지역해에 조기수렴하는 문제를 줄이기 위해 일정 비율을 전역해에서 반대 방향의 1/2 만큼 속도를 가지도록 조정
This commit is contained in:
jung-geun
2023-05-31 19:57:55 +09:00
parent 8012cf3557
commit 89449048c4
6 changed files with 62 additions and 67 deletions

View File

@@ -58,7 +58,7 @@ class Optimizer:
m = keras.models.model_from_json(model.to_json())
init_weights = m.get_weights()
w_, sh_, len_ = self._encode(init_weights)
w_ = np.random.uniform(-3, 3, len(w_))
w_ = np.random.uniform(-1.5, 1.5, len(w_))
m.set_weights(self._decode(w_, sh_, len_))
m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
if i < random * self.n_particles:
@@ -249,8 +249,6 @@ class Optimizer:
min_score = score[1]
if score[1] > max_score:
max_score = score[1]
gc.collect()
if save:
with open(
@@ -261,7 +259,6 @@ class Optimizer:
if i != self.n_particles - 1:
f.write(", ")
TS = self.c0 + np.random.rand() * (self.c1 - self.c0)
g_, g_sh, g_len = self._encode(self.g_best)
decrement = (epochs - (_) + 1) / epochs
@@ -278,7 +275,7 @@ class Optimizer:
# print(f"loss min : {min_loss} | loss max : {max_loss} | acc min : {min_score} | acc max : {max_score}")
# print(f"loss avg : {loss/self.n_particles} | acc avg : {acc/self.n_particles} | Best {renewal} : {self.g_best_score}")
print(
f"loss min : {min_loss} | acc max : {max_score} | Best {renewal} : {self.g_best_score}"
f"loss min : {round(min_loss, 4)} | acc max : {round(max_score, 4)} | Best {renewal} : {self.g_best_score}"
)
gc.collect()
@@ -289,22 +286,16 @@ class Optimizer:
self._check_point_save(f"./{save_path}/{self.day}/ckpt-{_}")
self.avg_score = acc/self.n_particles
except KeyboardInterrupt:
print("Keyboard Interrupt")
self.model_save(save_path)
print("model saved")
self.save_info(save_path)
print("info saved")
sys.exit(0)
print("Ctrl + C : Stop Training")
except MemoryError:
print("Memory Error")
print("Memory Error : Stop Training")
except Exception as e:
print(e)
finally:
self.model_save(save_path)
print("model save")
self.save_info(save_path)
print("save info")
sys.exit(1)
except Exception as e:
print(e)
finally:
return self.g_best, self.g_best_score