mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
23-05-29
EBPSO 알고리즘 구현 - 선택지로 추가 random 으로 분산시키는 방법 구현 - 선택지로 추가 iris 기준 98퍼센트로 나오나 정확한 결과를 지켜봐야 할것으로 보임
This commit is contained in:
103
example.py
Executable file
103
example.py
Executable file
@@ -0,0 +1,103 @@
|
||||
"""
|
||||
example.py
|
||||
|
||||
Demonstrates usage of PSOkeras module by training dense Keras model for classifying Iris data set. Also compares
|
||||
results with a number of independent runs of standard Backpropagation algorithm (Adam) equal to the particle count.
|
||||
|
||||
@author Mike Holcomb (mjh170630@utdallas.edu)
|
||||
"""
|
||||
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.models import Sequential
|
||||
from tensorflow.keras.layers import Dense
|
||||
|
||||
from psokeras import Optimizer
|
||||
|
||||
N = 50 # number of particles
|
||||
STEPS = 500 # number of steps
|
||||
LOSS = 'mse' # Loss function
|
||||
BATCH_SIZE = 32 # Size of batches to train on
|
||||
|
||||
|
||||
def build_model(loss):
|
||||
"""
|
||||
Builds test Keras model for predicting Iris classifications
|
||||
|
||||
:param loss (str): Type of loss - must be one of Keras accepted keras losses
|
||||
:return: Keras dense model of predefined structure
|
||||
"""
|
||||
model = Sequential()
|
||||
model.add(Dense(4, activation='sigmoid', input_dim=4, use_bias=True))
|
||||
model.add(Dense(4, activation='sigmoid', use_bias=True))
|
||||
model.add(Dense(3, activation='softmax', use_bias=True))
|
||||
|
||||
model.compile(loss=loss,
|
||||
optimizer='adam')
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def vanilla_backpropagation(x_train, y_train):
|
||||
"""
|
||||
Runs N number of backpropagation model training simulations
|
||||
:param x_train: x values to train on
|
||||
:param y_train: target labels to train with
|
||||
:return: best model run as measured by LOSS
|
||||
"""
|
||||
best_model = None
|
||||
best_score = 100.0
|
||||
|
||||
for i in range(N):
|
||||
model_s = build_model(LOSS)
|
||||
model_s.fit(x_train, y_train,
|
||||
epochs=STEPS,
|
||||
batch_size=BATCH_SIZE,
|
||||
verbose=0)
|
||||
train_score = model_s.evaluate(x_train, y_train, batch_size=BATCH_SIZE, verbose=0)
|
||||
if train_score < best_score:
|
||||
best_model = model_s
|
||||
best_score = train_score
|
||||
return best_model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Section I: Build the data set
|
||||
iris = load_iris()
|
||||
x_train, x_test, y_train, y_test = train_test_split(iris.data,
|
||||
keras.utils.to_categorical(iris.target, num_classes=None),
|
||||
test_size=0.5,
|
||||
random_state=0,
|
||||
stratify=iris.target)
|
||||
|
||||
# Section II: First run the backpropagation simulation
|
||||
model_s = vanilla_backpropagation(x_train=x_train, y_train=y_train)
|
||||
|
||||
b_train_score = model_s.evaluate(x_train, y_train, batch_size=BATCH_SIZE, verbose=0)
|
||||
b_test_score = model_s.evaluate(x_test, y_test, batch_size=BATCH_SIZE, verbose=0)
|
||||
print("Backprop -- train: {:.4f} test: {:.4f}".format(b_train_score, b_test_score))
|
||||
|
||||
# Section III: Then run the particle swarm optimization
|
||||
# First build model to train on (primarily used for structure, also included in swarm)
|
||||
model_p = build_model(LOSS)
|
||||
|
||||
# Instantiate optimizer with model, loss function, and hyperparameters
|
||||
pso = Optimizer(model=model_p,
|
||||
loss=LOSS,
|
||||
n=N, # Number of particles
|
||||
acceleration=1.0, # Contribution of recursive particle velocity (acceleration)
|
||||
local_rate=0.6, # Contribution of locally best weights to new velocity
|
||||
global_rate=0.4 # Contribution of globally best weights to new velocity
|
||||
)
|
||||
|
||||
# Train model on provided data
|
||||
pso.fit(x_train, y_train, steps=STEPS, batch_size=BATCH_SIZE)
|
||||
|
||||
# Get a copy of the model with the globally best weights
|
||||
model_p = pso.get_best_model()
|
||||
|
||||
p_train_score = model_p.evaluate(x_train, y_train, batch_size=BATCH_SIZE, verbose=0)
|
||||
p_test_score = model_p.evaluate(x_test, y_test, batch_size=BATCH_SIZE, verbose=0)
|
||||
print("PSO -- train: {:.4f} test: {:.4f}".format(p_train_score, p_test_score))
|
||||
Reference in New Issue
Block a user