQWOmYbItFUKKF6DTU0RCJQYSg6NF23zrEOo2sLJxa2VT1tRZ7tl2CEd1JVNd22GBwR0Y0wwXCA3x/cjEwRFYACEYFbC9dVqFAkOB1VCw2FRBZ5KkbjG0N4iEQUHS5NhaIo1jAJ6zC6thaHSLSOmabKnVSJ6KtgguGAgD+4EJYq4RuwwAgvhKQoQDjBCL0hqBE9GEpEVX54iERRDGihT4oG6zAIiBgiuV4PRvsNXQSsNTA4g4SIWo8JhgMCVg9G4yc8Qwn916pqY4IRLuaM7MHQmxfqqRGzSThVlQBYQ2X26aod3IPBGSRE1AZMMBwQ8Aff/INLaoV6HkI9EJqqAmYwwdD1loZIGt8kVCW4loEa8ck0vNiWjwlG16a3NETSQTUYfu6kSkRtxzuGA/yBUIIh4SI4gWYGp/W5dA2Q0BS/8JLgbndo6ERsPRhquAcjcrqqm0Mk1LgfyXWHSNqhB+Ps8U9w6b+fW797nEFCRG3BO4YDTF+wBkMTDYqmQgIBXCovh6F5kdi3D5RQghHuwVAUBarXA7OmFohIMHQ9GQCg6t0bj3HDMwKgJoR7vyKHRULfq3owYXVQ1YUvUHHsY9sxT2I3R1+DiDq3qA+RbN68GRkZGfB4PMjKysLBgwdveH1BQQGysrLg8XgwePBg5OXldVBLry8Q7sGAjoSkZGiGC7oAlyvPo/LUCfjqagEAeuSMkVChZ2SRp+7uiwtJ0+DvNtE6Zm14xiGSLs1IS0TiuFS4BiY3HgwvD+5w74WIoOKTYHLRM70fbr97EoZNmIyMMVmOvg4RdW5RTTB27tyJnJwcrFixAiUlJZg0aRLuueceVFRUtHh9eXk57r33XkyaNAklJSX41a9+hUWLFuHNN9/s4JbbmYFwD4YKVdOQmNwD/TKGQNU0mPU1qL8W3JZdi0gwVE+wDiNyiKSfx4Xu3jQMS2p8E+FqngQEh0j0Hu4mQySh3x2HE4zL/z2Hqi/+C1XVkDFmLHr1G4Ce6f04i4SI2iSqCcb69evx8MMP45FHHsHw4cOxYcMG9O/fH1u2bGnx+ry8PAwYMAAbNmzA8OHD8cgjj2D+/Pl44YUXOrjlduEiTw0GVEUBFAVp6X2R9rXbkHJrSvAYAMPVuCGVGtrOPbLIM9nQMb/frRjTvXEpcQ6R0PVIuAbDwQJPEUHF0WDvRerXhsKdkOjYcxNR1xK1GoyGhgYUFRVh+fLltuPZ2dkoLCxs8TEffPABsrOzbcemTp2Kbdu2wefzwTCa32jr6+tRH/Hpv6qqCgDg8/ng8/luNgwAQEPDNYgIFEWHBoHPFKQleXHLUDcG9ByA06WCi1/8F4k9U6zXNA0DATOAAJQbt0NVEQiYqPq/Czj8zi5H2vtlAgETl0+cQJH4oGlRH0W7aZ02nqufQf/iLOC+Aql05ndDRFBfUwPNMNB7yO2O/Y3cSPg1OuK1OgLjiW2dKZ5oxNKW14pagnHhwgUEAgH06dPHdrxPnz44f/58i485f/58i9f7/X5cuHABaWlpzR6zevVq/PrXv252fO/evUhISGh2/KvwXTkCxbwEUXvCd+ECrigKjv/PP9FNMVAJ4MqVK6ipqcFHhw/D9XHw06H77Fl0O3UKV3Ud9Verr/vcpt+Py6dPQ0JTXTvS8aNHOvw121Nni+fE/57BLTWVqNfrUH2h1NHnTkhNxxfvv+/oc36Z/Pz8Dn299sZ4YltniqcjY6mpqWn1tVGfRdJ0b4NgT8D1K+Jbur6l42G//OUvsWTJEuvfVVVV6N+/P7Kzs9G9e/cWH9NWtVe/gerLn+Ojfx1B3rcfhE8V9HI3di2LCBoaGuAOFWyGj5nV1VCTkr50f4eG7Cmov3bNkba2ht/vx8GD/8CkSd+C3gnWPujU8Zj1gOEFFOd6ZlRNQ0Jyjw7bd8Tn8yE/Px9TpkxpsRcy3jCe2NaZ4olGLOFRgNaI2t02JSUFmqY1662orKxs1ksRlpqa2uL1uq6jV69eLT7G7Xbb3tjDDMNw7Adi3JIGb7cUqEfOors3ocXndUXUX1iu0+Zmz28YSExyJhlqDZ/PBz2hG27pkxr3f4AA44kXTv5NxgLGE9s6UzwdGUtbXidqA9IulwtZWVnNunby8/Mxfvz4Fh9z9913N7t+7969GDt2bKf5RSEiIuoMolrxtmTJEvzxj3/E9u3bUVZWhtzcXFRUVGDBggUAgsMbc+fOta5fsGABzpw5gyVLlqCsrAzbt2/Htm3b8OSTT0YrBCIiImpBVAekZ8yYgYsXL2LVqlU4d+4cRo0ahXfffRcDBw4EAJw7d862JkZGRgbeffdd5Obm4uWXX0Z6ejo2btyIn/zkJ9EKgYiIiFoQ9Yq3Rx99FI8++miL51599dVmxyZPnozi4uJ2bhURERHdjPhfFICIiIhiDhMMIiIiclzUh0g6WnjdjLbM5W0Nn8+HmpoaVFVVxf2Mls4UC8B4Yh3jiW2MJ3ZFI5bwe2f4vfRGulyCUV0dXDWzf//+UW4JERFRfKqurkZycvINr1GkNWlIJ2KaJj7//HMktWIFzbYIrxD66aefOrZCaLR0plgAxhPrGE9sYzyxKxqxiAiqq6uRnp4OVb1xlUWX68FQVRX9+vVrt+fv3r173P/ShnWmWADGE+sYT2xjPLGro2P5sp6LMBZ5EhERkeOYYBAREZHjmGA4xO1245lnnmlxY7V405liARhPrGM8sY3xxK5Yj6XLFXkSERFR+2MPBhERETmOCQYRERE5jgkGEREROY4JBhERETmOCYYDNm/ejIyMDHg8HmRlZeHgwYPRblKrrF69GuPGjUNSUhJ69+6NBx54ACdOnLBdIyJ49tlnkZ6eDq/Xi29/+9s4duxYlFrceqtXr4aiKMjJybGOxVssn332GWbPno1evXohISEBd955J4qKiqzz8RSP3+/H008/jYyMDHi9XgwePBirVq2CaZrWNbEczz/+8Q/88Ic/RHp6OhRFwe7du23nW9P2+vp6PP7440hJSUFiYiKmTZuGs2fPdmAUjW4Uj8/nw7JlyzB69GgkJiYiPT0dc+fOxeeff257jniJp6mf//znUBQFGzZssB2Pt3jKysowbdo0JCcnIykpCd/85jdRUVFhnY+FeJhg3KSdO3ciJycHK1asQElJCSZNmoR77rnH9oOOVQUFBXjsscfw4YcfIj8/H36/H9nZ2bh27Zp1zdq1a7F+/Xps2rQJhw8fRmpqKqZMmWLt6RKLDh8+jK1bt+KOO+6wHY+nWC5duoQJEybAMAz89a9/xfHjx7Fu3Tr06NHDuiae4nnuueeQl5eHTZs2oaysDGvXrsXzzz+Pl156ybomluO5du0aMjMzsWnTphbPt6btOTk5eOutt7Bjxw4cOnQIV69exf33349AINBRYVhuFE9NTQ2Ki4uxcuVKFBcXY9euXTh58iSmTZtmuy5e4om0e/du/POf/0R6enqzc/EUz+nTpzFx4kQMGzYMBw4cwMcff4yVK1fC4/FY18REPEI35Rvf+IYsWLDAdmzYsGGyfPnyKLXoq6usrBQAUlBQICIipmlKamqqrFmzxrqmrq5OkpOTJS8vL1rNvKHq6moZOnSo5Ofny+TJk2Xx4sUiEn+xLFu2TCZOnHjd8/EWz3333Sfz58+3HXvwwQdl9uzZIhJf8QCQt956y/p3a9p++fJlMQxDduzYYV3z2Wefiaqq8re//a3D2t6SpvG05KOPPhIAcubMGRGJz3jOnj0rffv2lU8++UQGDhwov//9761z8RbPjBkzrL+dlsRKPOzBuAkNDQ0oKipCdna27Xh2djYKCwuj1Kqv7sqVKwCAnj17AgDKy8tx/vx5W3xutxuTJ0+O2fgee+wx3Hffffj+979vOx5vsbz99tsYO3YsfvrTn6J3794YM2YM/vCHP1jn4y2eiRMn4v3338fJkycBAB9//DEOHTqEe++9F0D8xROpNW0vKiqCz+ezXZOeno5Ro0bFfHxA8N6gKIrVgxZv8ZimiTlz5mDp0qUYOXJks/PxFI9pmtizZw9uu+02TJ06Fb1798Zdd91lG0aJlXiYYNyECxcuIBAIoE+fPrbjffr0wfnz56PUqq9GRLBkyRJMnDgRo0aNAgArhniJb8eOHSguLsbq1aubnYu3WP79739jy5YtGDp0KN577z0sWLAAixYtwmuvvQYg/uJZtmwZZs2ahWHDhsEwDIwZMwY5OTmYNWsWgPiLJ1Jr2n7+/Hm4XC7ccsst170mVtXV1WH58uV46KGHrA214i2e5557DrquY9GiRS2ej6d4KisrcfXqVaxZswY/+MEPsHfvXvz4xz/Ggw8+iIKCAgCxE0+X2021PTTd9l1EHN0KviMsXLgQR44cwaFDh5qdi4f4Pv30UyxevBh79+61jUM2FQ+xAMFPKWPHjsXvfvc7AMCYMWNw7NgxbNmyBXPnzrWui5d4du7ciddffx1//vOfMXLkSJSWliInJwfp6emYN2+edV28xNOSr9L2WI/P5/Nh5syZME0Tmzdv/tLrYzGeoqIivPjiiyguLm5z22IxnnBh9I9+9CPk5uYCAO68804UFhYiLy8PkydPvu5jOzoe9mDchJSUFGia1iwjrKysbPZpJpY9/vjjePvtt7F//37bVvapqakAEBfxFRUVobKyEllZWdB1Hbquo6CgABs3boSu61Z74yEWAEhLS8OIESNsx4YPH24VD8fTzwYAli5diuXLl2PmzJkYPXo05syZg9zcXKu3Kd7iidSatqempqKhoQGXLl267jWxxufzYfr06SgvL0d+fr5tO/B4iufgwYOorKzEgAEDrHvDmTNn8MQTT2DQoEEA4iuelJQU6Lr+pfeHWIiHCcZNcLlcyMrKQn5+vu14fn4+xo8fH6VWtZ6IYOHChdi1axf+/ve/IyMjw3Y+IyMDqamptvgaGhpQUFAQc/F973vfw9GjR1FaWmp9jR07Fj/72c9QWlqKwYMHx00sADBhwoRmU4ZPnjyJgQMHAoivnw0QnJmgqvbbjaZp1qexeIsnUmvanpWVBcMwbNecO3cOn3zySUzGF04uTp06hX379qFXr1628/EUz5w5c3DkyBHbvSE9PR1Lly7Fe++9ByC+4nG5XBg3btwN7w8xE0+HlZN2Ujt27BDDMGTbtm1y/PhxycnJkcTERPnPf/4T7aZ9qV/84heSnJwsBw4ckHPnzllfNTU11jVr1qyR5ORk2bVrlxw9elRmzZolaWlpUlVVFcWWt07kLBKR+Irlo48+El3X5be//a2cOnVK/vSnP0lCQoK8/vrr1jXxFM+8efOkb9++8pe//EXKy8tl165dkpKSIk899ZR1TSzHU11dLSUlJVJSUiIAZP369VJSUmLNqmhN2xcsWCD9+vWTffv2SXFxsXz3u9+VzMxM8fv9MRWPz+eTadOmSb9+/aS0tNR2b6ivr4+7eFrSdBaJSHzFs2vXLjEMQ7Zu3SqnTp2Sl156STRNk4MHD8ZUPEwwHPDyyy/LwIEDxeVyyde//nVrmmesA9Di1yuvvGJdY5qmPPPMM5Kamiput1u+9a1vydGjR6PX6DZommDEWyzvvPOOjBo1StxutwwbNky2bt1qOx9P8VRVVcnixYtlwIAB4vF4ZPDgwbJixQrbG1Ysx7N///4W/1bmzZsnIq1re21trSxcuFB69uwpXq9X7r//fqmoqIhCNDeOp7y8/Lr3hv3798ddPC1pKcGIt3i2bdsmQ4YMEY/HI5mZmbJ7927bc8RCPNyunYiIiBzHGgwiIiJyHBMMIiIichwTDCIiInIcEwwiIiJyHBMMIiIichwTDCIiInIcEwwiIiJyHBMMIiIichwTDCLqFA4cOABFUXD58uVoN4WIwASDiIiI2gETDCIiInIcEwwicoSIYO3atRg8eDC8Xi8yMzPxxhtvAGgcvtizZw8yMzPh8Xhw11134ejRo7bnePPNNzFy5Ei43W4MGjQI69ats52vr6/HU089hf79+8PtdmPo0KHYtm2b7ZqioiKMHTsWCQkJGD9+fLNtrYmoYzDBICJHPP3003jllVewZcsWHDt2DLm5uZg9ezYKCgqsa5YuXYoXXngBhw8fRu/evTFt2jT4fD4AwcRg+vTpmDlzJo4ePYpnn30WK1euxKuvvmo9fu7cudixYwc2btyIsrIy5OXloVu3brZ2rFixAuvWrcO//vUv6LqO+fPnd0j8RNREh+7dSkSd0tWrV8Xj8UhhYaHt+MMPPyyzZs2ytp/esWOHde7ixYvi9Xpl586dIiLy0EMPyZQpU2yPX7p0qYwYMUJERE6cOCEAJD8/v8U2hF9j37591rE9e/YIAKmtrXUkTiJqPfZgENFNO378OOrq6jBlyhR069bN+nrttddw+vRp67q7777b+r5nz564/fbbUVZWBgAoKyvDhAkTbM87YcIEnDp1CoFAAKWlpdA0DZMnT75hW+644w7r+7S0NABAZWXlTcdIRG2jR7sBRBT/TNMEAOzZswd9+/a1nXO73bYkoylFUQAEazjC34eJiPW91+ttVVsMw2j23OH2EVHHYQ8GEd20ESNGwO12o6KiAkOGDLF99e/f37ruww8/tL6/dOkSTp48iWHDhlnPcejQIdvzFhYW4rbbboOmaRg9ejRM07TVdBBR7GIPBhHdtKSkJDz55JPIzc2FaZqYOHEiqqqqUFhYiG7dumHgwIEAgFWrVqFXr17o06cPVqxYgZSUFDzwwAMAgCeeeALjxo3Db37zG8yYMQMffPABNm3ahM2bNwMABg0ahHnz5mH+/PnYuHEjMjMzcebMGVRWVmL69OnRCp2IrifaRSBE1DmYpikvvvii3H777WIYhtx6660ydepUKSgosAow33nnHRk5cqS4XC4ZN26clJaW2p7jjTfekBEjRohhGDJgwAB5/vnnbedra2slNzdX0tLSxOVyyZAhQ2T79u0i0ljkeenSJev6kpISASDl5eXtHT4RNaGIRAxyEhG1gwMHDuA73/kOLl26hB49ekS7OUTUAViDQURERI5jgkFERESO4xAJEREROY49GEREROQ4JhhERETkOCYYRERE5DgmGEREROQ4JhhERETkOCYYRERE5DgmGEREROQ4JhhERETkuP8Hphjnhl0MVv0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", @@ -100,7 +81,7 @@ "\n", "%matplotlib inline\n", "\n", - "data = pd.read_csv(\"result/iris/07-12-16-28_100_200_0.35_0.6_0.5_acc.csv\", header=None)\n", + "data = pd.read_csv(\"result/mnist/07-13-02-05_75_200_0.25_0.4_0.3_acc.csv\", header=None)\n", "print(data.shape)\n", "\n", "loss = pd.DataFrame()\n", @@ -134,38 +115,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(201, 200)\n", - "(100, 201) (100, 201)\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_486937/2716345891.py:22: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " loss[i][j] = float(loss[i][j])\n", - "/tmp/ipykernel_486937/2716345891.py:26: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n", - " if acc[i][j] > acc_max:\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.0492493547499179 [] 0 []\n" - ] - } - ], + "outputs": [], "source": [ "data = pd.read_csv(\"./result/iris/06-24-14-00_100_200_0.4_0.8_0.7_acc.csv\", header=None)\n", "print(data.shape)\n", @@ -202,42 +154,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 1.50188923 0.21273327 -0.60860867 ... 1.25524983 -1.87869589\n", - " 1.57006041]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHpCAYAAABN+X+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABM80lEQVR4nO3deXhU9b0G8Hf2SUIy2RcgCWFfZQk7gtpiBKsF3LDtBRewUm0FqbeK3IJLLfaqFLUFtQhUb42ogNiKhWgRUBAFE1A22UJCFpLJMpN1JjNz7h+TMzFmn8zknDnzfp4nz71OToZv0mTe+W3foxIEQQARERHJklrqAoiIiKhtDGoiIiIZY1ATERHJGIOaiIhIxhjUREREMsagJiIikjEGNRERkYwxqFshCAKsVit4xJyIiKTGoG5FVVUVTCYTqqqqpC6FiIiCHIOaiIhIxhjUREREMsagJiIikjEGNRERkYwxqImIiGSMQU1ERCRjDGoiIiIZY1ATERHJGIOaiIhIxhjUREREMsagJiIikjEGNRERkYwxqImIiGSMQU1ERCRjDGoiIiIZY1ATERHJGIOaiIhIxhjUREREMsagJiIikjGt1AUQkX/kl9fi83NmHL1UgSJLPSrr7AjVa5EQYcSY5EhMHxSLQfG9oFKppC6ViNrBoCZSEIfThQ+/KcI/Dufhy4vlbV73z2OFAIDRfU249+o03HRVb2jUDGwiOVIJgiBIXYTcWK1WmEwmWCwWRERESF0OUYcEQcAHxwrx56zvkFtWCwBQqYAJqdGYmBaNAfFhMIXoUG1z4nJFLQ6dL8PhC+WwO10AgOFJEXhyzghM6Bct5bdBRK1gULeCQU2B5NsCC36/81tk51UCAKJCdbhnWhpuH98XSaaQNr+urNqGfxzOw8YDF2CtdwAAFl+dhv+eNQQGraYnSieiTmBQt4JBTYGgzu7Enz/+DhsPXIBLAEL1Gjxw7QDcMy0NYYbOr2qVVdvwv/8+g61H8gEAI3pH4G8Lx6N3ZNshrzROl4DSKhtKquoRqtcgPsKICKNO6rKIADCoW8WgJrn77KwZj+/4Bnnl7mnum65Kwu9vGo6ECKPXz5l18goe3XYc5TV2xIcbsOnuCRjZx+SrkmVHEAR8eqYU7+cU4D+nSlBlczT7/KD4XrhuaDzuGN8XA+PDJaqSiEHdKgY1yZW52oY/fngK27MLAABJJiP+MHckfjwswSfPf7miFvdu+QrfXalGiE6Dl382FjOH++a55eTopXL84cNTnuUCANCoVYjtpUed3elZChD9aGg8fpsxGCN6K/eNC8kXg7oVDGqSG5dLwNYj+Xj2o9Ow1DVApQIWTk7Ff88ail5dmObuDGt9Ax78x9c4cNYMlQpYfdNw3D0tzaf/hlQcThde/OQs/rr3HFwCYNSp8bOJKbjpqt4Ykxzp2fleWWvHZ+fM2JlTiI9PXYEguDfn3TkhBY/NHgpTCKfFqecwqFvBoCY5+fJiOdZ81DT6G9E7An+cNwqjkyP99m82OF1YtfMEMr/MAwAs/fEgLJs5KKDPXFvqGrDkzaM4dKEMAHDLuD54bNZQxHewXHDRXIMX9pzBv44XAQB6m4x47vbRmDYw1u81EwEM6lYxqKkjlroGfJ1XgZy8ShRb6lFRa4dWo0KITovekUakRIdiWFIEBieEQ6/tegNAQRBw4KwZfztwAQfOmgEAYXoNfpsxBAunpEKr8X9TQUEQ8Jf/nMMLWd8BAO6Z1g+//8lwqAPwvHWRpQ53b/oKZ65UIUyvwZpbr8JPR/fu0nMcvlCG3207jkuNx9/untoPj84aihA9d8iTfzGoW8GgptYIgoDPzpnx1uE8fHzqChqcHf/p6DQqDE4Ix8jeJozoE4ERvU0YlhSOUH3L6epauwPHL1uw/7tSfPhNkScQNGoV5k9IxtIfD+rWZjFv/f1gLlZ/cAIAcFt6Xzx7y6geeaPgK0WWOsx/9QvkldciLtyALfdM8HqtucbmwJqPTuH/vnDPNAyIC8OLd45V9KY7kh6DuhUMavqhY/mVeGbXqWbdvvrFhGJcahTSYsIQGaaHIAiotjlQUFGHC6U1OFFoabEpCQDUKiA+3IiYXnrotWo4XQJKrO6jQa7v/TWG6TW4fXwy7p2WhpSY0J74Ntu0/evL+O/3jsPpEnDDiAS89LOxAXHW+oq1HvNfPYTcslokR4fgrcWTkRzd/Z/lp2dK8Lv3jqOkyga9Ro3fzRqCe6elBeRsA8kfg7oVDGoS1Te4zyr/bb/7rLJeq8bPJiTjzokpGJbU/u+GIAi4XFGHE4UWnCi04tsC9/8tqbK1+TWJEUak94vC7JGJ+NHQ+FZH3lLZfaIYv3krG3anC9MHxeLVBemyqu+HLLUNuOPVQzhzpQp9o0Lw9i8no2+U797wVNTY8ei249hz8goAYPqgWLxw++gO17x9ze5w4dtCC47lV+JCaQ0uV9Siqt4Bh0tARIgOCeEGjOgdgfH9ojGid0RA7zMIVpIH9fr16/Hcc8+hqKgII0aMwLp16zB9+vRWr92+fTs2bNiAnJwc2Gw2jBgxAk888QRuuOEGzzVbtmzBPffc0+Jr6+rqYDR27g+IQU2A+6jS/W8exYlCKwBg7pje+N2sod1uBFJaZUORpQ5l1XY0OF1Qq1SIDTegd6QR8eE9P7XdFZ+fM+O+N46g1u7EuJRIbL57Ikyh8tsBXd/gxMLXv8SXueWIDzdg26+m+mQk/UOCIOCtL/Pw9L9Oor7BhchQHVbfPBxzx/TxayBW2xzYe7oEH31bhL2nS1HX4OzU16XFhuH28X2xcEo/n58WIP+RNKi3bt2KBQsWYP369Zg2bRpeffVVbNy4ESdPnkRKSkqL65ctW4bevXvjuuuuQ2RkJDZv3oznn38ehw8fxtixYwG4g3rp0qU4c+ZMs69NTEzsdF0MavryYjmW/N9RlNfYER2mx5pbRuGGEZ3/HVKy7LwK3L35K1jqGjA0MRx/v3eiJGvnbXG6BDzwj6PYfeIKwg1avLNkSoezH9119koVHn4nB98WuN/UTRsYg9U3j8DgBN81SrHWN+CTU1ew65ti7P+uFDaHy/O5qFAd0lOjMDghHCnRoTCF6KBRq2CtdyCvvBbfXK7EwfNlnq+JDNXhoR8Nwl1T+/FmLAFA0qCeNGkSxo0bhw0bNngeGzZsGObOnYs1a9Z06jlGjBiB+fPnY9WqVQDcQb1s2TJUVlZ2ug6bzQabrWk60mq1Ijk5mUEdpP79bTEeejsbdocLI/tE4NUF49EniNppdsbpYisWvP4lSqtsSIgwYOPCCRjVV/oNVYIgYOX73+Ktw3nQa9T4+70TMWVATI/82w1OF17bfwEvfnIWdocLGrUKc8f0wYPXDUD/uF5ePWdlrR1ZJ6/go2+L8dlZs+cmKoB7dDx7ZCJmj0zCyD4dT2lX2xz46JsibPj0PC6YawAAE/pF4YXbx0i+B4LaJ1lQ2+12hIaG4t1338W8efM8jy9duhQ5OTnYt29fh8/hcrnQr18//O53v8Ovf/1rAO6gXrx4Mfr06QOn04kxY8bg6aef9oy4W/PEE0/gySefbPE4gzr4vHskH49uOw6XAGQMT8CLd47l8Zs25JXVYtHfv8LZkmoYdWqsvWMMbhyVJGlNz+0+jb/uPQ+VClj/83GYLUE9eWW1eGbXSew+4V67VqmAaQNiMW9sH8wYHIe4cEObX2t3uJCTX4mD5804eL4MX1+qgON7OwwHxffC7FFJuHFUIoYkhHs1ve50Ccj8Mg9rdp1Cjd2JyFAdNvwivcfe0FDXSRbUhYWF6NOnDz7//HNMnTrV8/gf//hH/P3vf28xdd2a5557Ds8++yxOnTqF+Ph4AMAXX3yBc+fOYdSoUbBarXjxxRexa9cuHDt2DIMGDWr1eTiiJgB47+hl/Pd7xyAIwJ0TkvGHuSMD6hiSFKz1DXgoMxufnikFADw8czB+86OBkux+fmXfeTz70WkAwB/mjsR/TU7t8Rq+Lye/En/5z1l8fKqk2eNpsWHoHxuG+AgDDFoNbA4XKmvtuFRWi/Ol1c2mtAFgaGI4bhyVhNkjEzHIh1Pplytq8eBb2TiWXwmtWoUX7hiNOWP6+Oz5yXckD+qDBw9iypQpnsefeeYZvPnmmzh9+nS7X5+ZmYnFixdj586dmDlzZpvXuVwujBs3DjNmzMBLL73Uqdq4Rh18dmRfxvJ33CG9YHIqnpozgrtjO8npEvDMh6ew6fOLAICpA2Lwwh2j273Fpq/93xeX8D/vfwsAeHTWUPzq2gE99m93JL+8Ftu+voysk1dwssiKjl5xY8L0mDIgBlMHxGLawBikxoT5rbb6BiceefcY/nW8CBq1Ci/dORY/uUraWRFqSbJtf7GxsdBoNCguLm72eElJCRIS2r8JwNatW7Fo0SK8++677YY0AKjVakyYMAFnz57tds2kTDtzCvDbxpD++aQUPPlThnRXaNQqrLp5OIYlhWP1Bydw8HwZZq07gGdvGdUjU887cwrw+53ukH7g2gGyCmkASI4OxbKZg7Fs5mCU19hxusiK8+YaVNbYUdfghEGrQUSIFslRoRgQ3wup0aE9NiNh1Gnw0p1jYdRp8N7Ry1j6djZ6GbW4ZnBcj/z71DmSbyZLT0/H+vXrPY8NHz4cc+bMaXMzWWZmJu69915kZmZi7ty5Hf4bgiBg4sSJGDVqFDZt2tSpujiiDh7/PFaIpW9nw9U43f3HeaPYtKIbLpprsPTtbBy/bAEAzBvbBytuHOq3Y2dvf5mHx3d8A5cALJySyjdZXnK6BCx/Jwc7cwoRbtRi54PTvN4AR74n6QLc8uXLsXHjRmzatAmnTp3Cww8/jLy8PCxZsgQAsGLFCixcuNBzfWZmJhYuXIgXXngBkydPRnFxMYqLi2GxWDzXPPnkk9i9ezcuXLiAnJwcLFq0CDk5OZ7nJBJ9eLwIy7bmwCUAd4zvy5D2gbTYMGz71VQ8cO0AqFTAjuwC/Oj5fXht/3nYf7D22h2CIODlT87ise3feN5kPXEzQ9pbGrUK/3vbVUhPjUJVvQP3vXEEVfUNUpdFjSQN6vnz52PdunV46qmnMGbMGOzfvx+7du1Caqp7E0hRURHy8vI817/66qtwOBx48MEHkZSU5PlYunSp55rKykr88pe/xLBhw5CRkYGCggLs378fEydO7PHvj+TrX8cL8dDb2XC6BNw6ri+eveUqhrSP6DRq/G7WUOx4YBpGJ0ei2ubAH3edxqwX9+Pf3xbB5ereJJ61vgH3v3nUc7OQX107AGtu4Zus7jJoNdjwX+OQGGHE+dIa/OFfp6QuiRpJ3plMjjj1rWw7si/jt+8cg0sAbhnbB8/dPppNH/zE5RLw3teX8b//Pg1ztR0AMCQhHIuuTsNPx/SGUdf5o2+CIODf3xbjyX+eRLG1HnqNGqt/Ohy/mCTt7m6l+eJCGX72ty8gCMDrd43Hj4e1v2eI/I9B3QoGtXK903hOWmic7l5zy1UM6R5grW/A3/ZfwJbPc1Flc9+oxBSiw42j3A07JqZFtxna9Q1OfHzqCjYeuIic/EoAQEp0KF7+2Vi/3pM7mD3z4Un87cBFxPYy4JPl18iyTWwwYVC3gkGtTN8/wvOLSSl4es5ITpf2MEtdA97+Mg9vfnEJlyvqPI/rNWqM6BOBtNgwxPYyQKdRobzGjlxzLY7mVXjWt/VaNZbM6I8HrhvYpdE4dU19gxM3vfwZzpVU455p/bD65hFSlxTUGNStYFAriyAIeGHPd/jL3nMAgLun9sPqm4dz45GEnC4Bhy+U4YNjhdh7pgRXrG3fUQwAepuMuG18MhZMTm23sxf5zmdnzfiv1w9Do1bh30un+7TZCnUNg7oVDGrlqLY58Oh7x/HhN0UAgId+NBAPXz+YIS0jgiDgorkGp4qqcNFcDUtdAxqcAkwhOvSJCsG4lEgMiOvF/80kcN8bR5B18gpmDI7DG/dyQ65UeJ8zUqxTRVY8+NbXuFBaA61ahT/eMgp3jE+Wuiz6AZVKhf5xvXhuV4ZW3jgMn54pwf7vSvHlxXJMTIuWuqSgxEbGpDg2hxN/zvoOP/3LZ7hQWoPECCO23j+ZIU3URf1iw3Bbuvvv5uX/sLujVDiiJsVocLrwQU4h1mZ9h4JK90aljOEJWHPLKMT04romkTceuHYA3jmSjwNnzcjJr8QY7rTvcQxqCmgul4AThVbsOVmMrV/lo6TKvSkpIcKA//nJcNx0VRLXNom6ITk6FHPH9MG2ry/jL/85i413TZC6pKDDoCbJXCqrwb7vSvH1pQoUVtajss4OjVqNML0GoQYtehk0CDfoEG7UIiJEh1C9Bi5BQK3dCXO1DRfNNThZaEVFbVOrw9heeiy6uj/untqP95Em8pEHrxuAbV9fxienS5BXVouUmFCpSwoqDGrqcScKLXjpk7PYc/JKh7f864xQvQbTB8Xipqt644YRidBrufWCyJf6x/XCjMFx2P9dKd76Mg+PzR4qdUlBhUFNPUYQBPzfF5fw1L9OosHpTuipA2IwKS0GA+LDEBmibxwxO1Bjc6LG7kBVvQPWugZY6x2oszugVqlg0GkQ10uPPlEhGJ5kwuDEXjBoOXom8qdfTErB/u9K8e6RfDx8/SD+zfUgBjX1CEEQ8OQ/T2LLwVwAwMxhCXhs9hAMjGcTBaJA8OOh8UiMMKLYWo9/f1uMOWP6SF1S0OAcIfWIzZ/nYsvBXKhUwIrZQ/G3hekMaaIAotWocedE91GtzC/zOriafIlBTX6377tS/OHDkwDcIX3/NQO4E5soAN3e2Ivg8MVyXLHWS1xN8GBQk1/V2Z14fPs3cDXereq+6f2lLomIvNQn0t3SVRCAXY1tecn/GNTkV6/sO4+Cyjr0Nhnx5E9HciRNFOBuuqo3AOBfxxnUPYVBTX5zuaIWr+w7DwBY+ZPhPNdMpAA/uSoJKhVw9FIFCivrOv4C6jYGNfnNX/eeh83hwuT+0bhxVKLU5RCRDyREGDGhn/vmHP86XihxNcGBQU1+YaltwI7sywCAh2fytpJESnLTVUkAgI9PlkhcSXBgUJNfbD2Sh/oGF4YmhvPWeEQKc92QeADA0bwKWOoaOriauotBTT7ndAl449AlAMA90/pxNE2kMMnRoegfFwanS8DBc2apy1E8BjX53KdnSnC5og6RoTp2LyJSqGsHu0fVn54plbgS5WNQk8992HhsY97YPjDquNObSImuGRIHwN3QSPDF3XWoTQxq8im7w4WsU1cAADeOSpK4GiLyl0lp0TDq1Ci21uPMlSqpy1E0BjX51OfnzaiqdyA+3ID0lCipyyEiPzHqNJjSPwYAsI/T337FoCaf+vc3xQCAG0YkQq3mJjIiJZs2MBYA8OXFcokrUTYGNfmMw+nCnpPuoJ49kg1OiJRObHxy5FIFXC6uU/sLg5p85uilClTUNiAqVMez00RBYETvCITqNbDUNeBsSbXU5SgWg5p85vPzZQCA6YPioNXwV4tI6bQaNcamRAIAvszl9Le/8NWUfOaLxqCeMiBG4kqIqKeI099fcZ3abxjU5BN1diey8ysAwLMTlIiUb6K4Ts0Rtd8wqMknjl6qQINTQJLJiNSYUKnLIaIeMiYlElq1CoWWelyuqJW6HEViUJNPHLrg7vc7pX8Me3sTBZFQvRYj+pgAAEdyKySuRpkY1OQThxrXpydzfZoo6IxNjgQAHL9skbYQhWJQU7fV2Bw41vgHOpVBTRR0RjaOqL8tYFD7A4Oauu2bAgucLgG9TUb0jeL6NFGwGdUY1CcKLWx84gcMauq245crAQBX9Y2UtA4iksaAuDAYdWrU2J24YK6RuhzFYVBTt4nrUqP6miSuhIikoNWoMTwpAgCnv/2BQU3dJgb1aI6oiYKWOP39DYPa5xjU1C2VtXbklbvPTop/qEQUfLihzH8Y1NQt4mi6X0woTKE6iashIqmIS18nCq3cUOZjDGrqFnGaaxSnvYmC2sC4XjBo1ai2OZBbxg1lvsSgpm45ll8JABjNjWREQU2rUWNo44ayU0VVElejLAxq6hbPiJrr00RBb3B8LwDAd1cY1L7EoCavVdTYUWSpBwBPr18iCl5DEsMBMKh9jUFNXhP/GPtGhaCXQStxNUQktUEJDGp/YFCT174rqQYADG784ySi4DY4wT31nVtWC5vDKXE1ysGgJq99V+x+1zyo8Y+TiIJbYoQR4QYtnC4BF9lK1GcY1OQ1cXprCEfURARApVJ53rh/d6Va4mqUg0FNXhEEwRPUnPomIpG4oews16l9hkFNXjFX21FR2wCVChgYz6lvInIbFO8O6jPFDGpfYVCTV8TRdGp0KIw6jcTVEJFciDNsZ0s49e0rDGryCqe9iag14s7vS2U1qG/gzm9fYFCTVxjURNSauHADTCE6uARw57ePMKjJK+KOzsGJDGoiaqJSqdAvNgwAkMug9gkGNXnlfKk7qAfGcSMZETWXFhMKALjIu2j5BIOauqyy1o7K2gYAQL/YUImrISK54YjatxjU1GXiulNChAGhevb4JqLm0jxBXStxJcrAoKYuE28K3y8mTOJKiEiOxNcGTn37BoOauuxi47tk8V0zEdH3iVPfpVU2VNU3SFxN4GNQU5eJ6079GNRE1ApTiA4xYXoAwKUyTn93F4OauuySZ+qbG8mIqHXiG3mepe4+BjV1iSA03b6OI2oiaou4Ts2d393HoKYuqahtgLXeAQBIjWZQE1Hr0mJ5ltpXGNTUJeJoOslkRIieN+MgotbxLLXvMKipSzwbyXg0i4ja4Zn65maybmNQU5d4NpKxIxkRtUMcUZfX2GHlEa1uYVBTl1xsfHfMETURtaeXQYuoUB0AoKCiTuJqAhuDmrokr9wd1Kk8mkVEHegb5X6dyC/n9Hd3MKipSwoq3H9w4h8gEVFbkqNDAACXOaLuFgY1dVqd3QlztR0AkMygJqIOeEbUFRxRd4fkQb1+/XqkpaXBaDQiPT0dBw4caPPa7du34/rrr0dcXBwiIiIwZcoU7N69u8V127Ztw/Dhw2EwGDB8+HDs2LHDn99C0CiodP+xhRu0iAjhXbOIqH3JURxR+4KkQb1161YsW7YMK1euRHZ2NqZPn47Zs2cjLy+v1ev379+P66+/Hrt27cLRo0dx3XXX4eabb0Z2drbnmkOHDmH+/PlYsGABjh07hgULFuCOO+7A4cOHe+rbUqz8xj+2PlEhUKlUEldDRHInjqgZ1N2jEgRBkOofnzRpEsaNG4cNGzZ4Hhs2bBjmzp2LNWvWdOo5RowYgfnz52PVqlUAgPnz58NqteKjjz7yXDNr1ixERUUhMzOz1eew2Wyw2Wye/7ZarUhOTobFYkFERIQ335oivfnFJfz+/W8xc1gCNt41XupyiEjmzl6pwvV/3o9wgxbHn8jgG3wvSTaittvtOHr0KDIyMpo9npGRgYMHD3bqOVwuF6qqqhAdHe157NChQy2e84Ybbmj3OdesWQOTyeT5SE5O7sJ3EjwuezaShUhcCREFAnFEXWVzwFrnkLiawCVZUJvNZjidTiQkJDR7PCEhAcXFxZ16jhdeeAE1NTW44447PI8VFxd3+TlXrFgBi8Xi+cjPz+/CdxI8xOkrBjURdUaIXoPYXu7bXXJDmfck3xH0w6kQQRA6NT2SmZmJJ554Ajt37kR8fHy3ntNgMMBgMHSh6uDUFNTc8U1EndM3KhTmajsuV9RiZB+T1OUEJMlG1LGxsdBoNC1GuiUlJS1GxD+0detWLFq0CO+88w5mzpzZ7HOJiYlePSd1rIBT30TURX2587vbJAtqvV6P9PR0ZGVlNXs8KysLU6dObfPrMjMzcffdd+Ott97CT37ykxafnzJlSovn3LNnT7vPSR3jGWoi8ga7k3WfpFPfy5cvx4IFCzB+/HhMmTIFr732GvLy8rBkyRIA7rXjgoICvPHGGwDcIb1w4UK8+OKLmDx5smfkHBISApPJPaWydOlSzJgxA3/6058wZ84c7Ny5Ex9//DE+++wzab5JheAZaiLyBruTdZ+k56jnz5+PdevW4amnnsKYMWOwf/9+7Nq1C6mpqQCAoqKiZmeqX331VTgcDjz44INISkryfCxdutRzzdSpU/H2229j8+bNuOqqq7BlyxZs3boVkyZN6vHvT0l4hpqIvMHuZN0n6TlqubJarTCZTDxH/T08Q01E3jhXUo2Za/ehl0GLb5+8QepyApLkLUQpMPAMNRF5o3ekEQBQbXPwvtReYlBTpxRW1gMA+kQyqImo80L1WphC3PelLrbUS1xNYGJQU6cUW9xr1EmN746JiDoryeR+3Sis5IYybzCoqVOKGt8Ji39wRESdJb5uFHFE7RUGNXXI5RJwxSoGNae+iahrkhqXzIo4ovYKg5o6ZK6xocEpQK0C4sLZapWIuqY3R9TdwqCmDokbQOLCDdBp+CtDRF2T2DgTx6D2Dl91qUNN69Oc9iairhNH1IUWTn17g0FNHRLXlbiRjIi8Ia5RF1vqwR5bXcegpg4VNW4kS2RQE5EXxDf5tXYnrHUOiasJPAxq6lAxj2YRUTcYdRpEhbqbnnD6u+sY1NShokquURNR9yR5NpQxqLuKQU0dKrJyjZqIukfs+c2d313HoKZ2uVwCrlhsALhGTUTe84yoKxnUXcWgpnaV19phd7qgUgEJEQxqIvJOIo9oeY1BTe0S3/3G9WKzEyLynmfqmyPqLuMrL7VL3PjB9Wki6g5xRq6kikHdVQxqalcxb8ZBRD7gCWqrTeJKAg+DmtolnqFOiODNOIjIe2JQV9kcqLGx6UlXMKipXVca3/0mcOqbiLqhl0GLML0GAFBSxVF1VzCoqV3ielJ8OIOaiLpHHFWL97enzmFQU7vE9SROfRNRd8U3vo4wqLuGQU3tulIlrlFzRE1E3cMNZd5hUFObbA4nKmsbAADx4RxRE1H3cOrbOwxqapP4rlevVcMUopO4GiIKdOIb/ivcTNYlDGpqU0lV09EslUolcTVEFOg4ovYOg5raJI6oueObiHyhaY2aQd0VDGpqk/iulzu+icgXEjy7vm0QBEHiagIHg5raJK4jcURNRL4gvpbUNThRxe5kncagpjZ5pr45oiYiHwjRaxBh1AIArlg4/d1ZDGpqk2czGUfUROQjTRvKuPO7sxjU1CZxjZojaiLyFe787joGNbVJbJzPrmRE5CueNqK8L3WnMaipVfUNTV3JOPVNRL7iGVFzjbrTGNTUqtKqpq5kESFaiashIqVIaOxOVlrNNerOYlBTq9iVjIj8Ia5xhq6UbUQ7jUFNrbrCrmRE5AdxjSNqc7Vd4koCB4OaWlXqaXbCHd9E5DtiUHNE3XkMamqV+EcUx6AmIh8SX1OqbQ7U2tmdrDMY1NQqc+NGj9heDGoi8p0wvQZGnTt6zFWc/u4MBjW1iiNqIvIHlUrVNP1dzSNancGgplaJRyfiOKImIh8TX1e4Tt05DGpqlZkjaiLyE24o6xoGNbUgCIJnRB3LoCYiH2NQdw2Dmlqw1DWgwem+qXtsL73E1RCR0sT1amx6wu5kncKgphbEHd+mEB0MWo3E1RCR0nBE3TUMampBvGsWR9NE5A8M6q5hUFMLPJpFRP7EoO4aBjW10BTU7PNNRL4X9707aAmCIHE18segphbEZvmc+iYifxBfWxqcAix1DRJXI38MamqBU99E5E8GrQamEB0ATn93BoOaWmBXMiLyN65Tdx6DmlpgVzIi8jdPG1Gepe4Qg5paKOWds4jIzzii7jwGNTXjdAkoawzqeI6oichPYjmi7jQGNTVTUWuHSwBUKiA6jLu+icg/Yhp3fpdX857UHWFQUzPiNFR0qB5aDX89iMg/xCNaZTUM6o7wlZiaMXN9moh6QEyY+zXGzKnvDjGoqZnyxne3MWx2QkR+JL7GlHHqu0MMampG7ErG9Wki8idx1s7MNqIdYlBTM+U1nPomIv8TR9Q2hws1dqfE1cgbg5qaEaehYjiiJiI/CtVrEap33+++jOvU7WJQUzOeqW+uURORn4mjajPXqdvFoKZmxKlvcUcmEZG/iK8zHFG3j0FNzZRx1zcR9RCepe4cBjU1U841aiLqIRxRdw6DmjzqG5yosjkAADHc9U1EfsY16s5hUJOH2OxEp1EhwqiVuBoiUjpxQMCp7/YxqMlDDOroMD1UKpXE1RCR0nnWqDn13S4GNXmIPXejueObiHpA0xo1R9TtYVCThziijuWObyLqAZ5+3zUcUbdH8qBev3490tLSYDQakZ6ejgMHDrR5bVFREX7+859jyJAhUKvVWLZsWYtrtmzZApVK1eKjvr7ej9+FMrArGRH1JM89qWvscLrY77stkgb11q1bsWzZMqxcuRLZ2dmYPn06Zs+ejby8vFavt9lsiIuLw8qVKzF69Og2nzciIgJFRUXNPoxGo7++DcUw13Dqm4h6TnSoO6hdAlBZy+nvtkga1GvXrsWiRYuwePFiDBs2DOvWrUNycjI2bNjQ6vX9+vXDiy++iIULF8JkMrX5vCqVComJic0+2mOz2WC1Wpt9BCPPGWpOfRNRD9Bq1IgK1QHgzu/2SBbUdrsdR48eRUZGRrPHMzIycPDgwW49d3V1NVJTU9G3b1/cdNNNyM7Obvf6NWvWwGQyeT6Sk5O79e8HKk9XMk59E1EPifne7S6pdV4F9cWLF7v9D5vNZjidTiQkJDR7PCEhAcXFxV4/79ChQ7FlyxZ88MEHyMzMhNFoxLRp03D27Nk2v2bFihWwWCyej/z8fK///UDW1D6UU99E1DPEgQF3frfNq64WAwcOxIwZM7Bo0SLcdttt3Vr//eF5XUEQunWGd/LkyZg8ebLnv6dNm4Zx48bh5ZdfxksvvdTq1xgMBhgMDCfxLCOnvomop8T2YhvRjng1oj527BjGjh2L3/72t0hMTMT999+PL7/8skvPERsbC41G02L0XFJS0mKU3R1qtRoTJkxod0RNbtz1TUQ9LYY35uiQV0E9cuRIrF27FgUFBdi8eTOKi4tx9dVXY8SIEVi7di1KS0s7fA69Xo/09HRkZWU1ezwrKwtTp071pqxWCYKAnJwcJCUl+ew5lajW7kBdgxMAp76JqOeITU/Y77tt3dpMptVqMW/ePLzzzjv405/+hPPnz+ORRx5B3759sXDhQhQVFbX79cuXL8fGjRuxadMmnDp1Cg8//DDy8vKwZMkSAO6144ULFzb7mpycHOTk5KC6uhqlpaXIycnByZMnPZ9/8sknsXv3bly4cAE5OTlYtGgRcnJyPM9JrRNH03qtGmF6jcTVEFGwiA0Xb8zBqe+2dOvOC0eOHMGmTZvw9ttvIywsDI888ggWLVqEwsJCrFq1CnPmzGl3Snz+/PkoKyvDU089haKiIowcORK7du1CamoqAHeDkx+eqR47dqzn/z969CjeeustpKamIjc3FwBQWVmJX/7ylyguLobJZMLYsWOxf/9+TJw4sTvfquJ5upKxzzcR9SDe6rJjKkEQutwOZu3atdi8eTPOnDmDG2+8EYsXL8aNN94ItbppgH7u3DkMHToUDofDpwX3BKvVCpPJBIvFgoiICKnL6RH/OX0F9245gpF9IvCv30yXuhwiChJHcstx2yuHkBoTin3/fZ3U5ciSVyPqDRs24N5778U999zTZjORlJQUvP76690qjnqO2bORjOvTRNRzPLe65Bp1m7wK6qysLKSkpDQbQQPujVv5+flISUmBXq/HXXfd5ZMiyf/Ka9iVjIh6nviaU21zoL7BCaOOe2R+yKvNZAMGDIDZbG7xeHl5OdLS0rpdFPU8zxlqHs0ioh4UbtBCr3FHEY9otc6roG5rWbu6upo3vwhQnjPUPJpFRD1IpVI1naXmhrJWdWnqe/ny5QDcP9hVq1YhNDTU8zmn04nDhw9jzJgxPi2Qeob4TjaaI2oi6mExvfQostRznboNXQpq8eYWgiDgm2++gV7f9KKu1+sxevRoPPLII76tkHqEeOP2WK5RE1EPa2p6whF1a7oU1Hv37gUA3HPPPXjxxReD5uhSMCjnrm8ikgjbiLbPq13fmzdv9nUdJCFBEGDm1DcRSYQ35mhfp4P6lltuwZYtWxAREYFbbrml3Wu3b9/e7cKo51TbHLA7XAB4PIuIeh5vddm+Tge1yWTytJY0mUx+K4h6nniGOkSnQai+W11liYi6TDxtYubUd6s6/ar8/eluTn0ri6crGUfTRCQBHs9qn1fnqOvq6lBbW+v570uXLmHdunXYs2ePzwqjntPUlYwbyYio58WGsY1oe7wK6jlz5uCNN94A4L5b1cSJE/HCCy9gzpw52LBhg08LJP9jVzIiklLTrm9bmw21gplXQf31119j+nT3HZbee+89JCYm4tKlS3jjjTfw0ksv+bRA8j/xSASDmoikIJ42aXAKsNYH3h0X/c2roK6trUV4eDgAYM+ePbjlllugVqsxefJkXLp0yacFkv+J003RXKMmIgkYdRqEG9xbprhO3ZJXQT1w4EC8//77yM/Px+7du5GRkQEAKCkpYROUAOTpSsZmJ0QkEXH628x16ha8CupVq1bhkUceQb9+/TBp0iRMmTIFgHt0PXbsWJ8WSP7HW1wSkdTEzazlNRxR/5BXh2Zvu+02XH311SgqKsLo0aM9j//4xz/GvHnzfFYc9QzxHSy7khGRVMTXH7YRbcnr7haJiYlITExs9tjEiRO7XRD1PHFNKJbHs4hIIuxO1javgrqmpgbPPvssPvnkE5SUlMDlcjX7/IULF3xSHPmfIAieqW+OqIlIKuLrTzlH1C14FdSLFy/Gvn37sGDBAiQlJXlai1LgsdY54HC5zy0yqIlIKuIaNae+W/IqqD/66CN8+OGHmDZtmq/roR4m7vgON2hh1GkkroaIglWMZ0TNzWQ/5NWu76ioKERHR/u6FpKA+O6VZ6iJSErRXKNuk1dB/fTTT2PVqlXN+n1TYGL7UCKSg6Y2ogzqH/Jq6vuFF17A+fPnkZCQgH79+kGn0zX7/Ndff+2T4sj/PCNqNjshIgnFNL4GVdTY4XIJUKu590nkVVDPnTvXx2WQVMRpplhOfRORhKLC3AM+h0uAtb4BkaF8TRJ5FdSrV6/2dR0kEXYlIyI5MGjd/b6rbA6U1dgZ1N/j1Ro14L695caNG7FixQqUl5cDcE95FxQU+Kw48j9z4xo1p76JSGrigIFnqZvzakR9/PhxzJw5EyaTCbm5ubjvvvsQHR2NHTt2eG53SYGBU99EJBfRYXrkltXyDlo/4NWIevny5bj77rtx9uxZGI1Gz+OzZ8/G/v37fVYc+R+7khGRXIgze9z53ZxXQf3VV1/h/vvvb/F4nz59UFxc3O2iqOeIDU9iOPVNRBITZ/bKeZa6Ga+C2mg0wmq1tnj8zJkziIuL63ZR1DNcrqY+35z6JiKp8Q5arfMqqOfMmYOnnnoKDQ0NAACVSoW8vDw89thjuPXWW31aIPlPZV0DGtt8I4pT30QkMQZ167wK6ueffx6lpaWIj49HXV0drrnmGgwcOBDh4eF45plnfF0j+Ym4YcMUooNO4/UBACIinxBvtct+3815tes7IiICn332Gfbu3YujR4/C5XJh3LhxmDlzpq/rIz8S37WyfSgRyQH7fbeuy0HtcrmwZcsWbN++Hbm5uVCpVEhLS0NiYiIEQeAtLwOI+MfAZidEJAec+m5dl+Y7BUHAT3/6UyxevBgFBQUYNWoURowYgUuXLuHuu+/GvHnz/FUn+QF3fBORnIiDhooaOwRBkLga+ejSiHrLli3Yv38/PvnkE1x33XXNPvef//wHc+fOxRtvvIGFCxf6tEjyD3FEzVtcEpEciCNqh0uAtc4BU6iug68IDl0aUWdmZuLxxx9vEdIA8KMf/QiPPfYY/vGPf/isOPIvcUQdyzVqIpIBsd830PT6RF0M6uPHj2PWrFltfn727Nk4duxYt4uinsGuZEQkN9G8L3ULXQrq8vJyJCQktPn5hIQEVFRUdLso6hlmz2YyrlETkTzEcOd3C10KaqfTCa227WVtjUYDh8PR7aKoZ4jnqLnrm4jkQuz3zTtoNenSZjJBEHD33XfDYGh9BGazcU0hkHjuRc1d30QkE00jauaJqEtBfdddd3V4DXd8BwaH04WKWncLWI6oiUguuEbdUpeCevPmzf6qg3qYGNIqFRAVyqAmInkQR9Sc+m7CBs9BSjz6EBWqh0bNbnJEJA8xnhE1p75FDOog5WkfyqNZRCQj4mYy7vpuwqAOUmU8Q01EMsSp75YY1EFK3FEZyzPURCQj4tR3Oft9ezCogxS7khGRHP2w3zcxqIOWmbe4JCIZYr/vlhjUQaqpKxmnvolIXqJ7cZ36+xjUQaqpKxlH1EQkL+L0t5k7vwEwqINWGYOaiGSKO7+bY1AHKd6Qg4jkKsZzYw6uUQMM6qBkd7hgrXfvpuQNOYhIbsQ1ak59uzGog5A4naRRq2AK0UlcDRFRc5z6bo5BHYS+3+dbzT7fRCQzMdz13QyDOgiJPXRjuT5NRDLk6ffNoAbAoA5K7EpGRHImTn2Lm16DHYM6CJnZ7ISIZEyc+q6oZb9vgEEdlHiGmojkTJzta3AKnhMqwYxBHYTKeS9qIpIxg1aDXmK/b05/M6iDkbjrO5qbyYhIpqJ5RMuDQR2EzJ5d31yjJiJ5EtepufObQR2UxBE1j2cRkVyx6UkTBnUQMleJa9QcURORPEXziJYHgzrI1NodqGtwAgBiwxnURCRP4vFRTn0zqIOO2JXMoFUjTK+RuBoiotZx6rsJgzrIiM1OYnsZoFKxzzcRyVPT1DeDmkEdZMzs801EAcAT1BxRSx/U69evR1paGoxGI9LT03HgwIE2ry0qKsLPf/5zDBkyBGq1GsuWLWv1um3btmH48OEwGAwYPnw4duzY4afqA08Z24cSUQAQj4+W13AzmaRBvXXrVixbtgwrV65EdnY2pk+fjtmzZyMvL6/V6202G+Li4rBy5UqMHj261WsOHTqE+fPnY8GCBTh27BgWLFiAO+64A4cPH/bntxIw2D6UiALB9xueBHu/b5Ug4U9g0qRJGDduHDZs2OB5bNiwYZg7dy7WrFnT7tdee+21GDNmDNatW9fs8fnz58NqteKjjz7yPDZr1ixERUUhMzOz1eey2Wyw2ZretVmtViQnJ8NisSAiIsKL70y+nvznCWz+PBdLrhmAx2YPlbocIqJW1Tc4MfT3/wYAHFudAVOITuKKpCPZiNput+Po0aPIyMho9nhGRgYOHjzo9fMeOnSoxXPecMMN7T7nmjVrYDKZPB/Jycle//tyxzVqIgoERl1Tv+9g3/ktWVCbzWY4nU4kJCQ0ezwhIQHFxcVeP29xcXGXn3PFihWwWCyej/z8fK//fbkr+96ubyIiOWua/g7udWqt1AX88IiQIAjdPjbU1ec0GAwwGIIjuMSjDjEcURORzEWH6ZFXXuuZCQxWko2oY2NjodFoWox0S0pKWoyIuyIxMdHnz6kkYp9vtg8lIrkTl+g49S0RvV6P9PR0ZGVlNXs8KysLU6dO9fp5p0yZ0uI59+zZ063nVAqnS/D8wseGc0RNRPLGW126STr1vXz5cixYsADjx4/HlClT8NprryEvLw9LliwB4F47LigowBtvvOH5mpycHABAdXU1SktLkZOTA71ej+HDhwMAli5dihkzZuBPf/oT5syZg507d+Ljjz/GZ5991uPfn9xU1NrhatzjHx3KoCYieYtunPkzB/mNOSQN6vnz56OsrAxPPfUUioqKMHLkSOzatQupqakA3A1OfnimeuzYsZ7//+jRo3jrrbeQmpqK3NxcAMDUqVPx9ttv43/+53/w+9//HgMGDMDWrVsxadKkHvu+5Epcn44K1UGrkbzXDRFRu9jv203yzWQPPPAAHnjggVY/t2XLlhaPdebY92233Ybbbrutu6UpDnd8E1EgieEaNQAZtBClnlPqaR/KaW8ikj9xjZq7viloNB3N4oiaiORPnP0rC/I1agZ1EBGPZsWyzzcRBQBPUNfY4XIFb79vBnUQMVeJ7UM5oiYi+ROX6ZwuAZV1DRJXIx0GdRDxNDthUBNRANBp1IgMdd+MI5iPaDGog4iZ7UOJKMCIM4DmKgY1BQHPGjVH1EQUIMQ2oqUcUVMwaFqj5oiaiAJDXLgRAFDKETUpXa3dgboGJwCuURNR4BAHFsF8lppBHSTEM9QGrRpheo3E1RARdY5njZpT36R05u+1D+3u/b6JiHpKHIOaQR0sxGkjrk8TUSARb8nLoCbFK6vmGWoiCjxNx7O4Rk0KV1bDETURBZ7vr1EHaxtRBnWQMHNETUQBSGzQ5HAJsARpG1EGdZDwdCXjDTmIKIAYtBqYQoK7jSiDOkiUVbMrGREFpmDvTsagDhJl1bxzFhEFpqZ16uDcUMagDhJNd87i1DcRBZbY8OC+MQeDOgg4XQLKa3jnLCIKTMHe9IRBHQQqau1wCYBKBUSHMqiJKLB41qg5oialEteno0L10Gr4PzkRBZZg7/fNV+0g4DlDzaNZRBSA4sK5mYwUrqnZCYOaiAIPR9SkeOLUN7uSEVEgEnd9l1XbIQjB10aUQR0ExCYBcQxqIgpA4rKd3emCtc4hcTU9j0EdBMSdkuI6DxFRIDHqNAg3agEEZ3cyBnUQKGkM6ngGNREFKHFGMBiPaDGogwBH1EQU6IJ5QxmDOggwqIko0DUd0WJQk8K424cyqIkosIndyRjUpDhl1Ta4BECtAmLCGNREFJg8U99Vwdf0hEGtcOJGspheBmjUKomrISLyTiynvkmpeIaaiJSAm8lIsbiRjIiUIJjvoMWgVjgGNREpQdOIOvjaiDKoFa6UzU6ISAHEwYbd6YK1PrjaiDKoFY4jaiJSAqNOg3CDu41osK1TM6gVjkFNRErh2fkdZOvUDGqFK6mqB8Bd30QU+JqangTXWWoGtcJ51qgjjBJXQkTUPcF6RItBrWA1Ngdq7E4AnPomosAXG6R30GJQK5j4rjNEp0GYXiNxNURE3ROsN+ZgUCtYyfc2kqlUbB9KRIFNPGZawhE1KQV3fBORkiQ07rW5Yq2XuJKexaBWMPGXOZEbyYhIAeIj3IOOK1aOqEkhihuDWvzlJiIKZOKIuqzGhganS+Jqeg6DWsFKGt91JnBETUQKEB2qh1atgiAE14YyBrWCceqbiJRErVZ5NpQF0/Q3g1rBOPVNREoTH4QbyhjUCsapbyJSmoTGgUcJg5oCXbXNgWqb+1ZwDGoiUoqmI1qc+qYAJ04L9TJo0avx1nBERIEuGM9SM6gV6grXp4lIgTybyYKoOxmDWqG445uIlEgcUXONmgLeFW4kIyIFEmcJg6nfN4NaoTj1TURKlBDuHnyU19hhczglrqZnMKgVilPfRKREkaE66DXu6AqW+1IzqBWKU99EpEQqlSrobs7BoFYocUSdwKlvIlKYYNtQxqBWIEEQ2JWMiBRLHIAUM6gpUFXUNsDeeAu4uHCOqIlIWcQBCIOaAlaxxf3LGx2mh0GrkbgaIiLfSjI1BrWFQU0BqshSB4A7volImZJMIQCAokoGNQWowsZ3mb0jQySuhIjI93pHugchhY2DEqVjUCtQUaX7l1f8ZSYiUpLExhH1FWs9XC5B4mr8j0GtQEWNI2pxeoiISEkSwg1Qq4AGpwBzjfLPUjOoFaiQI2oiUjCtRo34xlaiwbBOzaBWIHHdhmvURKRUiY07v4uCYJ2aQa0wLpfgObIgHmEgIlIaccawKAiOaDGoFcZcY0ODU4BKxa5kRKRciRGNR7QY1P63fv16pKWlwWg0Ij09HQcOHGj3+n379iE9PR1GoxH9+/fHK6+80uzzW7ZsgUqlavFRX6/8/zGBpvWa+HADdBrJ/+clIvILzxGtSk59+9XWrVuxbNkyrFy5EtnZ2Zg+fTpmz56NvLy8Vq+/ePEibrzxRkyfPh3Z2dl4/PHH8dBDD2Hbtm3NrouIiEBRUVGzD6MxOEaXRVyfJqIgIJ5qCYbuZFop//G1a9di0aJFWLx4MQBg3bp12L17NzZs2IA1a9a0uP6VV15BSkoK1q1bBwAYNmwYjhw5gueffx633nqr5zqVSoXExMRO12Gz2WCzNW3xt1qtXn5H0itsHFH35tEsIlKwps1kyg9qyUbUdrsdR48eRUZGRrPHMzIycPDgwVa/5tChQy2uv+GGG3DkyBE0NDR4HquurkZqair69u2Lm266CdnZ2e3WsmbNGphMJs9HcnKyl9+V9MQRNTeSEZGSiVPfxdZ6OBXe9ESyoDabzXA6nUhISGj2eEJCAoqLi1v9muLi4lavdzgcMJvNAIChQ4diy5Yt+OCDD5CZmQmj0Yhp06bh7NmzbdayYsUKWCwWz0d+fn43vzvpiCPqJE59E5GCxYcboVGr4HQJMFcru+mJpFPfgHua+vsEQWjxWEfXf//xyZMnY/LkyZ7PT5s2DePGjcPLL7+Ml156qdXnNBgMMBiUcTtI8Qx1HzY7ISIF06hViA83oMhSj8LKOkWfcpFsRB0bGwuNRtNi9FxSUtJi1CxKTExs9XqtVouYmJhWv0atVmPChAntjqiVRNz1zfahRKR0SUGyTi1ZUOv1eqSnpyMrK6vZ41lZWZg6dWqrXzNlypQW1+/Zswfjx4+HTqdr9WsEQUBOTg6SkpJ8U7iMOZwulFSJU9/KfXdJRAQAfaJCAQAFFco+oiXp8azly5dj48aN2LRpE06dOoWHH34YeXl5WLJkCQD32vHChQs91y9ZsgSXLl3C8uXLcerUKWzatAmvv/46HnnkEc81Tz75JHbv3o0LFy4gJycHixYtQk5Ojuc5lazIUg+XAOg1asSGKWMqn4ioLclR7pnD/IpaiSvxL0nXqOfPn4+ysjI89dRTKCoqwsiRI7Fr1y6kpqYCAIqKipqdqU5LS8OuXbvw8MMP469//St69+6Nl156qdnRrMrKSvzyl79EcXExTCYTxo4di/3792PixIk9/v31NPGXtW9UCNTqttf5iYiUoG/jiPqywkfUKkHcjUUeVqsVJpMJFosFERERUpfTaVu/ysOj277BjMFxeONe5b8xIaLgtv+7Uizc9CUGxfdC1vJrpC7Hb9hjUkHyy93vKsXpICIiJUuObhpRK3nMyaBWEHHqW/zlJSJSst6RRqhUQF2DE+U1dqnL8RsGtYLklzcGdRSDmoiUz6DVICHcfcIlX8Hr1AxqBRF/UZOjOfVNRMGhb+NS32UF7/xmUCtEfYMTpVXuNnocURNRsGgKao6oSebEd5PhBi0iQ1tv/kJEpDTinhxx6U+JGNQKIe747hsd2m6vdCIiJeGImgKGZ8c3j2YRURBJ9jQ94YiaZM6z45tHs4goiHy/O5lSz1IzqBWCzU6IKBglRRqhVgE2hwulCr0vNYNaIdjshIiCkU6j9tzWV6kbyhjUCiAIAvI49U1EQSo1xv26d9HMoCaZKq+xo6reAZUKSGFQE1GQSYsNAwDkmmskrsQ/GNQKcLHxl7O3KQRGnUbiaoiIepYY1BfLGNQkUxcag7p/XJjElRAR9bx+MY1BXcqgJpkSR9Tiu0oiomCS1jhIyS2rUeQRLQa1AojvIhnURBSMkqNCoVYBtXYnSqqUd0SLQa0AHFETUTDTa9WexicXFbihjEEd4FwuwbOBYkBcL4mrISKShpJ3fjOoA1xBZR3sDhf0GjV6R7IrGREFJ8/ObwY1yY34S5kaEwqNmnfNIqLg1C+GU98kU1yfJiIC0hqX/nIVeJaaQR3gPEHNM9REFMTSYsQjWrVwuZR1RItBHeA8zU44oiaiINYnKgR6jRp2hwuXK+qkLsenGNQB7nxJNQCgP3d8E1EQ06hVnu6M312pkrga32JQBzBrfQMKKt3vHAcnhEtcDRGRtIYkul8HzzCoSS6+K3b/MiaZjDCF6CSuhohIWuKAhSNqko3TjUEtvoskIgpmQzxBXS1xJb7FoA5gZxjUREQe4mvh+ZJqOJwuiavxHQZ1ABPXYYYyqImI0CcyBKF6DexOF3LLaqUux2cY1AFKEATPiJobyYiIALVahUEKXKdmUAeoK1YbLHUN0KhVGBjPo1lERAAwJMH9eigOZJSAQR2gThdbAbhbhxq0GomrISKSByXu/GZQByhuJCMiaolBTbLhCWquTxMReYibay+aa1Bjc0hcjW8wqAPUNwUWAMDwpAiJKyEiko/4CCMSIgxwCcDJIqvU5fgEgzoAVdU34Fyp+0D/6ORIaYshIpKZq/pGAgCO5VdKWoevMKgD0DcFFgiC+8xgXLhB6nKIiGRldF8TAOD4ZYvElfgGgzoAHct3//KN4WiaiKgFcUR9/HKlpHX4CoM6AIm/fFc1vmskIqImo/q4Xxtzy2phqW2QuJruY1AHIHHdhevTREQtRYXpkRIdCqBp420gY1AHmBJrPQot9VCrmt41EhFRc+KM4zEFTH8zqAPMscbNEYPiwxFm0EpcDRGRPI1W0Do1gzrANE17czRNRNQWcUT9dV4lBEGQuJruYVAHmC8ulAEA0lOjJK6EiEi+RidHQq9Vo7TKhvOlNVKX0y0M6gBSY3Mgp3FEPXVArLTFEBHJmFGnQXqKe0AjDnACFYM6gHyVWw6HS0DfqBAkN+5oJCKi1k3uHwOAQU096NB59y/b1AExEldCRCR/UwaIQV0e0OvUDOoAcqjxXeEUBjURUYdGJ5tg0KphrrbhfOP9EQIRgzpAWGob8G3jwf0p/bk+TUTUEYNWg/H93OvU4oxkIGJQB4jDF8vgEoD+cWFINBmlLoeIKCBMTnPPQH5+jkFNfvbJqRIAwNUDOZomIuqsa4bEAQAOnC1FfYNT4mq8w6AOAA6nC1mnrgAAZo1IlLgaIqLAMaqPCUkmI2rsTnx+zix1OV5hUAeAr3IrUF5jR2SoDhPToqUuh4goYKhUKmQMTwAA7DlxReJqvMOgDgC7TxQDAK4flgCthv+TERF1xQ2NM5Efn7oCpyvwjmnxVV/mXC4B//7WHdSzRnLam4ioqyakRcMUokNZjR1HcsulLqfLGNQyl51fiWJrPcL0GkzjRjIioi7TadT48bB4AMCub4okrqbrGNQyt/WrPABAxohEGHUaiashIgpMc8b0AQDsyC4IuN3fDGoZs9Q24INjhQCAX0xKkbgaIqLANX1gLPpGhcBa78C/jgfWqJpBLWPbsy+jvsGFIQnhvK0lEVE3qNUq/Gyie8Dz1uFLElfTNQxqmRIEAf847J72/q/JKVCpVBJXREQU2G4f3xdatQpf51XidLFV6nI6jUEtU/85XYJzJdUI1WswZ2wfqcshIgp48eFGZIxwn6l+5dPzElfTeQxqGXK5BDy3+wwAYMHkVEQYdRJXRESkDA9cOxAAsPNYIc4UV0lcTecwqGXog2OFOF1chXCjFr+6doDU5RARKcbIPibcOCoRggC8sOeM1OV0CoNaZursTryQ5f7lWXLNAESG6iWuiIhIWZZfPxhqFbDn5BV8eVH+DVAY1DLzx12nkF9eh8QII+6Z1k/qcoiIFGdgfDjuGJ8MAHjk3WOotjkkrqh9DGoZ2Xu6BG9+4T428PztoxGq10pcERGRMj3+k2HoExmCvPJaPPPhSanLaReDWia+u1KFh9/JAQDcM60frh7EdqFERP4SYdThuduvAgBkfpmPNw/lSltQOxjUMpBrrsEvNh5GZW0DRidH4tFZQ6UuiYhI8aYOiMWymYMAAKs+OIH3swskrqh1DGqJHThbils2HERplQ1DE8Px93smsKc3EVEPWfrjQbhrSioEAXj4nRy8+PFZuGR2K0yVIAjyqkgGrFYrTCYTLBYLIiIi/PJvlNfY8dInZ/H3Q7kQBGBE7whsvmcC4sONfvn3iIiodS6XgNUfnPDsEZrSPwa/v2k4hvf2z+t/V0k+ol6/fj3S0tJgNBqRnp6OAwcOtHv9vn37kJ6eDqPRiP79++OVV15pcc22bdswfPhwGAwGDB8+HDt27PBX+V0iCAJOFFrw5D9P4Jr/3YstB90h/bOJydj2q6kMaSIiCajVKjw9dySeu+0qGLRqHLpQhp+8fABL3jyKvadL0OB0SVqfpCPqrVu3YsGCBVi/fj2mTZuGV199FRs3bsTJkyeRktLyblEXL17EyJEjcd999+H+++/H559/jgceeACZmZm49dZbAQCHDh3C9OnT8fTTT2PevHnYsWMHVq1ahc8++wyTJk3qVF2+GlFX1Tfgq9xynC6uwqmiKhy+UIaSKpvn88OSIvD4jUMxfVCc1/8GERH5Tl5ZLf539+lmd9gK1WswoV80RvUxYUii+yZJvSNDeqwmSYN60qRJGDduHDZs2OB5bNiwYZg7dy7WrFnT4vpHH30UH3zwAU6dOuV5bMmSJTh27BgOHToEAJg/fz6sVis++ugjzzWzZs1CVFQUMjMzW63DZrPBZmsKUIvFgpSUFOTn53crqE8WWnDHq180e0ynVePawbGYN7Yvrh4YC7WaN9sgIpKbs1eqsO3rAuw6Xojy2oZmn1s6cyDum+6brpHh4eEd33RJkIjNZhM0Go2wffv2Zo8/9NBDwowZM1r9munTpwsPPfRQs8e2b98uaLVawW63C4IgCMnJycLatWubXbN27VohJSWlzVpWr14tAOAHP/jBD37wo0c/LBZLh3kpWUcNs9kMp9OJhISEZo8nJCSguLi41a8pLi5u9XqHwwGz2YykpKQ2r2nrOQFgxYoVWL58uee/XS4XysvLERMTo/jbS1qtViQnJ3d79kDJ+DPqGH9GHePPqGPB+DMKDw/v8BrJW1/9MAgFQWg3HFu7/oePd/U5DQYDDAZDs8ciIyPbrVtpIiIiguYPw1v8GXWMP6OO8WfUMf6MmpNs13dsbCw0Gk2LkW5JSUmLEbEoMTGx1eu1Wi1iYmLavaat5yQiIpIzyYJar9cjPT0dWVlZzR7PysrC1KlTW/2aKVOmtLh+z549GD9+PHQ6XbvXtPWcREREstbhKrYfvf3224JOpxNef/114eTJk8KyZcuEsLAwITc3VxAEQXjssceEBQsWeK6/cOGCEBoaKjz88MPCyZMnhddff13Q6XTCe++957nm888/FzQajfDss88Kp06dEp599llBq9UKX3zxRY9/f4Ggvr5eWL16tVBfXy91KbLFn1HH+DPqGH9GHePPqHWSBrUgCMJf//pXITU1VdDr9cK4ceOEffv2eT531113Cddcc02z6z/99FNh7Nixgl6vF/r16yds2LChxXO+++67wpAhQwSdTicMHTpU2LZtm7+/DSIiIr9gC1EiIiIZk7yFKBEREbWNQU1ERCRjDGoiIiIZY1ATERHJGIOaAAC5ublYtGgR0tLSEBISggEDBmD16tWw2+1SlyYrzzzzDKZOnYrQ0NCg617Xnq7erjaY7N+/HzfffDN69+4NlUqF999/X+qSZGfNmjWYMGECwsPDER8fj7lz5+LMmTNSlyUbDGoCAJw+fRoulwuvvvoqTpw4gT//+c945ZVX8Pjjj0tdmqzY7Xbcfvvt+NWvfiV1KbKxdetWLFu2DCtXrkR2djamT5+O2bNnIy8vT+rSZKGmpgajR4/GX/7yF6lLka19+/bhwQcfxBdffIGsrCw4HA5kZGSgpqZG6tJkgcezqE3PPfccNmzYgAsXLkhdiuxs2bIFy5YtQ2VlpdSlSK6rt6sNZiqVCjt27MDcuXOlLkXWSktLER8fj3379mHGjBlSlyM5jqipTRaLBdHR0VKXQTJmt9tx9OhRZGRkNHs8IyMDBw8elKgqCnQWiwUA+PrTiEFNrTp//jxefvllLFmyROpSSMa8uV0tUXsEQcDy5ctx9dVXY+TIkVKXIwsMaoV74oknoFKp2v04cuRIs68pLCzErFmzcPvtt2Px4sUSVd5zvPkZUXNdvbUsUVt+/etf4/jx48jMzJS6FNmQ/H7U5F+//vWvceedd7Z7Tb9+/Tz/f2FhIa677jpMmTIFr732mp+rk4eu/oyoiTe3qyVqy29+8xt88MEH2L9/P/r27St1ObLBoFa42NhYxMbGduragoICXHfddUhPT8fmzZuhVgfHhEtXfkbU3PdvVztv3jzP41lZWZgzZ46ElVEgEQQBv/nNb7Bjxw58+umnSEtLk7okWWFQEwD3SPraa69FSkoKnn/+eZSWlno+l5iYKGFl8pKXl4fy8nLk5eXB6XQiJycHADBw4ED06tVL2uIksnz5cixYsADjx4/3zMTk5eVxf0Oj6upqnDt3zvPfFy9eRE5ODqKjo5GSkiJhZfLx4IMP4q233sLOnTsRHh7umaExmUwICQmRuDoZkPDOXSQjmzdvFgC0+kFN7rrrrlZ/Rnv37pW6NEm1d7vaYLd3795Wf2fuuusuqUuTjbZeezZv3ix1abLAc9REREQyFhyLkERERAGKQU1ERCRjDGoiIiIZY1ATERHJGIOaiIhIxhjUREREMsagJiIikjEGNRERkYwxqImIiGSMQU1ERCRjDGoiIiIZ+3/wlcROtw+6lwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", - "[6, 2, 3, 1, 0, 9, 7, 5, 4, 8]\n", - "[5, 9, 3, 1, 2, 4, 8, 6, 7, 0]\n" - ] - } - ], + "outputs": [], "source": [ "from numpy import random\n", "\n", "# x_list = random.uniform(1, 10, size=10000)\n", - "x_list = random.rand(10000)*4-2\n", + "x_list = random.rand(10000) * 4 - 2\n", "\n", "print(x_list)\n", "\n", @@ -255,44 +179,6 @@ "\n", "print(x_list_2)" ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "state = np.random.get_state()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[2147483648, 2945084793, 513401488, 1073606298, 1525890581, 1122088786, 773651317, 660680390, 3285058616, 1125259425, 3383083308, 135705265, 1801394841, 3274112981, 4147040967, 1021958670, 1024454617, 4056622904, 550974430, 3051312568, 104504092, 1723866995, 3001218187, 414600209, 3935561381, 1171090046, 1401834503, 3528400872, 3412834669, 598737731, 2571398573, 3108506799, 3988941524, 1154925605, 3661491764, 2876306967, 1253871066, 212082967, 3812972076, 3040384159, 2251089498, 120659586, 4054499107, 3789181821, 1097347886, 2937281504, 343175581, 3598097553, 3041142290, 1070132027, 2251646268, 2856294488, 2304536314, 4047143049, 1030945051, 1398797816, 1294742426, 3400476444, 2536700091, 4147046537, 2474627065, 4215100878, 98728203, 29541925, 1506768473, 114249276, 2284440096, 1951587125, 27708992, 544480199, 4133979406, 2123107627, 1268693352, 316339049, 234083194, 3879265183, 3533856356, 2926029972, 2920310265, 21888426, 2819947970, 2354466981, 3874207714, 1665247526, 950722700, 3114223148, 3319865736, 3341940118, 560846427, 2694649134, 2846258223, 2426237754, 3364550028, 780978303, 1557677617, 1177508296, 1699116880, 2758746780, 3589416955, 2525573614, 2773016366, 2160014092, 1004200115, 2768089946, 2069590061, 3688055904, 1742009181, 1356718202, 3458927469, 3799849102, 3778013894, 1292802537, 1933585686, 504579296, 813865355, 3699622116, 2816685381, 1257045343, 1696141168, 2394262034, 3721823328, 2182803881, 3064369967, 667710059, 1355114307, 1459102219, 137892561, 2521761704, 3340008834, 2922438851, 4241908959, 3825015450, 2060726322, 1134920214, 10099187, 318339934, 2826282371, 3802498326, 1515683550, 124822999, 2072538190, 13830176, 3815408259, 1785924756, 3215568767, 739593958, 4278642703, 1494192488, 2988355896, 4228790717, 2132866377, 1923452418, 2378391541, 3911242387, 495726085, 795157186, 1814707244, 2780055879, 2971001340, 1545218557, 2827855259, 1971616119, 495990169, 2391626730, 3230344685, 3097936149, 1154661819, 3664133057, 2060391609, 4139045639, 1230150619, 3459323030, 2978140612, 769453359, 2280662553, 1594551789, 99196095, 1696466413, 2060721629, 76357354, 422007937, 809897461, 3873588875, 1578946747, 362959124, 2033877129, 632866353, 3497021399, 1137688905, 1295583178, 2409226096, 1937699993, 2258402058, 615575619, 3143460180, 3552247005, 3528910768, 3875692721, 3533184497, 993380498, 1203732297, 3387761758, 2902849420, 3324586638, 4217508260, 2018752160, 1102134872, 3691477216, 561019558, 3981477283, 2033300536, 3294541369, 4191784959, 2724805082, 1427740016, 3694800541, 1041812270, 654894779, 221639868, 1851680249, 35891493, 640099540, 1501835117, 3938465063, 925544252, 2862987350, 2073761170, 3219626112, 1190930074, 1534960846, 2035373624, 3592644996, 1350359306, 3984737841, 2319131314, 1668412374, 535032997, 2882334015, 1733501114, 707942101, 687518892, 30730023, 1501652104, 1310558842, 1674025825, 1594182838, 3177382666, 2766741582, 1843130989, 1360080546, 3049954371, 1911786580, 2523595757, 3692137698, 229669721, 1632014497, 2143749969, 3655926554, 1434044784, 2668578408, 1714523863, 3817926179, 743168290, 192764634, 1309332988, 3302274919, 2335806384, 3193199859, 2836376777, 2785145586, 730467939, 2328200226, 3074400745, 3936748629, 735099097, 254609226, 4047519846, 442891222, 724028750, 3085429568, 2085624934, 2370030320, 2653893030, 1612289470, 1138472413, 432312631, 911549116, 3969823097, 2820993842, 550090810, 2325761705, 3547911711, 1071248575, 1872374313, 1188336573, 360078545, 2688291914, 3345741528, 3252891498, 295652152, 391418130, 1876386596, 678972817, 4154557766, 734743709, 1220256840, 3131029910, 3663798278, 1537912844, 1620293920, 3001767554, 3581975335, 3599930404, 613032249, 330558522, 935784545, 145258542, 663630205, 2368668102, 3526442454, 1236191800, 1278618821, 2845604757, 856417388, 2718482926, 264920185, 3049170647, 4123160165, 1373103905, 1419029799, 2056659999, 4029963411, 1372176655, 1569081205, 3444774586, 2275181435, 430932089, 308930202, 2181845765, 3265671361, 1178245660, 1046305262, 1128220502, 612498982, 3999749457, 2003548888, 4251717861, 4250146547, 4149192265, 743006906, 467480884, 3030152059, 1182929044, 1370750784, 1529764135, 1727605150, 1573987255, 2211006586, 2247913109, 42056998, 2606978069, 3305730746, 3477728192, 1643174231, 13883797, 2459009122, 3759307771, 66092823, 1016962763, 746647155, 2718145290, 4256217559, 2920745137, 4183008992, 3776551792, 1567584712, 314916723, 433885807, 1353815352, 2653348737, 4037757741, 927706040, 42018920, 1070753333, 4270981124, 1328675266, 1311659559, 2566150547, 1655778391, 1558938968, 558630949, 4085703201, 3267896126, 2433740476, 3830862047, 3716028377, 898899538, 228470125, 2423525789, 1745708778, 3560026343, 807942875, 2261656007, 3106687307, 2110843638, 2671030919, 566508461, 1459065424, 2678569361, 2385960325, 3362552805, 153468034, 1271607245, 2357844090, 2293487706, 1810617868, 4129691440, 952536117, 3941737211, 3653590178, 1637390590, 1274600011, 1643997332, 27568131, 3633933039, 3062008625, 4277574783, 2430636615, 902418831, 3598913136, 3889931826, 726954419, 4160428717, 2334868440, 1288027084, 1703626732, 4290752025, 3720837236, 3508367732, 65975625, 1595037604, 2140499494, 299700820, 1681466270, 2848079684, 2641690503, 1557072934, 1109257722, 59195921, 3758808313, 1212229192, 2695100356, 95243339, 1604825108, 2812111092, 1227543181, 2955889881, 428350523, 3521096534, 1908860257, 304803052, 2585160933, 458458298, 186443771, 2237110913, 3533193835, 1661668866, 705310829, 647212213, 3563284432, 2225358029, 3216712988, 2081273147, 3669361413, 3306966165, 510774742, 956700160, 3920032597, 655991280, 4066276793, 2204000072, 3830046394, 777900116, 2356257558, 1125984123, 2838482588, 3003030935, 2272846047, 4041223574, 3255161270, 966332688, 4062104249, 4218520631, 2189175951, 3632664431, 811865219, 3882358590, 1210189521, 270118160, 3288442982, 3139975054, 2496380792, 1163852599, 1621249029, 408873960, 1896060592, 3155690897, 645170131, 3619094064, 2073826159, 3030200948, 11409737, 3664221937, 2137734552, 1883036725, 3068606336, 3869743681, 1679888786, 2962142695, 547051836, 3371538179, 2582528605, 3764607210, 2492014126, 2411595384, 1957808194, 2189277076, 2323528857, 2367678409, 470387450, 3038090780, 2489238585, 854886354, 3834322232, 2904775498, 1592908374, 3833380938, 3868281122, 584314202, 3598339037, 1131465078, 568033576, 2030460399, 2778251391, 2321061198, 934049631, 3559362606, 4265202526, 3848387079, 904976451, 2216059263, 3666053924, 4110290056, 4037372182, 909658289, 1585306842, 4238800608, 3115568448, 1334557282, 219879420, 2798816644, 2213140250, 1876753621, 1851640890, 2300868226, 1105834074, 902283694, 2707077117, 3482704163, 1473002111, 2251880881, 2279106687, 2278486856, 3858876658, 3766701162, 2789159384, 1840294438, 3775080944, 1695487750, 1763382908, 358052529, 3906163552, 2196808089, 431446544, 1418583675, 1589067524, 1555673648, 2326068739, 1112139407, 1704175456, 273664934, 832413050, 1331536523, 3651585365, 4244708360, 2491551461, 1510025767, 1799820532, 3952869362, 2331281491, 680830882, 2373105857, 400595561, 1694365530, 3701148061, 3546854811, 2446449464, 2992332220, 2833449717, 3876200953, 1845030897, 2631437247, 1200805364, 1033571880, 394763502, 520616096, 1131569156, 70261635, 2053291755, 3607508897, 2312230039, 1500324766, 126262383, 503224601]\n", - "[0.12782925 0.93614916 0.1543664 0.80236151 0.39981777]\n" - ] - } - ], - "source": [ - "np.random.seed(3)\n", - "\n", - "np.random.set_state(state)\n", - "\n", - "print(state[1].tolist())\n", - "\n", - "\n", - "x = np.random.rand(5)\n", - "\n", - "print(x)" - ] } ], "metadata": { diff --git a/pso/__init__.py b/pso/__init__.py index 35ee70a..7476e9c 100644 --- a/pso/__init__.py +++ b/pso/__init__.py @@ -1,11 +1,9 @@ from .optimizer import Optimizer from .particle import Particle -# from .optimizer_target import Optimizer_Target -__version__ = '0.1.0' +__version__ = "0.1.0" __all__ = [ - 'Optimizer', - 'Particle', - # 'Optimizer_Target' -] \ No newline at end of file + "Optimizer", + "Particle", +] diff --git a/pso/optimizer.py b/pso/optimizer.py index 740d6c1..37dff14 100644 --- a/pso/optimizer.py +++ b/pso/optimizer.py @@ -14,10 +14,7 @@ from .particle import Particle gpus = tf.config.experimental.list_physical_devices("GPU") if gpus: try: - # tf.config.experimental.set_visible_devices(gpus[0], "GPU") - # print(tf.config.experimental.get_visible_devices("GPU")) tf.config.experimental.set_memory_growth(gpus[0], True) - # print("set memory growth") except RuntimeError as e: print(e) @@ -31,7 +28,7 @@ class Optimizer: def __init__( self, model: keras.models, - loss="mse", + loss="mean_squared_error", n_particles: int = 10, c0=0.5, c1=1.5, @@ -48,8 +45,8 @@ class Optimizer: particle swarm optimization Args: - model (keras.models): 모델 구조 - loss (str): 손실함수 + model (keras.models): 모델 구조 - keras.models.model_from_json 을 이용하여 생성 + loss (str): 손실함수 - keras.losses 에서 제공하는 손실함수 사용 n_particles (int): 파티클 개수 c0 (float): local rate - 지역 최적값 관성 수치 c1 (float): global rate - 전역 최적값 관성 수치 @@ -59,6 +56,8 @@ class Optimizer: mutation_swarm (float): 돌연변이가 일어날 확률 np_seed (int, optional): numpy seed. Defaults to None. tf_seed (int, optional): tensorflow seed. Defaults to None. + particle_min (float, optional): 가중치 초기화 최소값. Defaults to -5. + particle_max (float, optional): 가중치 초기화 최대값. Defaults to 5. """ if np_seed is not None: np.random.seed(np_seed) @@ -85,17 +84,19 @@ class Optimizer: self.save_path = None # 저장 위치 self.renewal = "acc" self.Dispersion = False - self.day = datetime.now().strftime("%m-%d-%H-%M") - self.empirical_balance = False + self.day = datetime.now().strftime("%Y%m%d-%H%M%S") + self.empirical_balance = False negative_count = 0 for i in tqdm(range(self.n_particles), desc="Initializing Particles"): m = keras.models.model_from_json(model.to_json()) init_weights = m.get_weights() + w_, sh_, len_ = self._encode(init_weights) w_ = np.random.uniform(particle_min, particle_max, len(w_)) m.set_weights(self._decode(w_, sh_, len_)) + m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"]) self.particles[i] = Particle( m, @@ -105,11 +106,10 @@ class Optimizer: ) if i < negative_swarm * self.n_particles: negative_count += 1 + # del m, init_weights, w_, sh_, len_ print(f"negative swarm : {negative_count} / {self.n_particles}") - print( - f"mutation swarm : {mutation_swarm * self.n_particles} / {self.n_particles}" - ) + print(f"mutation swarm : {mutation_swarm * 100}%") gc.collect() @@ -205,7 +205,8 @@ class Optimizer: x, y, epochs: int = 100, - save: bool = False, + log: int = 0, + save_info: bool = False, save_path: str = "./result", renewal: str = "acc", empirical_balance: bool = False, @@ -213,14 +214,15 @@ class Optimizer: check_point: int = None, ): """ - Args: - x_test : numpy array, - y_test : numpy array, + # Args: + x : numpy array, + y : numpy array, epochs : int, - save : bool - True : save, False : not save - save_path : str ex) "./result", + log : int - 0 : log 기록 안함, 1 : log, 2 : tensorboard, + save_info : bool - 종료시 학습 정보 저장 여부 default : False, + save_path : str - ex) "./result", renewal : str ex) "acc" or "loss" or "both", - empirical_balance : bool - True : + empirical_balance : bool - True : EBPSO, False : PSO, Dispersion : bool - True : g_best 의 값을 분산시켜 전역해를 찾음, False : g_best 의 값만 사용 check_point : int - 저장할 위치 - None : 저장 안함 """ @@ -229,9 +231,15 @@ class Optimizer: self.Dispersion = Dispersion self.renewal = renewal - + if log == 2: + train_log_dir = "logs/gradient_tape/" + self.day + "/train" + self.train_summary_writer = [None] * self.n_particles + for i in range(self.n_particles): + self.train_summary_writer[i] = tf.summary.create_file_writer( + train_log_dir + f"/{i}" + ) try: - if save: + if check_point is not None or log == 1: if save_path is None: raise ValueError("save_path is None") else: @@ -249,11 +257,13 @@ class Optimizer: if renewal == "acc": if local_score[1] > self.g_best_score[0]: self.g_best_score[0] = local_score[1] + self.g_best_score[1] = local_score[0] self.g_best = p.get_best_weights() self.g_best_ = p.get_best_weights() elif renewal == "loss": if local_score[0] < self.g_best_score[1]: self.g_best_score[1] = local_score[0] + self.g_best_score[0] = local_score[1] self.g_best = p.get_best_weights() self.g_best_ = p.get_best_weights() elif renewal == "both": @@ -269,7 +279,7 @@ class Optimizer: if local_score[1] == None: local_score[1] = 0 - if save: + if log == 1: with open( f"./{save_path}/{self.day}_{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv", "a", @@ -292,36 +302,31 @@ class Optimizer: range(epochs), desc=f"best {self.g_best_score[0]:.4f}|{self.g_best_score[1]:.4f}", ascii=True, - leave=True, + leave=False, ) for epoch in epochs_pbar: acc = 0 loss = 0 - min_score = np.inf max_score = 0 min_loss = np.inf - max_loss = 0 - - ts = self.c0 + np.random.rand() * (self.c1 - self.c0) - part_pbar = tqdm( range(len(self.particles)), desc=f"acc : {max_score:.4f} loss : {min_loss:.4f}", ascii=True, leave=False, ) + w = self.w_max - (self.w_max - self.w_min) * epoch / epochs for i in part_pbar: part_pbar.set_description( f"acc : {max_score:.4f} loss : {min_loss:.4f}" ) - w = self.w_max - (self.w_max - self.w_min) * epoch / epochs - - g_, g_sh, g_len = self._encode(self.g_best) - decrement = (epochs - (epoch) + 1) / epochs - g_ = (1 - decrement) * g_ + decrement * ts - self.g_best_ = self._decode(g_, g_sh, g_len) if Dispersion: + ts = self.c0 + np.random.rand() * (self.c1 - self.c0) + g_, g_sh, g_len = self._encode(self.g_best) + decrement = (epochs - (epoch) + 1) / epochs + g_ = (1 - decrement) * g_ + decrement * ts + self.g_best_ = self._decode(g_, g_sh, g_len) g_best = self.g_best_ else: g_best = self.g_best @@ -364,7 +369,16 @@ class Optimizer: x, y, self.c0, self.c1, w, g_best, renewal=renewal ) + if log == 2: + with self.train_summary_writer[i].as_default(): + tf.summary.scalar("loss", score[0], step=epoch) + tf.summary.scalar("accuracy", score[1], step=epoch) + if renewal == "acc": + if score[1] >= max_score: + max_score = score[1] + min_loss = score[0] + if score[1] >= self.g_best_score[0]: if score[1] > self.g_best_score[0]: self.g_best_score[0] = score[1] @@ -377,6 +391,10 @@ class Optimizer: f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}" ) elif renewal == "loss": + if score[0] <= min_loss: + min_loss = score[0] + max_score = score[1] + if score[0] <= self.g_best_score[1]: if score[0] < self.g_best_score[1]: self.g_best_score[1] = score[0] @@ -389,18 +407,23 @@ class Optimizer: f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}" ) elif renewal == "both": - if score[1] > self.g_best_score[0]: + if score[0] <= min_loss: + min_loss = score[0] + if score[1] >= self.g_best_score[0]: self.g_best_score[0] = score[1] self.g_best = self.particles[i].get_best_weights() epochs_pbar.set_description( f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}" ) - if score[0] < self.g_best_score[1]: + if score[1] >= max_score: + max_score = score[1] + if score[0] <= self.g_best_score[1]: self.g_best_score[1] = score[0] self.g_best = self.particles[i].get_best_weights() epochs_pbar.set_description( f"best {self.g_best_score[0]:.4f} | {self.g_best_score[1]:.4f}" ) + if score[0] == None: score[0] = np.inf if score[1] == None: @@ -409,17 +432,7 @@ class Optimizer: loss = loss + score[0] acc = acc + score[1] - if score[0] < min_loss: - min_loss = score[0] - if score[0] > max_loss: - max_loss = score[0] - - if score[1] < min_score: - min_score = score[1] - if score[1] > max_score: - max_score = score[1] - - if save: + if log == 1: with open( f"./{save_path}/{self.day}_{self.n_particles}_{epochs}_{self.c0}_{self.c1}_{self.w_min}_{renewal}.csv", "a", @@ -447,8 +460,9 @@ class Optimizer: finally: self.model_save(save_path) print("model save") - self.save_info(save_path) - print("save info") + if save_info: + self.save_info(save_path) + print("save info") return self.g_best_score @@ -462,6 +476,7 @@ class Optimizer: model = keras.models.model_from_json(self.model.to_json()) model.set_weights(self.g_best) model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"]) + return model def get_best_score(self): diff --git a/pso2keras.egg-info/PKG-INFO b/pso2keras.egg-info/PKG-INFO deleted file mode 100644 index 404bdd1..0000000 --- a/pso2keras.egg-info/PKG-INFO +++ /dev/null @@ -1,222 +0,0 @@ -Metadata-Version: 2.1 -Name: pso2keras -Version: 0.1.0 -Summary: Particle Swarm Optimization to tensorflow package -Home-page: https://github.com/jung-geun/PSO -Author: pieroot -Author-email: jgbong0306@gmail.com -Keywords: pso,tensorflow,keras -Requires-Python: >=3.8 -Description-Content-Type: text/markdown - -# PSO 알고리즘 구현 및 새로운 시도 - -pso 알고리즘을 사용하여 새로운 학습 방법을 찾는중 입니다 -병렬처리로 사용하는 논문을 찾아보았지만 이보다 더 좋은 방법이 있을 것 같아서 찾아보고 있습니다 - \[1] - -기본 pso 알고리즘의 수식은 다음과 같습니다 - -> $$V_{id(t+1)} = W_{V_id(t)} + c_1 * r_1 (p_{id(t)} - x_{id(t)}) + c_2 * r_2(p_{gd(t)} - x_{id(t)})$$ - -다음 속도을 구하는 수식입니다 - -> $$x_{id(t+1)} = x_{id(t)} + V_{id(t+1)}$$ - -다음 위치를 구하는 수식입니다 - -> $$ -> p_{id(t+1)} = -> \begin{cases} -> x_{id(t+1)} & \text{if } f(x_{id(t+1)}) < f(p_{id(t)})\\ -> p_{id(t)} & \text{otherwise} -> \end{cases} -> $$ - -### 위치를 현재 전역해로 변경(덮어쓰기)하면 안되는 이유 - -위치를 가장 최적값으로 변경하면 지역 최적값에서 벗어나지 못합니다. 따라서 전역 최적값을 찾을 수 없습니다. - -# 초기 세팅 - -```shell -conda env create -f ./conda_env/environment.yaml -``` - -# 현재 진행 상황 - -## 1. PSO 알고리즘 구현 - -### 파일 구조 - -```plain text -|-- /metacode # pso 기본 코드 -| |-- pso_bp.py # 오차역전파 함수를 최적화하는 PSO 알고리즘 구현 - 성능이 99% 이상으로 나오나 목적과 다름 -| |-- pso_meta.py # PSO 기본 알고리즘 구현 -| |-- pso_tf.py # tensorflow 모델을 이용가능한 PSO 알고리즘 구현 -|-- /pso # tensorflow 모델을 학습하기 위해 기본 pso 코드에서 수정 - (psokeras 코드 의 구조를 사용하여 만듬) -| |-- __init__.py # pso 모듈을 사용하기 위한 초기화 파일 -| |-- optimizer.py # pso 알고리즘 이용을 위한 기본 코드 -| |-- particle.py # 각 파티클의 정보 및 위치를 저장하는 코드 -|-- examples.py # psokeras 코드를 이용한 예제 -|-- xor.ipynb # pso 를 이용한 xor 문제 풀이 -|-- iris.py # pso 를 이용한 iris 문제 풀이 -|-- iris_tf.py # tensorflow 를 이용한 iris 문제 풀이 -|-- mnist.py # pso 를 이용한 mnist 문제 풀이 -|-- plt.ipynb # pyplot 으로 학습 결과를 그래프로 표현 -|-- env.yaml # conda 환경 설정 파일 -|-- readme.md # 현재 파일 -``` - -psokeras 및 pyswarms 라이브러리는 외부 라이브러리이기에 코드를 수정하지 않았습니다 - -pso 라이브러리는 tensorflow 모델을 학습하기 위해 기본 ./metacode/pso_meta.py 코드에서 수정하였습니다 [2] - -## 2. PSO 알고리즘을 이용한 최적화 문제 풀이 - -pso 알고리즘을 이용하여 오차역전파 함수를 최적화 하는 방법을 찾는 중입니다 - -### 브레인스토밍 - -> 1. 오차역전파 함수를 1~5회 실행하여 오차를 구합니다 -> 2. 오차가 가장 적은 다른 노드(particle) 가중치로 유도합니다. -> -> > 2-1. 만약 오차가 가장 작은 다른 노드가 현재 노드보다 오차가 크다면, 현재 노드의 가중치를 유지합니다. - 현재의 가중치를 최적값으로 업로드합니다 -> > -> > 2-2. 지역 최적값을 찾았다면, 전역 최적값을 찾을 때까지 1~2 과정을 반복합니다 -> -> 3. 전역 최적값이 특정 임계치에서 변화율이 적다면 학습을 종료합니다 - 현재 결과가 정확도가 높지 않아서 이 기능은 추후에 추가할 예정입니다 - -
-위의 아이디어는 원래의 목표와 다른 방향으로 가고 있습니다. 따라서 다른 방법을 모색해야할 것 같습니다 -
- -## 3. PSO 알고리즘을 이용하여 풀이한 문제들의 정확도 - -### 1. xor 문제 - -```python -loss = 'mean_squared_error' - -pso_xor = Optimizer( - model, - loss=loss, - n_particles=50, - c0=0.35, - c1=0.8, - w_min=0.6, - w_max=1.2, - negative_swarm=0.1, - mutation_swarm=0.2, - particle_min=-3, - particle_max=3, - ) - -best_score = pso_xor.fit( - x_test, - y_test, - epochs=200, - save=True, - save_path="./result/xor", - renewal="acc", - empirical_balance=False, - Dispersion=False, - check_point=25, - ) - -``` - -위의 파라미터 기준 10 세대 근처부터 정확도가 100%가 나오는 것을 확인하였습니다 -![xor](./history_plt/xor_2_10.png) - -2. iris 문제 - -```python -loss = 'mean_squared_error' - -pso_iris = Optimizer( - model, - loss=loss, - n_particles=100, - c0=0.35, - c1=0.7, - w_min=0.5, - w_max=0.9, - negative_swarm=0.1, - mutation_swarm=0.2, - particle_min=-3, - particle_max=3, -) - -best_score = pso_iris.fit( - x_train, - y_train, - epochs=200, - save=True, - save_path="./result/iris", - renewal="acc", - empirical_balance=False, - Dispersion=False, - check_point=25 -) -``` - -위의 파라미터 기준 7 세대에 97%, 35 세대에 99.16%의 정확도를 보였습니다 -![iris](./history_plt/iris_99.17.png) - -위의 그래프를 보면 epochs 이 늘어나도 정확도와 loss 가 수렴하지 않는것을 보면 파라미터의 이동 속도가 너무 빠르다고 생각합니다 - -3. mnist 문제 - -```python -loss = 'mean_squared_error' - -pso_mnist = Optimizer( - model, - loss=loss, - n_particles=75, - c0=0.25, - c1=0.4, - w_min=0.2, - w_max=0.6, - negative_swarm=0.1, - mutation_swarm=0.2, -) - -best_score = pso_mnist.fit( - x_test, - y_test, - epochs=200, - save=True, - save_path="./result/mnist", - renewal="acc", - empirical_balance=False, - Dispersion=False, - check_point=25 - ) -``` - -위의 파라미터 기준 현재 정확도 43.38%를 보이고 있습니다 -![mnist](./history_plt/mnist_mse_43.38.png) - -### Trouble Shooting - -> 1. 딥러닝 알고리즘 특성상 weights는 처음 컴파일시 무작위하게 생성된다. weights의 각 지점의 중요도는 매번 무작위로 정해지기에 전역 최적값으로 찾아갈 때 값이 높은 loss를 향해서 상승하는 현상이 나타난다.
-> 따라서 weights의 이동 방법을 더 탐구하거나, weights를 초기화 할때 random 중요도를 좀더 노이즈가 적게 생성하는 방향을 모색해야할 것 같다. - --> 고르게 초기화 하기 위해 np.random.uniform 함수를 사용하였습니다 - -> 2. 지역최적값에 계속 머무르는 조기 수렴 현상이 나타난다. - 30% 정도의 정확도를 가진다 - -### 개인적인 생각 - -> 머신러닝 분류 방식에 존재하는 random forest 방식을 이용하여, 오차역전파 함수를 최적화 하는 방법이 있을것 같습니다 -> -> > pso 와 random forest 방식이 매우 유사하다고 생각하여 학습할 때 뿐만 아니라 예측 할 때도 이러한 방식으로 사용할 수 있을 것 같습니다 - -# 참고 자료 - -[1]: [A partilce swarm optimization algorithm with empirical balance stategy](https://www.sciencedirect.com/science/article/pii/S2590054422000185#bib0005)
-[2]: [psokeras](https://github.com/mike-holcomb/PSOkeras)
-[3]: [PSO의 다양한 영역 탐색과 지역적 미니멈 인식을 위한 전략](https://koreascience.kr/article/JAKO200925836515680.pdf)
-[4]: [PC 클러스터 기반의 Multi-HPSO를 이용한 안전도 제약의 경제 급전](https://koreascience.kr/article/JAKO200932056732373.pdf)
-[5]: [Particle 2-Swarm Optimization for Robust Search](https://s-space.snu.ac.kr/bitstream/10371/29949/3/management_information_v18_01_p01.pdf)
diff --git a/pso2keras.egg-info/SOURCES.txt b/pso2keras.egg-info/SOURCES.txt deleted file mode 100644 index 144025a..0000000 --- a/pso2keras.egg-info/SOURCES.txt +++ /dev/null @@ -1,12 +0,0 @@ -README.md -setup.py -pso/__init__.py -pso/optimizer.py -pso/optimizer_target.py -pso/particle.py -pso2keras.egg-info/PKG-INFO -pso2keras.egg-info/SOURCES.txt -pso2keras.egg-info/dependency_links.txt -pso2keras.egg-info/not-zip-safe -pso2keras.egg-info/requires.txt -pso2keras.egg-info/top_level.txt \ No newline at end of file diff --git a/pso2keras.egg-info/dependency_links.txt b/pso2keras.egg-info/dependency_links.txt deleted file mode 100644 index 8b13789..0000000 --- a/pso2keras.egg-info/dependency_links.txt +++ /dev/null @@ -1 +0,0 @@ - diff --git a/pso2keras.egg-info/not-zip-safe b/pso2keras.egg-info/not-zip-safe deleted file mode 100644 index 8b13789..0000000 --- a/pso2keras.egg-info/not-zip-safe +++ /dev/null @@ -1 +0,0 @@ - diff --git a/pso2keras.egg-info/requires.txt b/pso2keras.egg-info/requires.txt deleted file mode 100644 index 5b11057..0000000 --- a/pso2keras.egg-info/requires.txt +++ /dev/null @@ -1,4 +0,0 @@ -tqdm -numpy -tensorflow -keras diff --git a/pso2keras.egg-info/top_level.txt b/pso2keras.egg-info/top_level.txt deleted file mode 100644 index ae6ae03..0000000 --- a/pso2keras.egg-info/top_level.txt +++ /dev/null @@ -1 +0,0 @@ -pso diff --git a/setup.py b/setup.py index a9a6bd3..c808456 100644 --- a/setup.py +++ b/setup.py @@ -1,18 +1,25 @@ from setuptools import setup, find_packages setup( - name='pso2keras', - version='0.1.1', - description='Particle Swarm Optimization to tensorflow package', - author='pieroot', - author_email='jgbong0306@gmail.com', - url='https://github.com/jung-geun/PSO', - install_requires=['tqdm', 'numpy', 'tensorflow', 'keras'], + name="pso2keras", + version="0.1.2", + description="Particle Swarm Optimization to tensorflow package", + author="pieroot", + author_email="jgbong0306@gmail.com", + url="https://github.com/jung-geun/PSO", + install_requires=[ + "tqdm==4.65.0", + "tensorflow==2.11.0", + "keras==2.11.0", + "numpy", + "pandas", + "ipython", + ], packages=find_packages(exclude=[]), - keywords=['pso', 'tensorflow', 'keras'], - python_requires='>=3.8', + keywords=["pso", "tensorflow", "keras"], + python_requires="==3.8", package_data={}, zip_safe=False, - long_description=open('README.md', encoding='UTF8').read(), - long_description_content_type='text/markdown', -) \ No newline at end of file + long_description=open("README.md", encoding="UTF8").read(), + long_description_content_type="text/markdown", +) diff --git a/test.ipynb b/test.ipynb index 33e3de0..62869b4 100644 --- a/test.ipynb +++ b/test.ipynb @@ -81,8 +81,7 @@ " print(e)\n", "\n", "from tensorflow import keras\n", - "from tensorflow.keras.layers import (Conv2D, Dense, Dropout, Flatten,\n", - " MaxPooling2D)\n", + "from tensorflow.keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D\n", "from tensorflow.keras.models import Sequential" ] }, @@ -145,19 +144,22 @@ "source": [ "def make_model():\n", " model = Sequential()\n", - " model.add(Conv2D(32, kernel_size=(5, 5), activation='relu', input_shape=(28,28,1)))\n", + " model.add(\n", + " Conv2D(32, kernel_size=(5, 5), activation=\"relu\", input_shape=(28, 28, 1))\n", + " )\n", " model.add(MaxPooling2D(pool_size=(3, 3)))\n", - " model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))\n", + " model.add(Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n", " model.add(MaxPooling2D(pool_size=(2, 2)))\n", " model.add(Dropout(0.25))\n", " model.add(Flatten())\n", - " model.add(Dense(128, activation='relu'))\n", - " model.add(Dense(10, activation='softmax'))\n", + " model.add(Dense(128, activation=\"relu\"))\n", + " model.add(Dense(10, activation=\"softmax\"))\n", "\n", " # model.summary()\n", "\n", " return model\n", "\n", + "\n", "model = make_model()\n", "weights = model.get_weights()\n", "\n", @@ -165,7 +167,7 @@ "\n", "for i in range(len(weights)):\n", " print(weights[i].shape)\n", - " print(weights[i].min(), weights[i].max())\n" + " print(weights[i].min(), weights[i].max())" ] }, { @@ -197,7 +199,7 @@ "# json_ = model.to_json()\n", "# print(json_)\n", "# for layer in model.get_weights():\n", - " # print(layer.shape)\n", + "# print(layer.shape)\n", "weight = model.get_weights()" ] }, @@ -246,9 +248,10 @@ " w_ = layer.reshape(-1)\n", " lenght.append(len(w_))\n", " w_gpu = cp.append(w_gpu, w_)\n", - " \n", + "\n", " return w_gpu, shape, lenght\n", "\n", + "\n", "def decode(weight, shape, lenght):\n", " weights = []\n", " start = 0\n", @@ -263,15 +266,16 @@ "\n", " return weights\n", "\n", + "\n", "w = 0.8\n", - "v,_,_ = encode(weight)\n", + "v, _, _ = encode(weight)\n", "c0 = 0.5\n", "c1 = 1.5\n", "r0 = 0.2\n", "r1 = 0.8\n", - "p_best,_,_ = encode(weight)\n", - "g_best,_,_ = encode(weight)\n", - "layer,shape,leng = encode(weight)\n", + "p_best, _, _ = encode(weight)\n", + "g_best, _, _ = encode(weight)\n", + "layer, shape, leng = encode(weight)\n", "\n", "# new_v = w*v[i]\n", "# new_v = new_v + c0*r0*(p_best[i] - layer)\n", @@ -313,7 +317,7 @@ "# print(\"not same\")\n", "# break\n", "# else:\n", - "# print(\"same\")\n" + "# print(\"same\")" ] }, { @@ -409,10 +413,11 @@ "\n", "\n", "def get_xor():\n", - " x = np.array([[0,0],[0,1],[1,0],[1,1]])\n", - " y = np.array([[0],[1],[1],[0]])\n", + " x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])\n", + " y = np.array([[0], [1], [1], [0]])\n", + "\n", + " return x, y\n", "\n", - " return x,y\n", "\n", "def get_iris():\n", " iris = load_iris()\n", @@ -421,10 +426,13 @@ "\n", " y = keras.utils.to_categorical(y, 3)\n", "\n", - " x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, shuffle=True, stratify=y)\n", + " x_train, x_test, y_train, y_test = train_test_split(\n", + " x, y, test_size=0.2, shuffle=True, stratify=y\n", + " )\n", "\n", " return x_train, x_test, y_train, y_test\n", "\n", + "\n", "# model = keras.models.load_model(\"./result/xor/06-02-13-31/75_0.35_0.8_0.6.h5\")\n", "model = keras.models.load_model(\"./result/iris/06-02-13-48/50_0.4_0.8_0.7.h5\")\n", "# x,y = get_xor()\n", @@ -432,7 +440,7 @@ "\n", "print(model.predict(x_test))\n", "print(y_test)\n", - "print(model.evaluate(x_test,y_test))" + "print(model.evaluate(x_test, y_test))" ] }, { @@ -464,7 +472,7 @@ "import tensorflow.compiler as tf_cc\n", "import tensorrt as trt\n", "\n", - "linked_trt_ver=tf_cc.tf2tensorrt._pywrap_py_utils.get_linked_tensorrt_version()\n", + "linked_trt_ver = tf_cc.tf2tensorrt._pywrap_py_utils.get_linked_tensorrt_version()\n", "print(f\"Linked TRT ver: {linked_trt_ver}\")" ] },