mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
23-06-24
패키지 호출 단순 수정
This commit is contained in:
29
mnist.py
29
mnist.py
@@ -1,30 +1,28 @@
|
||||
# %%
|
||||
import os
|
||||
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
tf.random.set_seed(777) # for reproducibility
|
||||
|
||||
import numpy as np
|
||||
|
||||
np.random.seed(777)
|
||||
|
||||
from tensorflow import keras
|
||||
from keras.datasets import mnist
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Dense, Dropout, Flatten
|
||||
from keras.layers import Conv2D, MaxPooling2D
|
||||
from keras import backend as K
|
||||
import gc
|
||||
from datetime import date
|
||||
|
||||
from keras import backend as K
|
||||
from keras.datasets import mnist
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.models import Sequential
|
||||
# from pso_tf import PSO
|
||||
from pso import Optimizer
|
||||
# from optimizer import Optimizer
|
||||
|
||||
|
||||
from datetime import date
|
||||
from tensorflow import keras
|
||||
from tqdm import tqdm
|
||||
|
||||
import gc
|
||||
|
||||
# print(tf.__version__)
|
||||
# print(tf.config.list_physical_devices())
|
||||
# print(f"Num GPUs Available: {len(tf.config.list_physical_devices('GPU'))}")
|
||||
@@ -74,12 +72,13 @@ if __name__ == "__main__":
|
||||
pso_mnist = Optimizer(
|
||||
model,
|
||||
loss=loss[0],
|
||||
n_particles=50,
|
||||
n_particles=75,
|
||||
c0=0.35,
|
||||
c1=0.8,
|
||||
w_min=0.7,
|
||||
w_max=1.15,
|
||||
negative_swarm=0.25
|
||||
negative_swarm=0.25,
|
||||
momentun_swarm=0.25,
|
||||
)
|
||||
|
||||
best_score = pso_mnist.fit(
|
||||
@@ -88,7 +87,7 @@ if __name__ == "__main__":
|
||||
epochs=200,
|
||||
save=True,
|
||||
save_path="./result/mnist",
|
||||
renewal="acc",
|
||||
renewal="loss",
|
||||
empirical_balance=False,
|
||||
Dispersion=False,
|
||||
check_point=25
|
||||
|
||||
@@ -1,19 +1,18 @@
|
||||
import gc
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from datetime import datetime
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from pso.particle import Particle
|
||||
from tensorflow import keras
|
||||
from tqdm import tqdm
|
||||
|
||||
# import cupy as cp
|
||||
|
||||
from tqdm import tqdm
|
||||
from datetime import datetime
|
||||
import json
|
||||
import gc
|
||||
from copy import copy, deepcopy
|
||||
|
||||
from pso.particle import Particle
|
||||
|
||||
gpus = tf.config.experimental.list_physical_devices("GPU")
|
||||
if gpus:
|
||||
@@ -35,6 +34,7 @@ class Optimizer:
|
||||
w_min=0.5,
|
||||
w_max=1.5,
|
||||
negative_swarm: float = 0,
|
||||
momentun_swarm: float = 0,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
@@ -46,6 +46,7 @@ class Optimizer:
|
||||
w_min (float): 최소 관성 수치
|
||||
w_max (float): 최대 관성 수치
|
||||
nefative_swarm (float): 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
|
||||
momentun_swarm (float): 관성을 추가로 사용할 파티클 비율 - 0 ~ 1 사이의 값
|
||||
"""
|
||||
self.model = model # 모델 구조
|
||||
self.loss = loss # 손실함수
|
||||
@@ -56,6 +57,7 @@ class Optimizer:
|
||||
self.w_min = w_min # 최소 관성 수치
|
||||
self.w_max = w_max # 최대 관성 수치
|
||||
self.negative_swarm = negative_swarm # 최적해와 반대로 이동할 파티클 비율 - 0 ~ 1 사이의 값
|
||||
self.momentun_swarm = momentun_swarm # 관성을 추가로 사용할 파티클 비율 - 0 ~ 1 사이의 값
|
||||
self.g_best_score = [0 , np.inf] # 최고 점수 - 시작은 0으로 초기화
|
||||
self.g_best = None # 최고 점수를 받은 가중치
|
||||
self.g_best_ = None # 최고 점수를 받은 가중치 - 값의 분산을 위한 변수
|
||||
@@ -68,10 +70,8 @@ class Optimizer:
|
||||
w_ = np.random.uniform(-1.5, 1.5, len(w_))
|
||||
m.set_weights(self._decode(w_, sh_, len_))
|
||||
m.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
|
||||
if i < negative_swarm * self.n_particles:
|
||||
self.particles[i] = Particle(m, loss, negative=True)
|
||||
else:
|
||||
self.particles[i] = Particle(m, loss, negative=False)
|
||||
self.particles[i] = Particle(m, loss, negative=True if i < negative_swarm * self.n_particles else False, momentun=True if i > self.n_particles * (1 - self.momentun_swarm) else False)
|
||||
|
||||
gc.collect()
|
||||
|
||||
def __del__(self):
|
||||
|
||||
@@ -1,15 +1,16 @@
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
import gc
|
||||
|
||||
# import cupy as cp
|
||||
import numpy as np
|
||||
import gc
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
|
||||
|
||||
class Particle:
|
||||
"""
|
||||
Particle Swarm Optimization의 Particle을 구현한 클래스
|
||||
"""
|
||||
def __init__(self, model: keras.models, loss, negative: bool = False|True):
|
||||
def __init__(self, model: keras.models, loss, negative: bool = False, momentun: bool = False):
|
||||
"""
|
||||
Args:
|
||||
model (keras.models): 학습 및 검증을 위한 모델
|
||||
@@ -23,6 +24,7 @@ class Particle:
|
||||
i_w_ = np.random.rand(len(i_w_)) / 2 - 0.25
|
||||
self.velocities = self._decode(i_w_, s_, l_)
|
||||
self.negative = negative
|
||||
self.momentun = momentun
|
||||
self.best_score = 0
|
||||
self.best_weights = init_weights
|
||||
|
||||
@@ -146,6 +148,8 @@ class Particle:
|
||||
+ local_rate * r0 * (encode_p - encode_w)
|
||||
+ global_rate * r1 * (encode_g - encode_w)
|
||||
)
|
||||
if self.momentun:
|
||||
new_v += 0.5 * encode_v
|
||||
self.velocities = self._decode(new_v, w_sh, w_len)
|
||||
del encode_w, w_sh, w_len
|
||||
del encode_v, v_sh, v_len
|
||||
@@ -184,6 +188,8 @@ class Particle:
|
||||
+ local_rate * r0 * (w_p * encode_p - encode_w)
|
||||
+ global_rate * r1 * (w_g * encode_g - encode_w)
|
||||
)
|
||||
if self.momentun:
|
||||
new_v += 0.5 * encode_v
|
||||
self.velocities = self._decode(new_v, w_sh, w_len)
|
||||
del encode_w, w_sh, w_len
|
||||
del encode_v, v_sh, v_len
|
||||
|
||||
87
test.ipynb
87
test.ipynb
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user