EBPSO 알고리즘 구현 - 선택지로 추가
random 으로 분산시키는 방법 구현 - 선택지로 추가
iris 기준 98퍼센트로 나오나 정확한 결과를 지켜봐야 할것으로 보임
This commit is contained in:
jung-geun
2023-05-29 04:01:48 +09:00
parent 7a612e4ca7
commit 91c6ec965b
27 changed files with 3378 additions and 1647 deletions

48
iris.py Normal file
View File

@@ -0,0 +1,48 @@
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.random.set_seed(777) # for reproducibility
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from pso import Optimizer
import gc
def make_model():
model = Sequential()
model.add(layers.Dense(10, activation='relu', input_shape=(4,)))
model.add(layers.Dense(10, activation='relu'))
model.add(layers.Dense(3, activation='softmax'))
return model
def load_data():
iris = load_iris()
x = iris.data
y = iris.target
y = keras.utils.to_categorical(y, 3)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, shuffle=True, stratify=y)
return x_train, x_test, y_train, y_test
model = make_model()
x_train, x_test, y_train, y_test = load_data()
loss = 'categorical_crossentropy'
pso_iris = Optimizer(model, loss=loss, n_particles=50, c0=0.4, c1=0.8, w_min=0.7, w_max=1.3)
weight, score = pso_iris.fit(
x_train, y_train, epochs=500, save=True, save_path="./result/iris", renewal="acc", empirical_balance=True, Dispersion=True, check_point=50)
pso_iris.model_save("./result/iris")
pso_iris.save_info("./result/iris/")
gc.collect()