pso 기본 알고리즘을 이용한 tensorflow model의 pso 알고리즘화 - xor 문제, mnist 분류 성공
This commit is contained in:
jung-geun
2023-05-21 14:00:03 +09:00
commit 7c5f3a53a3
6 changed files with 1251 additions and 0 deletions

5
.gitignore vendored Normal file
View File

@@ -0,0 +1,5 @@
*.pyc
__pycache__/
.ipynb_checkpoints/
*.pdf
model/

364
mnist.ipynb Normal file

File diff suppressed because one or more lines are too long

137
pso.py Normal file
View File

@@ -0,0 +1,137 @@
import numpy as np
class PSO(object):
"""
Class implementing PSO algorithm
"""
def __init__(self, func, init_pos, n_particles):
"""
Initialize the key variables.
Args:
fun (function): the fitness function to optimize
init_pos(array_like):
n_particles(int): the number of particles of the swarm.
"""
self.func = func
self.n_particles = n_particles
self.init_pos = init_pos # 곰샥헐 차원
self.particle_dim = len(init_pos) # 검색할 차원의 크기
self.particles_pos = np.random.uniform(size=(n_particles, self.particle_dim)) \
* self.init_pos
# 입력받은 파티클의 개수 * 검색할 차원의 크기 만큼의 균등한 위치를 생성
self.velocities = np.random.uniform(
size=(n_particles, self.particle_dim))
# 입력받은 파티클의 개수 * 검색할 차원의 크기 만큼의 속도를 무작위로 초기화
self.g_best = init_pos # 최대 사이즈로 전역 최적갑 저장 - global best
self.p_best = self.particles_pos # 모든 파티클의 위치 - particles best
self.g_history = []
self.history = []
def update_position(self, x, v):
"""
Update particle position
Args:
x (array-like): particle current position
v (array-like): particle current velocity
Returns:
The updated position(array-like)
"""
x = np.array(x) # 각 파티클의 위치
v = np.array(v) # 각 파티클의 속도(방향과 속력을 가짐)
new_x = x + v # 각 파티클을 랜덤한 속도만큼 진행
return new_x # 진행한 파티클들의 위치를 반환
def update_velocity(self, x, v, p_best, g_best, c0=0.5, c1=1.5, w=0.75):
"""
Update particle velocity
Args:
x(array-like): particle current position
v (array-like): particle current velocity
p_best(array-like): the best position found so far for a particle
g_best(array-like): the best position regarding all the particles found so far
c0 (float): the congnitive scaling constant, 인지 스케일링 상수
c1 (float): the social scaling constant
w (float): the inertia weight, 관성 중량
Returns:
The updated velocity (array-like).
"""
x = np.array(x)
v = np.array(v)
assert x.shape == v.shape, "Position and velocity must have same shape."
# 두 데이터의 shape 이 같지 않으면 오류 출력
# 0에서 1사이의 숫자를 랜덤 생성
r = np.random.uniform()
p_best = np.array(p_best)
g_best = np.array(g_best)
# 가중치(상수)*속도 + \
# 스케일링 상수*랜덤 가중치*(나의 최적값 - 처음 위치) + \
# 전역 스케일링 상수*랜덤 가중치*(전체 최적값 - 처음 위치)
new_v = w*v + c0*r*(p_best - x) + c1*r*(g_best - x)
return new_v
def optimize(self, maxiter=200):
"""
Run the PSO optimization process utill the stoping critera is met.
Cas for minization. The aim is to minimize the cost function
Args:
maxiter (int): the maximum number of iterations before stopping the optimization
파티클의 최종 위치를 위한 반복 횟수
Returns:
The best solution found (array-like)
"""
for _ in range(maxiter):
for i in range(self.n_particles):
x = self.particles_pos[i] # 각 파티클 추출
v = self.velocities[i] # 랜덤 생성한 속도 추출
p_best = self.p_best[i] # 결과치 저장할 변수 지정
self.velocities[i] = self.update_velocity(
x, v, p_best, self.g_best)
# 다음에 움직일 속도 = 최초 위치, 현재 속도, 현재 위치, 최종 위치
self.particles_pos[i] = self.update_position(x, v)
# 현재 위치 = 최초 위치 현재 속도
# Update the besst position for particle i
# 내 현재 위치가 내 위치의 최소치보다 작으면 갱신
if self.func(self.particles_pos[i]) < self.func(p_best):
self.p_best[i] = self.particles_pos[i]
# Update the best position overall
# 내 현재 위치가 전체 위치 최소치보다 작으면 갱신
if self.func(self.particles_pos[i]) < self.func(self.g_best):
self.g_best = self.particles_pos[i]
self.g_history.append(self.g_best)
self.history.append(self.particles_pos.copy())
# 전체 최소 위치, 전체 최소 벡터
return self.g_best, self.func(self.g_best)
"""
Returns:
현재 전체 위치
"""
def position(self):
return self.particles_pos.copy()
"""
Returns:
전체 위치 벡터 history
"""
def position_history(self):
return self.history
"""
Returns:
global best 의 갱신된 값의 변화를 반환
"""
def global_history(self):
return self.g_history.copy()

261
pso_tf.py Normal file
View File

@@ -0,0 +1,261 @@
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tqdm import tqdm
class PSO(object):
"""
Class implementing PSO algorithm
"""
def __init__(self, model, loss_method=keras.losses.MeanSquaredError(), optimizer=keras.optimizers.SGD(), n_particles=5):
"""
Initialize the key variables.
Args:
model : 학습할 모델 객체 (Sequential)
loss_method : 손실 함수
optimizer : 최적화 함수
n_particles(int) : 파티클의 개수
"""
self.model = model # 모델
self.n_particles = n_particles # 파티클의 개수
self.loss_method = loss_method # 손실 함수
self.optimizer = optimizer # 최적화 함수
self.model_structure = self.model.to_json() # 모델의 구조
self.init_weights = self.model.get_weights() # 검색할 차원
self.particle_depth = len(self.model.get_weights()) # 검색할 차원의 깊이
self.particles_weights = [None] * n_particles # 파티클의 위치
for _ in tqdm(range(self.n_particles), desc="init particles position"):
# particle_node = []
m = keras.models.model_from_json(self.model_structure)
m.compile(loss=self.loss_method, optimizer=self.optimizer)
self.particles_weights[_] = m.get_weights()
# self.particles_weights.append(particle_node)
# print(f"particles_weights > {self.particles_weights}")
# self.particles_weights = np.random.uniform(size=(n_particles, self.particle_depth)) \
# * self.init_pos
# 입력받은 파티클의 개수 * 검색할 차원의 크기 만큼의 균등한 위치를 생성
# self.velocities = [None] * self.n_particles
self.velocities = [
[0 for i in range(self.particle_depth)] for n in range(n_particles)]
for i in tqdm(range(n_particles), desc="init velocities"):
# print(i)
for index, layer in enumerate(self.init_weights):
# print(f"index > {index}")
# print(f"layer > {layer.shape}")
self.velocities[i][index] = np.random.rand(
*layer.shape) / 5 - 0.10
# if layer.ndim == 1:
# self.velocities[i][index] = np.random.uniform(
# size=(layer.shape[0],))
# elif layer.ndim == 2:
# self.velocities[i][index] = np.random.uniform(
# size=(layer.shape[0], layer.shape[1]))
# elif layer.ndim == 3:
# self.velocities[i][index] = np.random.uniform(
# size=(layer.shape[0], layer.shape[1], layer.shape[2]))
# print(f"type > {type(self.velocities)}")
# print(f"velocities > {self.velocities}")
# print(f"velocities > {self.velocities}")
# for i, layer in enumerate(self.init_weights):
# self.velocities[i] = np.random.rand(*layer.shape) / 5 - 0.10
# self.velocities = np.random.uniform(
# size=(n_particles, self.particle_depth))
# 입력받은 파티클의 개수 * 검색할 차원의 크기 만큼의 속도를 무작위로 초기화
# 최대 사이즈로 전역 최적갑 저장 - global best
self.g_best = self.model.get_weights() # 전역 최적값(최적의 가중치)
self.p_best = self.particles_weights # 각 파티클의 최적값(최적의 가중치)
self.p_best_score = [np.inf for i in range(
n_particles)] # 각 파티클의 최적값의 점수
self.g_best_score = np.inf # 전역 최적값의 점수(초기화 - 무한대)
self.g_history = []
self.history = []
def _update_weights(self, weights, v):
"""
Update particle position
Args:
weights (array-like) : 파티클의 현재 가중치
v (array-like) : 가중치의 속도
Returns:
(array-like) : 파티클의 새로운 가중치(위치)
"""
# w = np.array(w) # 각 파티클의 위치
# v = np.array(v) # 각 파티클의 속도(방향과 속력을 가짐)
# print(f"len(w) > {len(w)}")
# print(f"len(v) > {len(v)}")
new_weights = [0 for i in range(len(weights))]
for i in range(len(weights)):
# print(f"shape > w : {np.shape(w[i])}, v : {np.shape(v[i])}")
new_weights[i] = tf.add(weights[i], v[i])
# new_w = tf.add(w, v) # 각 파티클을 랜덤한 속도만큼 진행
return new_weights # 진행한 파티클들의 위치를 반환
def _update_velocity(self, weights, v, p_best, c0=0.5, c1=1.5, w=0.75):
"""
Update particle velocity
Args:
weights (array-like) : 파티클의 현재 가중치
v (array-like) : 속도
p_best(array-like) : 각 파티클의 최적의 위치 (최적의 가중치)
c0 (float) : 인지 스케일링 상수 (가중치의 중요도 - 지역) - 지역 관성
c1 (float) : 사회 스케일링 상수 (가중치의 중요도 - 전역) - 전역 관성
w (float) : 관성 상수 (현재 속도의 중요도)
Returns:
(array-like) : 각 파티클의 새로운 속도
"""
# x = np.array(x)
# v = np.array(v)
# assert np.shape(weights) == np.shape(v), "Position and velocity must have same shape."
# 두 데이터의 shape 이 같지 않으면 오류 출력
# 0에서 1사이의 숫자를 랜덤 생성
r0 = np.random.rand()
r1 = np.random.rand()
# print(f"type > weights : {type(weights)}")
# print(f"type > v : {type(v)}")
# print(
# f"shape > weights : {np.shape(weights[0])}, v : {np.shape(v[0])}")
# print(f"len > weights : {len(weights)}, v : {len(v)}")
# p_best = np.array(p_best)
# g_best = np.array(g_best)
# 가중치(상수)*속도 + \
# 스케일링 상수*랜덤 가중치*(나의 최적값 - 처음 위치) + \
# 전역 스케일링 상수*랜덤 가중치*(전체 최적값 - 처음 위치)
# for i, layer in enumerate(weights):
new_velocity = [None] * len(weights)
for i, layer in enumerate(weights):
new_v = w*v[i]
new_v = new_v + c0*r0*(p_best[i] - layer)
# m2 = tf.multiply(tf.multiply(c0, r0),
# tf.subtract(p_best[i], layer))
new_v = new_v + c1*r1*(self.g_best[i] - layer)
# m3 = tf.multiply(tf.multiply(c1, r1),
# tf.subtract(g_best[i], layer))
new_velocity[i] = new_v
# new_v[i] = tf.add(m1, tf.add(m2, m3))
# new_v[i] = tf.add_n([m1, m2, m3])
# new_v[i] = tf.add_n(
# tf.multiply(w, v[i]),
# tf.multiply(tf.multiply(c0, r0),
# tf.subtract(p_best[i], layer)),
# tf.multiply(tf.multiply(c1, r1),
# tf.subtract(g_best[i], layer)))
# new_v = w*v + c0*r0*(p_best - weights) + c1*r1*(g_best - weights)
return new_velocity
def _get_score(self, x, y):
"""
Compute the score of the current position of the particles.
Args:
x (array-like): The current position of the particles
y (array-like): The current position of the particles
Returns:
(array-like) : 추론에 대한 점수
"""
# = self.model
# model.set_weights(weights)
score = self.model.evaluate(x, y, verbose=0)
return score
def optimize(self, x_train, y_train, x_test, y_test, maxiter=20, epoch=10, verbose=0):
"""
Run the PSO optimization process utill the stoping critera is met.
Cas for minization. The aim is to minimize the cost function
Args:
maxiter (int): the maximum number of iterations before stopping the optimization
파티클의 최종 위치를 위한 반복 횟수
Returns:
The best solution found (array-like)
"""
for _ in range(maxiter):
loss = 0
acc = 0
for i in tqdm(range(self.n_particles), desc=f"Iteration {_} / {maxiter}", ascii=True):
weights = self.particles_weights[i] # 각 파티클 추출
v = self.velocities[i] # 각 파티클의 다음 속도 추출
p_best = self.p_best[i] # 결과치 저장할 변수 지정
self.velocities[i] = self._update_velocity(
weights, v, p_best)
# 다음에 움직일 속도 = 최초 위치, 현재 속도, 현재 위치, 최종 위치
self.particles_weights[i] = self._update_weights(weights, v)
# 현재 위치 = 최초 위치 현재 속도
# Update the besst position for particle i
# 내 현재 위치가 내 위치의 최소치보다 작으면 갱신
self.model.set_weights(self.particles_weights[i])
self.model.fit(x_train, y_train, epochs=epoch,
verbose=0, validation_data=(x_test, y_test))
self.particles_weights[i] = self.model.get_weights()
score = self._get_score(x_test, y_test)
# print(f"score : {score}")
# print(f"loss : {loss}")
# print(f"p_best_score : {self.p_best_score[i]}")
if score[0] < self.p_best_score[i]:
self.p_best_score[i] = score[0]
self.p_best[i] = self.particles_weights[i]
if score[0] < self.g_best_score:
self.g_best_score = score[0]
self.g_best = self.particles_weights[i].copy()
self.g_history.append(self.g_best.copy())
self.score = score[0]
loss = score[0]
acc = score[1]
# if self.func(self.particles_weights[i]) < self.func(p_best):
# self.p_best[i] = self.particles_weights[i]
# if self.
# Update the best position overall
# 내 현재 위치가 전체 위치 최소치보다 작으면 갱신
# if self.func(self.particles_weights[i]) < self.func(self.g_best):
# self.g_best = self.particles_weights[i]
# self.g_history.append(self.g_best)
# print(f"{i} particle score : {score[0]}")
print(f"loss : {loss} | acc : {acc}")
# self.history.append(self.particles_weights.copy())
# 전체 최소 위치, 전체 최소 벡터
return self.g_best, self._get_score(x_test, y_test)
"""
Returns:
현재 전체 위치
"""
def position(self):
return self.particles_weights.copy()
"""
Returns:
전체 위치 벡터 history
"""
def position_history(self):
return self.history.copy()
"""
Returns:
global best 의 갱신된 값의 변화를 반환
"""
def global_history(self):
return self.g_history.copy()

53
readme.md Normal file
View File

@@ -0,0 +1,53 @@
# PSO 알고리즘 구현 및 새로운 시도
pso 알고리즘을 사용하여 새로운 학습 방법을 찾는중 입니다
병렬처리로 사용하는 논문을 찾아보았지만 이보다 더 좋은 방법이 있을 것 같아서 찾아보고 있습니다 - A Distribute Deep Learning System Using PSO Algorithm.pdf
기본 pso 알고리즘의 수식은 다음과 같습니다
> $$V_{id(t+1)} = W_{V_id(t)} + c_1 * r_1 (p_{id(t)} - x_{id(t)}) + c_2 * r_2(p_{gd(t)} - x_{id(t)})$$
다음 속도을 구하는 수식입니다
> $$x_{id(t+1)} = x_{id(t)} + V_{id(t+1)}$$
다음 위치를 구하는 수식입니다
> $$p_{id(t+1)} = \begin{cases} x_{id(t+1)} & \text{if } f(x_{id(t+1)}) < f(p_{id(t)}) \\ p_{id(t)} & \text{otherwise} \end{cases}$$
### 위치를 가장 최적값으로 변경(덮어쓰기)하면 안되는 이유
위치를 가장 최적값으로 변경하면 지역 최적값에서 벗어나지 못합니다. 따라서 전역 최적값을 찾을 수 없습니다.
# 현재 진행 상황
## 1. PSO 알고리즘 구현
```plain text
pso.py # PSO 알고리즘 구현
pso_tf.py # tensorflow 모델을 이용가능한 PSO 알고리즘 구현
xor.ipynb # xor 문제를 pso 알고리즘으로 풀이
mnist.ipynb # mnist 문제를 pso 알고리즘으로 풀이
```
## 2. PSO 알고리즘을 이용한 최적화 문제 풀이
pso 알고리즘을 이용하여 오차역전파 함수를 최적화 하는 방법을 찾는 중입니다
### 임시 아이디어
1. 오차역전파 함수를 1~5회 실행하여 오차를 구합니다
2. 오차가 가장 적은 다른 노드(particle) 가중치로 유도합니다.
2-1. 만약 오차가 가장 작은 다른 노드가 현재 노드보다 오차가 크다면, 현재 노드의 가중치를 유지합니다. - 현재의 가중치를 최적값으로 업로드합니다
2-2. 지역 최적값을 찾았다면, 전역 최적값을 찾을 때까지 1~2 과정을 반복합니다
3. 전역 최적값이 특정 임계치에서 변화율이 적다면 학습을 종료합니다
### 개인적인 생각
> 머신러닝 분류 방식에 존재하는 random forest 방식을 이용하여, 오차역전파 함수를 최적화 하는 방법이 있을것 같습니다
>
> > pso 와 random forest 방식이 매우 유사하다고 생각하여 학습할 때 뿐만 아니라 예측 할 때도 이러한 방식으로 사용할 수 있을 것 같습니다

431
xor.ipynb Normal file
View File

@@ -0,0 +1,431 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-05-21 01:52:28.471404: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.10.0\n"
]
}
],
"source": [
"import os\n",
"os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\n",
"import tensorflow as tf\n",
"# tf.random.set_seed(777) # for reproducibility\n",
"\n",
"from pso_tf import PSO\n",
"from tensorflow import keras\n",
"\n",
"print(tf.__version__)\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from tensorflow import keras\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras import layers\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def get_data():\n",
" x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])\n",
" y = np.array([[0], [1], [1], [0]])\n",
" \n",
" return x, y\n",
"\n",
"def make_model():\n",
" leyer = []\n",
" leyer.append(layers.Dense(2, activation='sigmoid', input_shape=(2,)))\n",
" leyer.append(layers.Dense(1, activation='sigmoid'))\n",
"\n",
" model = Sequential(leyer)\n",
"\n",
" sgd = keras.optimizers.SGD(lr=0.1, momentum=1, decay=1e-05, nesterov=True)\n",
" adam = keras.optimizers.Adam(lr=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.)\n",
" model.compile(loss='mse', optimizer=sgd, metrics=['accuracy'])\n",
"\n",
" print(model.summary())\n",
"\n",
" return model"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential\"\n",
"_________________________________________________________________\n",
" Layer (type) Output Shape Param # \n",
"=================================================================\n",
" dense (Dense) (None, 2) 6 \n",
" \n",
" dense_1 (Dense) (None, 1) 3 \n",
" \n",
"=================================================================\n",
"Total params: 9\n",
"Trainable params: 9\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/pieroot/miniconda3/envs/pso/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:111: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n",
" super().__init__(name, **kwargs)\n",
"/home/pieroot/miniconda3/envs/pso/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py:114: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n",
" super().__init__(name, **kwargs)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"None\n",
"0 particle score : 0.24921603500843048\n",
"1 particle score : 0.2509610056877136\n",
"2 particle score : 0.28712478280067444\n",
"3 particle score : 0.2665291726589203\n",
"4 particle score : 0.2513682246208191\n",
"0 particle score : 0.26079031825065613\n",
"1 particle score : 0.24931921064853668\n",
"2 particle score : 0.2679133415222168\n",
"3 particle score : 0.27925199270248413\n",
"4 particle score : 0.2605195641517639\n",
"0 particle score : 0.30758577585220337\n",
"1 particle score : 0.26747316122055054\n",
"2 particle score : 0.36957648396492004\n",
"3 particle score : 0.19372068345546722\n",
"4 particle score : 0.3671383857727051\n",
"0 particle score : 0.24090810120105743\n",
"1 particle score : 0.3176509141921997\n",
"2 particle score : 0.23225924372673035\n",
"3 particle score : 0.37263113260269165\n",
"4 particle score : 0.47822105884552\n",
"0 particle score : 0.37611791491508484\n",
"1 particle score : 0.27166277170181274\n",
"2 particle score : 0.21416285634040833\n",
"3 particle score : 0.23324625194072723\n",
"4 particle score : 0.024583835154771805\n",
"0 particle score : 0.05194556713104248\n",
"1 particle score : 0.3102635443210602\n",
"2 particle score : 0.31894028186798096\n",
"3 particle score : 0.12679985165596008\n",
"4 particle score : 0.012038745917379856\n",
"0 particle score : 0.004551469348371029\n",
"1 particle score : 0.03923884406685829\n",
"2 particle score : 0.003701586974784732\n",
"3 particle score : 0.0026527238078415394\n",
"4 particle score : 0.0430503748357296\n",
"0 particle score : 0.000214503234019503\n",
"1 particle score : 0.0025649480521678925\n",
"2 particle score : 0.008843829855322838\n",
"3 particle score : 0.23036976158618927\n",
"4 particle score : 0.21686825156211853\n",
"0 particle score : 4.901693273495766e-07\n",
"1 particle score : 0.003860481781885028\n",
"2 particle score : 0.00047884139348752797\n",
"3 particle score : 0.1563722789287567\n",
"4 particle score : 1.1759411222556082e-07\n",
"0 particle score : 0.24969959259033203\n",
"1 particle score : 2.8646991268033162e-05\n",
"2 particle score : 1.0552450024903237e-09\n",
"3 particle score : 3.566808572941227e-07\n",
"4 particle score : 8.882947003831243e-14\n",
"0 particle score : 0.2497878521680832\n",
"1 particle score : 1.879385969766334e-12\n",
"2 particle score : 0.44945281744003296\n",
"3 particle score : 2.485284791549705e-14\n",
"4 particle score : 2.431787924306583e-26\n",
"0 particle score : 3.854774978241029e-18\n",
"1 particle score : 1.2515056546646974e-08\n",
"2 particle score : 0.49999988079071045\n",
"3 particle score : 2.8881452344524906e-22\n",
"4 particle score : 4.162688806996304e-30\n",
"0 particle score : 9.170106118851775e-37\n",
"1 particle score : 0.49933725595474243\n",
"2 particle score : 0.43209874629974365\n",
"3 particle score : 7.681456478781658e-30\n",
"4 particle score : 1.1656278206215614e-33\n",
"0 particle score : 0.0\n",
"1 particle score : 0.49545660614967346\n",
"2 particle score : 0.25\n",
"3 particle score : 0.0\n",
"4 particle score : 0.0\n",
"0 particle score : 0.0\n",
"1 particle score : 0.25\n",
"2 particle score : 0.25\n",
"3 particle score : 0.25\n",
"4 particle score : 0.25\n",
"0 particle score : 0.0\n",
"1 particle score : 0.0\n",
"2 particle score : 0.25\n",
"3 particle score : 0.25\n",
"4 particle score : 0.25\n",
"0 particle score : 0.0\n",
"1 particle score : 0.25\n",
"2 particle score : 0.25\n",
"3 particle score : 0.25\n",
"4 particle score : 0.25\n",
"0 particle score : 0.0\n",
"1 particle score : 0.0\n",
"2 particle score : 0.0\n",
"3 particle score : 0.0\n",
"4 particle score : 0.5\n",
"0 particle score : 1.2923532081356227e-22\n",
"1 particle score : 0.5\n",
"2 particle score : 0.25\n",
"3 particle score : 0.942779541015625\n",
"4 particle score : 0.5\n",
"0 particle score : 0.4959273338317871\n",
"1 particle score : 0.5\n",
"2 particle score : 0.5\n",
"3 particle score : 0.75\n",
"4 particle score : 0.75\n",
"0 particle score : 0.23154164850711823\n",
"1 particle score : 0.5\n",
"2 particle score : 0.5\n",
"3 particle score : 0.5\n",
"4 particle score : 0.5\n",
"0 particle score : 0.0\n",
"1 particle score : 0.5\n",
"2 particle score : 0.25\n",
"3 particle score : 0.0\n",
"4 particle score : 0.25\n",
"0 particle score : 0.0\n",
"1 particle score : 0.5\n",
"2 particle score : 0.25\n",
"3 particle score : 0.25\n",
"4 particle score : 0.25\n",
"0 particle score : 0.25\n",
"1 particle score : 0.25\n",
"2 particle score : 0.25\n",
"3 particle score : 0.25\n",
"4 particle score : 0.25\n",
"0 particle score : 0.0\n",
"1 particle score : 0.25\n",
"2 particle score : 0.25\n",
"3 particle score : 0.25\n",
"4 particle score : 0.25\n",
"0 particle score : 0.5760642290115356\n",
"1 particle score : 0.25\n",
"2 particle score : 0.25000467896461487\n",
"3 particle score : 0.5\n",
"4 particle score : 0.5\n",
"0 particle score : 0.5\n",
"1 particle score : 0.25\n",
"2 particle score : 0.4998854398727417\n",
"3 particle score : 0.5\n",
"4 particle score : 0.5\n",
"0 particle score : 0.5\n",
"1 particle score : 0.25\n",
"2 particle score : 0.5000014305114746\n",
"3 particle score : 0.5\n",
"4 particle score : 0.5\n",
"0 particle score : 0.5\n",
"1 particle score : 0.007790721021592617\n",
"2 particle score : 0.5\n",
"3 particle score : 0.75\n",
"4 particle score : 0.5\n",
"0 particle score : 0.25\n",
"1 particle score : 0.5\n",
"2 particle score : 0.5\n",
"3 particle score : 0.0\n",
"4 particle score : 0.5\n",
"1/1 [==============================] - 0s 40ms/step\n",
"[[1.8555788e-26]\n",
" [1.0000000e+00]\n",
" [1.0000000e+00]\n",
" [1.8555788e-26]]\n",
"[[0]\n",
" [1]\n",
" [1]\n",
" [0]]\n",
"history > [[array([[-0.9191145, -0.7256227],\n",
" [ 1.2947526, 1.0081983]], dtype=float32), array([ 0.01203067, -0.07866445], dtype=float32), array([[-0.72274315],\n",
" [ 0.88691926]], dtype=float32), array([-0.08449478], dtype=float32)], [array([[-0.7327981, -2.120965 ],\n",
" [ 3.5870228, 2.0618958]], dtype=float32), array([-0.06788628, -2.1460009 ], dtype=float32), array([[-1.8084345],\n",
" [ 3.2274616]], dtype=float32), array([0.40823892], dtype=float32)], [array([[-6.749437, -5.01979 ],\n",
" [ 9.477569, 9.011221]], dtype=float32), array([ 1.0140182, -5.089527 ], dtype=float32), array([[-5.9527373],\n",
" [ 8.538484 ]], dtype=float32), array([0.8423419], dtype=float32)], [array([[-4.4376955, -7.542317 ],\n",
" [13.042126 , 9.401183 ]], dtype=float32), array([ 1.7249748, -6.2829194], dtype=float32), array([[-4.6019 ],\n",
" [12.654787]], dtype=float32), array([2.11288], dtype=float32)], [array([[-7.9655757, -8.855807 ],\n",
" [14.27012 , 12.6986265]], dtype=float32), array([ 2.2102568, -7.4656196], dtype=float32), array([[-5.386531],\n",
" [16.770058]], dtype=float32), array([2.2161639], dtype=float32)], [array([[-10.937471, -9.346545],\n",
" [ 15.040345, 13.547635]], dtype=float32), array([ 3.7305086, -8.93729 ], dtype=float32), array([[-9.661456],\n",
" [14.314214]], dtype=float32), array([1.9838718], dtype=float32)], [array([[-7.618989 , -8.295806 ],\n",
" [ 9.591193 , 7.3881774]], dtype=float32), array([ 2.9443424, -6.85388 ], dtype=float32), array([[-6.120155],\n",
" [ 9.558391]], dtype=float32), array([2.900807], dtype=float32)], [array([[-12.431582, -14.683373],\n",
" [ 24.192898, 18.607504]], dtype=float32), array([ 4.375762, -11.899742], dtype=float32), array([[-11.140665],\n",
" [ 25.361753]], dtype=float32), array([3.5045836], dtype=float32)], [array([[-16.167437, -19.325432],\n",
" [ 25.197618, 15.928284]], dtype=float32), array([ 6.8536587, -14.406519 ], dtype=float32), array([[-16.149462],\n",
" [ 21.955147]], dtype=float32), array([6.5853295], dtype=float32)], [array([[-20.64401 , -25.207134],\n",
" [ 28.023142, 19.938404]], dtype=float32), array([ 7.2551775, -17.74039 ], dtype=float32), array([[-15.623163],\n",
" [ 30.90391 ]], dtype=float32), array([7.7026973], dtype=float32)], [array([[-27.585245, -28.003128],\n",
" [ 46.606903, 34.010803]], dtype=float32), array([ 9.391173, -25.379646], dtype=float32), array([[-27.2021 ],\n",
" [ 44.79025]], dtype=float32), array([9.642486], dtype=float32)], [array([[-44.09209, -37.20285],\n",
" [ 47.20231, 40.34598]], dtype=float32), array([ 13.101824, -25.8866 ], dtype=float32), array([[-33.470924],\n",
" [ 47.784706]], dtype=float32), array([14.320648], dtype=float32)], [array([[-36.38443 , -39.23304 ],\n",
" [ 52.953644, 38.646732]], dtype=float32), array([ 10.276208, -30.864595], dtype=float32), array([[-31.08338],\n",
" [ 52.16088]], dtype=float32), array([15.342434], dtype=float32)], [array([[-62.84543 , -47.409748],\n",
" [ 63.300335, 56.867214]], dtype=float32), array([ 17.78217, -33.01626], dtype=float32), array([[-48.512455],\n",
" [ 61.87751 ]], dtype=float32), array([19.369736], dtype=float32)], [array([[-71.16499 , -57.702408],\n",
" [ 80.223915, 69.13328 ]], dtype=float32), array([ 19.08833 , -41.566013], dtype=float32), array([[-57.950104],\n",
" [ 76.35351 ]], dtype=float32), array([24.470982], dtype=float32)], [array([[-120.93972, -92.38105],\n",
" [ 107.01377, 110.19025]], dtype=float32), array([ 28.39684 , -59.285316], dtype=float32), array([[-75.1781 ],\n",
" [129.59488]], dtype=float32), array([34.034805], dtype=float32)], [array([[-161.36476, -114.62916],\n",
" [ 142.47905, 152.3887 ]], dtype=float32), array([ 36.139404, -74.1054 ], dtype=float32), array([[-101.517525],\n",
" [ 171.30031 ]], dtype=float32), array([42.26851], dtype=float32)]]\n",
"score > [0.5, 0.5]\n"
]
}
],
"source": [
"\n",
"x, y = get_data()\n",
"x_test = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])\n",
"y_test = np.array([[0], [1], [1], [0]])\n",
"\n",
"model = make_model()\n",
"\n",
"loss = keras.losses.MeanSquaredError()\n",
"optimizer = keras.optimizers.SGD(lr=0.1, momentum=1, decay=1e-05, nesterov=True)\n",
"\n",
"\n",
"\n",
"pso_xor = PSO(model=model, loss=loss, optimizer=optimizer, n_particles=5)\n",
"\n",
"best_weights, score = pso_xor.optimize(x, y, x_test, y_test, maxiter=30)\n",
"\n",
"model.set_weights(best_weights)\n",
"\n",
"y_pred = model.predict(x_test)\n",
"print(y_pred)\n",
"print(y_test)\n",
"\n",
"history = pso_xor.global_history()\n",
"\n",
"# print(f\"history > {history}\")\n",
"# print(f\"score > {score}\")\n",
"# plt.plot(history)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def test():\n",
" model = make_model()\n",
" x, y = get_data()\n",
" x_test = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])\n",
" y_test = np.array([[0], [1], [1], [0]])\n",
" \n",
" callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)\n",
"\n",
" hist = model.fit(x, y, epochs=50000, verbose=1, callbacks=[callback] , validation_data=(x_test, y_test))\n",
" y_pred=model.predict(x_test)\n",
" print(y_pred)\n",
" print(y_test)\n",
" \n",
" return hist"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def plot_history(history):\n",
" fig, loss_ax = plt.subplots()\n",
" acc_ax = loss_ax.twinx()\n",
"\n",
" loss_ax.plot(hist.history['loss'], 'y', label='train loss')\n",
" loss_ax.plot(hist.history['val_loss'], 'r', label='val loss')\n",
" loss_ax.set_xlabel('epoch')\n",
" loss_ax.set_ylabel('loss')\n",
" loss_ax.legend(loc='upper left')\n",
"\n",
" acc_ax.plot(hist.history['accuracy'], 'b', label='train acc')\n",
" acc_ax.plot(hist.history['val_accuracy'], 'g', label='val acc')\n",
" acc_ax.set_ylabel('accuracy')\n",
" acc_ax.legend(loc='upper right')\n",
"\n",
" plt.show()\n",
"hist = test()\n",
"plot_history(hist)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"print(model(x).numpy())\n",
"print(y)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "pso",
"language": "python",
"name": "pso"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}