메모리 누수 다소 해결
Fixes #2
EBPSO 의 구현 부분의 문제가 있어 수정중
This commit is contained in:
jung-geun
2023-08-06 19:14:44 +09:00
parent f3b61e280f
commit 8d558d0f26
12 changed files with 201 additions and 161 deletions

View File

@@ -5,8 +5,6 @@ import sys
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import gc
import numpy as np
import tensorflow as tf
from keras.datasets import mnist
@@ -14,7 +12,7 @@ from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.models import Sequential
from tensorflow import keras
from pso import Optimizer
from pso import optimizer
def get_data():
@@ -40,10 +38,10 @@ def get_data_test():
x_test = x_test / 255.0
x_test = x_test.reshape((10000, 28, 28, 1))
y_test = tf.one_hot(y_test, 10)
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
x_test = tf.convert_to_tensor(x_test)
y_test = tf.convert_to_tensor(y_test)
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
@@ -53,14 +51,14 @@ def get_data_test():
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
Conv2D(32, kernel_size=(5, 5), activation="sigmoid", input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(Conv2D(64, kernel_size=(3, 3), activation="sigmoid"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dense(128, activation="sigmoid"))
model.add(Dense(10, activation="softmax"))
return model
@@ -101,33 +99,34 @@ loss = [
"mean_absolute_percentage_error",
]
rs = random_state()
# rs = random_state()
pso_mnist = Optimizer(
pso_mnist = optimizer(
model,
loss=loss[0],
n_particles=500,
c0=0.3,
c1=0.5,
w_min=0.4,
w_max=0.7,
loss="mean_squared_error",
n_particles=990,
c0=0.2,
c1=0.4,
w_min=0.3,
w_max=0.6,
negative_swarm=0.1,
mutation_swarm=0.3,
particle_min=-4,
particle_max=4,
random_state=rs,
)
best_score = pso_mnist.fit(
x_train,
y_train,
epochs=250,
epochs=200,
save_info=True,
log=2,
log_name="mnist",
save_path="./result/mnist",
renewal="acc",
check_point=25,
empirical_balance=False,
dispersion=False,
)
print("Done!")