mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
37
mnist.py
37
mnist.py
@@ -5,8 +5,6 @@ import sys
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||||
|
||||
import gc
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from keras.datasets import mnist
|
||||
@@ -14,7 +12,7 @@ from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.models import Sequential
|
||||
from tensorflow import keras
|
||||
|
||||
from pso import Optimizer
|
||||
from pso import optimizer
|
||||
|
||||
|
||||
def get_data():
|
||||
@@ -40,10 +38,10 @@ def get_data_test():
|
||||
x_test = x_test / 255.0
|
||||
x_test = x_test.reshape((10000, 28, 28, 1))
|
||||
|
||||
y_test = tf.one_hot(y_test, 10)
|
||||
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
|
||||
|
||||
x_test = tf.convert_to_tensor(x_test)
|
||||
y_test = tf.convert_to_tensor(y_test)
|
||||
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
|
||||
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
|
||||
|
||||
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
||||
|
||||
@@ -53,14 +51,14 @@ def get_data_test():
|
||||
def make_model():
|
||||
model = Sequential()
|
||||
model.add(
|
||||
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
|
||||
Conv2D(32, kernel_size=(5, 5), activation="sigmoid", input_shape=(28, 28, 1))
|
||||
)
|
||||
model.add(MaxPooling2D(pool_size=(3, 3)))
|
||||
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
|
||||
model.add(Conv2D(64, kernel_size=(3, 3), activation="sigmoid"))
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(Dropout(0.25))
|
||||
model.add(Flatten())
|
||||
model.add(Dense(128, activation="relu"))
|
||||
model.add(Dense(128, activation="sigmoid"))
|
||||
model.add(Dense(10, activation="softmax"))
|
||||
|
||||
return model
|
||||
@@ -101,33 +99,34 @@ loss = [
|
||||
"mean_absolute_percentage_error",
|
||||
]
|
||||
|
||||
rs = random_state()
|
||||
# rs = random_state()
|
||||
|
||||
pso_mnist = Optimizer(
|
||||
pso_mnist = optimizer(
|
||||
model,
|
||||
loss=loss[0],
|
||||
n_particles=500,
|
||||
c0=0.3,
|
||||
c1=0.5,
|
||||
w_min=0.4,
|
||||
w_max=0.7,
|
||||
loss="mean_squared_error",
|
||||
n_particles=990,
|
||||
c0=0.2,
|
||||
c1=0.4,
|
||||
w_min=0.3,
|
||||
w_max=0.6,
|
||||
negative_swarm=0.1,
|
||||
mutation_swarm=0.3,
|
||||
particle_min=-4,
|
||||
particle_max=4,
|
||||
random_state=rs,
|
||||
)
|
||||
|
||||
best_score = pso_mnist.fit(
|
||||
x_train,
|
||||
y_train,
|
||||
epochs=250,
|
||||
epochs=200,
|
||||
save_info=True,
|
||||
log=2,
|
||||
log_name="mnist",
|
||||
save_path="./result/mnist",
|
||||
renewal="acc",
|
||||
check_point=25,
|
||||
empirical_balance=False,
|
||||
dispersion=False,
|
||||
)
|
||||
|
||||
print("Done!")
|
||||
|
||||
Reference in New Issue
Block a user