diff --git a/pso2keras.ipynb b/pso2keras.ipynb
new file mode 100644
index 0000000..3b3d18d
--- /dev/null
+++ b/pso2keras.ipynb
@@ -0,0 +1,620 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": [],
+ "gpuType": "T4",
+ "authorship_tag": "ABX9TyNDijdc1kgN6OY64Tq8UGQH",
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ },
+ "accelerator": "GPU",
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "52249d81446e4ae29b376ade96d15636": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6dafb96228714fc19c62b97d43c3835c",
+ "IPY_MODEL_a1c7d30b133c4015a7f6ae5aa9b79705",
+ "IPY_MODEL_32b01d1a0d9c4c27b1f4862479e96c86"
+ ],
+ "layout": "IPY_MODEL_f44dfe5c3d7d48f99a7071c94ee61b0b"
+ }
+ },
+ "6dafb96228714fc19c62b97d43c3835c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e1622198e36d4d23a87ddc05d4466713",
+ "placeholder": "",
+ "style": "IPY_MODEL_3ebf57ddd70642ef8cbda4b25a375e64",
+ "value": "Initializing Particles: 63%"
+ }
+ },
+ "a1c7d30b133c4015a7f6ae5aa9b79705": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "danger",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b517359a6556481392beb0744b6b7127",
+ "max": 100,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2dc41c24eb5243dbbcff659b6e635da1",
+ "value": 63
+ }
+ },
+ "32b01d1a0d9c4c27b1f4862479e96c86": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_85347ee2ed11446ba3a5a4b39578b1b8",
+ "placeholder": "",
+ "style": "IPY_MODEL_6174b44f218448c98098c7bde09f3fcf",
+ "value": " 63/100 [00:04<00:02, 13.49it/s]"
+ }
+ },
+ "f44dfe5c3d7d48f99a7071c94ee61b0b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e1622198e36d4d23a87ddc05d4466713": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3ebf57ddd70642ef8cbda4b25a375e64": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b517359a6556481392beb0744b6b7127": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2dc41c24eb5243dbbcff659b6e635da1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "85347ee2ed11446ba3a5a4b39578b1b8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6174b44f218448c98098c7bde09f3fcf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ }
+ }
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "import sys\n",
+ "print('python version ', sys.version)\n",
+ "\n",
+ "# !pip uninstall pso2keras\n",
+ "!pip install --upgrade pip\n",
+ "!pip install pso2keras==0.1.5"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Qd4s8Pu0nYGs",
+ "outputId": "6390f505-8f70-4a26-f5e2-5c534732c0fc"
+ },
+ "execution_count": 2,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "python version 3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0]\n",
+ "Requirement already satisfied: pip in /usr/local/lib/python3.10/dist-packages (23.2)\n",
+ "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
+ "\u001b[0mCollecting pso2keras==0.1.5\n",
+ " Obtaining dependency information for pso2keras==0.1.5 from https://files.pythonhosted.org/packages/cc/e9/6694b997be42496d097288cad18e140fc083221b581b5bba4d7c187b48cd/pso2keras-0.1.5-py3-none-any.whl.metadata\n",
+ " Downloading pso2keras-0.1.5-py3-none-any.whl.metadata (8.6 kB)\n",
+ "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from pso2keras==0.1.5) (4.65.0)\n",
+ "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from pso2keras==0.1.5) (1.22.4)\n",
+ "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from pso2keras==0.1.5) (1.5.3)\n",
+ "Requirement already satisfied: ipython in /usr/local/lib/python3.10/dist-packages (from pso2keras==0.1.5) (7.34.0)\n",
+ "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython->pso2keras==0.1.5) (67.7.2)\n",
+ "Collecting jedi>=0.16 (from ipython->pso2keras==0.1.5)\n",
+ " Downloading jedi-0.18.2-py2.py3-none-any.whl (1.6 MB)\n",
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m10.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython->pso2keras==0.1.5) (4.4.2)\n",
+ "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython->pso2keras==0.1.5) (0.7.5)\n",
+ "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython->pso2keras==0.1.5) (5.7.1)\n",
+ "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython->pso2keras==0.1.5) (3.0.39)\n",
+ "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython->pso2keras==0.1.5) (2.14.0)\n",
+ "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython->pso2keras==0.1.5) (0.2.0)\n",
+ "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython->pso2keras==0.1.5) (0.1.6)\n",
+ "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython->pso2keras==0.1.5) (4.8.0)\n",
+ "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->pso2keras==0.1.5) (2.8.2)\n",
+ "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->pso2keras==0.1.5) (2022.7.1)\n",
+ "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython->pso2keras==0.1.5) (0.8.3)\n",
+ "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython->pso2keras==0.1.5) (0.7.0)\n",
+ "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython->pso2keras==0.1.5) (0.2.6)\n",
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->pso2keras==0.1.5) (1.16.0)\n",
+ "Downloading pso2keras-0.1.5-py3-none-any.whl (11 kB)\n",
+ "Installing collected packages: jedi, pso2keras\n",
+ " Attempting uninstall: pso2keras\n",
+ " Found existing installation: pso2keras 0.1.0\n",
+ " Uninstalling pso2keras-0.1.0:\n",
+ " Successfully uninstalled pso2keras-0.1.0\n",
+ "Successfully installed jedi-0.18.2 pso2keras-0.1.5\n",
+ "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
+ "\u001b[0m"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 458,
+ "referenced_widgets": [
+ "52249d81446e4ae29b376ade96d15636",
+ "6dafb96228714fc19c62b97d43c3835c",
+ "a1c7d30b133c4015a7f6ae5aa9b79705",
+ "32b01d1a0d9c4c27b1f4862479e96c86",
+ "f44dfe5c3d7d48f99a7071c94ee61b0b",
+ "e1622198e36d4d23a87ddc05d4466713",
+ "3ebf57ddd70642ef8cbda4b25a375e64",
+ "b517359a6556481392beb0744b6b7127",
+ "2dc41c24eb5243dbbcff659b6e635da1",
+ "85347ee2ed11446ba3a5a4b39578b1b8",
+ "6174b44f218448c98098c7bde09f3fcf"
+ ]
+ },
+ "id": "bVWF-rQ3j_ld",
+ "outputId": "303830cd-14b4-4fe5-f75c-a5280ad03f35"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "x_test : (28, 28, 1) | y_test : (10,)\n",
+ "start running time : 20230721-063118\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Initializing Particles: 0%| | 0/100 [00:00, ?it/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "52249d81446e4ae29b376ade96d15636"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "error",
+ "ename": "KeyboardInterrupt",
+ "evalue": "ignored",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'mean_squared_error'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 73\u001b[0;31m pso_mnist = Optimizer(\n\u001b[0m\u001b[1;32m 74\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 75\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mloss\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pso/optimizer.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, model, loss, n_particles, c0, c1, w_min, w_max, negative_swarm, mutation_swarm, np_seed, tf_seed, random_state, particle_min, particle_max)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mw_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msh_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_encode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minit_weights\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[0mw_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muniform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparticle_min\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparticle_max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw_\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_weights\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_decode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msh_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen_\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 104\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mloss\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloss\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"sgd\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetrics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"accuracy\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/keras/engine/base_layer.py\u001b[0m in \u001b[0;36mset_weights\u001b[0;34m(self, weights)\u001b[0m\n\u001b[1;32m 1833\u001b[0m \u001b[0mweight_index\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1834\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1835\u001b[0;31m \u001b[0mbackend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatch_set_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweight_value_tuples\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1836\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1837\u001b[0m \u001b[0;31m# Perform any layer defined finalization of the layer state.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/util/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 150\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 151\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/util/dispatch.py\u001b[0m in \u001b[0;36mop_dispatch_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 1174\u001b[0m \u001b[0;31m# Fallback dispatch system (dispatch v1):\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1175\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1176\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mdispatch_target\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1177\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mTypeError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1178\u001b[0m \u001b[0;31m# Note: convert_to_eager_tensor currently raises a ValueError, not a\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/keras/backend.py\u001b[0m in \u001b[0;36mbatch_set_value\u001b[0;34m(tuples)\u001b[0m\n\u001b[1;32m 4310\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtuples\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4311\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype_numpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4312\u001b[0;31m \u001b[0m_assign_value_to_variable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4313\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4314\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mget_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_default\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/keras/backend.py\u001b[0m in \u001b[0;36m_assign_value_to_variable\u001b[0;34m(variable, value)\u001b[0m\n\u001b[1;32m 4358\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4359\u001b[0m \u001b[0;31m# For the normal tf.Variable assign\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4360\u001b[0;31m \u001b[0mvariable\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0massign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4361\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4362\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/ops/resource_variable_ops.py\u001b[0m in \u001b[0;36massign\u001b[0;34m(self, value, use_locking, name, read_value)\u001b[0m\n\u001b[1;32m 972\u001b[0m \u001b[0;31m# initialize the variable.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 973\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0m_handle_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhandle\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 974\u001b[0;31m \u001b[0mvalue_tensor\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert_to_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 975\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_shape\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_compatible_with\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue_tensor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 976\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/profiler/trace.py\u001b[0m in \u001b[0;36mwrapped\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 181\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mTrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrace_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mtrace_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mwrapped\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/framework/ops.py\u001b[0m in \u001b[0;36mconvert_to_tensor\u001b[0;34m(value, dtype, name, as_ref, preferred_dtype, dtype_hint, ctx, accepted_result_types)\u001b[0m\n\u001b[1;32m 1640\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1641\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mret\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1642\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mconversion_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mas_ref\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mas_ref\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1643\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1644\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mret\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mNotImplemented\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/framework/tensor_conversion_registry.py\u001b[0m in \u001b[0;36m_default_conversion_function\u001b[0;34m(***failed resolving arguments***)\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_default_conversion_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mas_ref\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0mas_ref\u001b[0m \u001b[0;31m# Unused.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 48\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mconstant_op\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstant\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 49\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/framework/constant_op.py\u001b[0m in \u001b[0;36mconstant\u001b[0;34m(value, dtype, shape, name)\u001b[0m\n\u001b[1;32m 266\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcalled\u001b[0m \u001b[0mon\u001b[0m \u001b[0ma\u001b[0m \u001b[0msymbolic\u001b[0m \u001b[0mtensor\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 267\u001b[0m \"\"\"\n\u001b[0;32m--> 268\u001b[0;31m return _constant_impl(value, dtype, shape, name, verify_shape=False,\n\u001b[0m\u001b[1;32m 269\u001b[0m allow_broadcast=True)\n\u001b[1;32m 270\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/framework/constant_op.py\u001b[0m in \u001b[0;36m_constant_impl\u001b[0;34m(value, dtype, shape, name, verify_shape, allow_broadcast)\u001b[0m\n\u001b[1;32m 278\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"tf.constant\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 279\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_constant_eager_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mctx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverify_shape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 280\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_constant_eager_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mctx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverify_shape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 281\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 282\u001b[0m \u001b[0mg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_default_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/framework/constant_op.py\u001b[0m in \u001b[0;36m_constant_eager_impl\u001b[0;34m(ctx, value, dtype, shape, verify_shape)\u001b[0m\n\u001b[1;32m 303\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_constant_eager_impl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mctx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverify_shape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0;34m\"\"\"Creates a constant on the current device.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 305\u001b[0;31m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mconvert_to_eager_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 306\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mshape\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 307\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/tensorflow/python/framework/constant_op.py\u001b[0m in \u001b[0;36mconvert_to_eager_tensor\u001b[0;34m(value, ctx, dtype)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mdtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdtypes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_dtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_datatype_enum\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mensure_initialized\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mEagerTensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mctx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 104\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
+ ]
+ }
+ ],
+ "source": [
+ "# %%\n",
+ "import os\n",
+ "import sys\n",
+ "\n",
+ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"2\"\n",
+ "\n",
+ "import gc\n",
+ "\n",
+ "import tensorflow as tf\n",
+ "from keras.datasets import mnist\n",
+ "from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D\n",
+ "from keras.models import Sequential\n",
+ "from tensorflow import keras\n",
+ "\n",
+ "from pso import Optimizer\n",
+ "\n",
+ "\n",
+ "def get_data():\n",
+ " (x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
+ "\n",
+ " x_train, x_test = x_train / 255.0, x_test / 255.0\n",
+ " x_train = x_train.reshape((60000, 28, 28, 1))\n",
+ " x_test = x_test.reshape((10000, 28, 28, 1))\n",
+ "\n",
+ " y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)\n",
+ "\n",
+ " x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)\n",
+ " y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)\n",
+ "\n",
+ " print(f\"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}\")\n",
+ " print(f\"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}\")\n",
+ "\n",
+ " return x_train, y_train, x_test, y_test\n",
+ "\n",
+ "\n",
+ "def get_data_test():\n",
+ " (x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
+ " x_test = x_test / 255.0\n",
+ " x_test = x_test.reshape((10000, 28, 28, 1))\n",
+ "\n",
+ " y_test = tf.one_hot(y_test, 10)\n",
+ "\n",
+ " x_test = tf.convert_to_tensor(x_test)\n",
+ " y_test = tf.convert_to_tensor(y_test)\n",
+ "\n",
+ " print(f\"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}\")\n",
+ "\n",
+ " return x_test, y_test\n",
+ "\n",
+ "\n",
+ "def make_model():\n",
+ " model = Sequential()\n",
+ " model.add(\n",
+ " Conv2D(32, kernel_size=(5, 5), activation=\"relu\", input_shape=(28, 28, 1))\n",
+ " )\n",
+ " model.add(MaxPooling2D(pool_size=(3, 3)))\n",
+ " model.add(Conv2D(64, kernel_size=(3, 3), activation=\"relu\"))\n",
+ " model.add(MaxPooling2D(pool_size=(2, 2)))\n",
+ " model.add(Dropout(0.25))\n",
+ " model.add(Flatten())\n",
+ " model.add(Dense(128, activation=\"relu\"))\n",
+ " model.add(Dense(10, activation=\"softmax\"))\n",
+ "\n",
+ " return model\n",
+ "\n",
+ "\n",
+ "# %%\n",
+ "model = make_model()\n",
+ "x_train, y_train = get_data_test()\n",
+ "\n",
+ "loss = 'mean_squared_error'\n",
+ "\n",
+ "pso_mnist = Optimizer(\n",
+ " model,\n",
+ " loss=loss,\n",
+ " n_particles=100,\n",
+ " c0=0.3,\n",
+ " c1=0.5,\n",
+ " w_min=0.4,\n",
+ " w_max=0.7,\n",
+ " negative_swarm=0.1,\n",
+ " mutation_swarm=0.2,\n",
+ " particle_min=-5,\n",
+ " particle_max=5,\n",
+ ")\n",
+ "\n",
+ "best_score = pso_mnist.fit(\n",
+ " x_train,\n",
+ " y_train,\n",
+ " epochs=200,\n",
+ " save_info=True,\n",
+ " log=2,\n",
+ " log_name=\"mnist\",\n",
+ " save_path=\"./result/mnist\",\n",
+ " renewal=\"acc\",\n",
+ " check_point=25,\n",
+ ")\n",
+ "\n",
+ "print(\"Done!\")\n",
+ "\n",
+ "gc.collect()\n",
+ "sys.exit(0)\n"
+ ]
+ }
+ ]
+}
\ No newline at end of file
|