EBPSO 알고리즘 구현 - 선택지로 추가
random 으로 분산시키는 방법 구현 - 선택지로 추가
iris 기준 98퍼센트로 나오나 정확한 결과를 지켜봐야 할것으로 보임
This commit is contained in:
jung-geun
2023-05-29 04:01:48 +09:00
parent 7a612e4ca7
commit 91c6ec965b
27 changed files with 3378 additions and 1647 deletions

124
mnist.py
View File

@@ -3,7 +3,7 @@ import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
# tf.random.set_seed(777) # for reproducibility
tf.random.set_seed(777) # for reproducibility
from tensorflow import keras
from keras.datasets import mnist
@@ -12,32 +12,43 @@ from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from pso_tf import PSO
# from pso_tf import PSO
from pso import Optimizer
# from optimizer import Optimizer
import numpy as np
import matplotlib.pyplot as plt
from datetime import date
from tqdm import tqdm
import json
import gc
print(tf.__version__)
print(tf.config.list_physical_devices())
print(f"Num GPUs Available: {len(tf.config.list_physical_devices('GPU'))}")
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28 ,28, 1))
x_test = x_test.reshape((10000, 28 ,28, 1))
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def get_data_test():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_test = x_test.reshape((10000, 28, 28, 1))
return x_test, y_test
def make_model():
model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5), activation='relu', input_shape=(28,28,1)))
model.add(Conv2D(32, kernel_size=(5, 5),
activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
@@ -50,87 +61,28 @@ def make_model():
return model
# %%
'''
optimizer parameter
'''
lr = 0.1
momentun = 0.8
decay = 1e-04
nestrov = True
'''
pso parameter
'''
n_particles = 30
maxiter = 50
# epochs = 1
w = 0.8
c0 = 0.6
c1 = 1.6
def auto_tuning(n_particles=n_particles, maxiter=maxiter, c0=c0, c1=c1, w=w):
x_train, y_train, x_test, y_test = get_data()
model = make_model()
loss = keras.losses.MeanSquaredError()
optimizer = keras.optimizers.SGD(lr=lr, momentum=momentun, decay=decay, nesterov=nestrov)
pso_m = PSO(model=model, loss_method=loss, n_particles=n_particles)
# c0 : 지역 최적값 중요도
# c1 : 전역 최적값 중요도
# w : 관성 (현재 속도를 유지하는 정도)
best_weights, score = pso_m.optimize(x_train, y_train, x_test, y_test, maxiter=maxiter, c0=c0, c1=c1, w=w)
model.set_weights(best_weights)
score_ = model.evaluate(x_test, y_test, verbose=2)
print(f" Test loss: {score_}")
score = round(score_[1]*100, 2)
day = date.today().strftime("%Y-%m-%d")
os.makedirs(f'./model', exist_ok=True)
model.save(f'./model/{day}_{score}_mnist.h5')
json_save = {
"name" : f"{day}_{score}_mnist.h5",
"score" : score_,
"maxiter" : maxiter,
"c0" : c0,
"c1" : c1,
"w" : w
}
with open(f'./model/{day}_{score}_pso_mnist.json', 'a') as f:
json.dump(json_save, f)
f.write(',\n')
return model
# auto_tuning(n_particles=30, maxiter=1000, c0=0.5, c1=1.5, w=0.75)
# %%
# print(f"정답 > {y_test}")
def get_score(model):
x_train, y_train, x_test, y_test = get_data()
predicted_result = model.predict(x_test)
predicted_labels = np.argmax(predicted_result, axis=1)
not_correct = []
for i in tqdm(range(len(y_test)), desc="진행도"):
if predicted_labels[i] != y_test[i]:
not_correct.append(i)
# print(f"추론 > {predicted_labels[i]} | 정답 > {y_test[i]}")
print(f"틀린 갯수 > {len(not_correct)}/{len(y_test)}")
# for i in range(3):
# plt.imshow(x_test[not_correct[i]].reshape(28,28), cmap='Greys')
# plt.show()
get_score(auto_tuning(n_particles=30, maxiter=50, c0=0.5, c1=1.5, w=0.75))
# %%
model = make_model()
x_test, y_test = get_data_test()
# loss = 'binary_crossentropy'
# loss = 'categorical_crossentropy'
# loss = 'sparse_categorical_crossentropy'
# loss = 'kullback_leibler_divergence'
# loss = 'poisson'
# loss = 'cosine_similarity'
# loss = 'log_cosh'
# loss = 'huber_loss'
# loss = 'mean_absolute_error'
# loss = 'mean_absolute_percentage_error'
loss = 'mean_squared_error'
pso_mnist = Optimizer(model, loss=loss, n_particles=50, c0=0.4, c1=0.8, w_min=0.75, w_max=1.4)
weight, score = pso_mnist.fit(
x_test, y_test, epochs=1000, save=True, save_path="./result/mnist", renewal="acc", empirical_balance=False, Dispersion=True)
pso_mnist.model_save("./result/mnist")
pso_mnist.save_info("./result/mnist")
gc.collect()