tensorboard 선택 시 자동으로 프로세스 실행
비어있는 포트를 자동으로 탐색하여 오픈
이전 최적해와 비교하여 관성치를 높게 주는 방법을 일시 폐기
digits 테스트 추가
tensorboard 자동 설치 추가
This commit is contained in:
jung-geun
2023-11-01 23:40:31 +09:00
parent 389027409d
commit 80695f304d
9 changed files with 218 additions and 113 deletions

View File

@@ -22,10 +22,8 @@ def get_data():
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
x_train, x_test = tf.convert_to_tensor(
x_train), tf.convert_to_tensor(x_test)
y_train, y_test = tf.convert_to_tensor(
y_train), tf.convert_to_tensor(y_test)
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
@@ -36,8 +34,7 @@ def get_data():
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="relu",
input_shape=(28, 28, 1))
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
@@ -75,31 +72,31 @@ loss = [
pso_mnist = optimizer(
model,
loss="categorical_crossentropy",
n_particles=100,
n_particles=500,
c0=0.5,
c1=0.8,
w_min=0.6,
c1=0.3,
w_min=0.2,
w_max=0.9,
negative_swarm=0.0,
mutation_swarm=0.2,
mutation_swarm=0.1,
convergence_reset=True,
convergence_reset_patience=10,
convergence_reset_monitor="loss",
convergence_reset_min_delta=0.05,
convergence_reset_monitor="mse",
convergence_reset_min_delta=0.005,
)
best_score = pso_mnist.fit(
x_train,
y_train,
epochs=300,
epochs=500,
save_info=True,
log=2,
log_name="mnist",
renewal="loss",
renewal="mse",
check_point=25,
empirical_balance=True,
empirical_balance=False,
dispersion=False,
batch_size=2048,
batch_size=10000,
back_propagation=False,
validate_data=(x_test, y_test),
)