파티클의 전역 최적값이 이전 회차와 동일할 때 점진적으로 가중치의 감소, 다를 때 순간적으로 두배의 관성치를 주는 방식을 추가
This commit is contained in:
jung-geun
2023-07-26 23:26:39 +09:00
parent 7b81b40faf
commit ab937ac71c
4 changed files with 29 additions and 17 deletions

View File

@@ -1,5 +1,4 @@
[![Python Package Index publish](https://github.com/jung-geun/PSO/actions/workflows/pypi.yml/badge.svg?event=push)](https://github.com/jung-geun/PSO/actions/workflows/pypi.yml) [![Python Package Index publish](https://github.com/jung-geun/PSO/actions/workflows/pypi.yml/badge.svg?event=push)](https://github.com/jung-geun/PSO/actions/workflows/pypi.yml)
<a href="https://colab.research.google.com/github/jung-geun/PSO/blob/master/pso2keras.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
# PSO 알고리즘 구현 및 새로운 시도 # PSO 알고리즘 구현 및 새로운 시도
@@ -29,7 +28,7 @@ pso 알고리즘을 사용하여 새로운 학습 방법을 찾는중 입니다
자동으로 conda 환경을 설정하기 위해서는 다음 명령어를 사용합니다 자동으로 conda 환경을 설정하기 위해서는 다음 명령어를 사용합니다
```shell ```shell
conda env create -f ./conda_env/environment.yaml conda env create -f conda_env/environment.yaml
``` ```
현재 python 3.9 버전, tensorflow 2.11 버전에서 테스트 되었습니다 현재 python 3.9 버전, tensorflow 2.11 버전에서 테스트 되었습니다
@@ -51,6 +50,8 @@ pso_model = Optimizer(...)
pso_model.fit(...) pso_model.fit(...)
``` ```
<a href="https://colab.research.google.com/github/jung-geun/PSO/blob/master/example/pso2mnist.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
# 현재 진행 상황 # 현재 진행 상황
## 1. PSO 알고리즘 구현 ## 1. PSO 알고리즘 구현

View File

@@ -106,15 +106,15 @@ loss = [
pso_mnist = Optimizer( pso_mnist = Optimizer(
model, model,
loss=loss[0], loss=loss[0],
n_particles=1000, n_particles=500,
c0=0.4, c0=0.3,
c1=0.6, c1=0.5,
w_min=0.5, w_min=0.4,
w_max=0.8, w_max=0.9,
negative_swarm=0.1, negative_swarm=0.1,
mutation_swarm=0.2, mutation_swarm=0.3,
particle_min=-5, particle_min=-4,
particle_max=5, particle_max=4,
) )
best_score = pso_mnist.fit( best_score = pso_mnist.fit(

View File

@@ -70,6 +70,7 @@ class Optimizer:
if random_state is not None: if random_state is not None:
np.random.set_state(random_state) np.random.set_state(random_state)
model.compile(loss=loss, optimizer="sgd", metrics=["accuracy"])
self.model = model # 모델 구조 self.model = model # 모델 구조
self.loss = loss # 손실함수 self.loss = loss # 손실함수
self.n_particles = n_particles # 파티클 개수 self.n_particles = n_particles # 파티클 개수
@@ -203,7 +204,6 @@ class Optimizer:
(float): 목적 함수 값 (float): 목적 함수 값
""" """
self.model.set_weights(weights) self.model.set_weights(weights)
# self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
score = self.model.evaluate(x, y, verbose=0)[1] score = self.model.evaluate(x, y, verbose=0)[1]
if score > 0: if score > 0:
return 1 / (1 + score) return 1 / (1 + score)
@@ -221,7 +221,7 @@ class Optimizer:
save_path: str = "./result", save_path: str = "./result",
renewal: str = "acc", renewal: str = "acc",
empirical_balance: bool = False, empirical_balance: bool = False,
Dispersion: bool = False, dispersion: bool = False,
check_point: int = None, check_point: int = None,
): ):
""" """
@@ -234,12 +234,12 @@ class Optimizer:
save_path : str - ex) "./result", save_path : str - ex) "./result",
renewal : str ex) "acc" or "loss" or "both", renewal : str ex) "acc" or "loss" or "both",
empirical_balance : bool - True : EBPSO, False : PSO, empirical_balance : bool - True : EBPSO, False : PSO,
Dispersion : bool - True : g_best 의 값을 분산시켜 전역해를 찾음, False : g_best 의 값만 사용 dispersion : bool - True : g_best 의 값을 분산시켜 전역해를 찾음, False : g_best 의 값만 사용
check_point : int - 저장할 위치 - None : 저장 안함 check_point : int - 저장할 위치 - None : 저장 안함
""" """
self.save_path = save_path self.save_path = save_path
self.empirical_balance = empirical_balance self.empirical_balance = empirical_balance
self.Dispersion = Dispersion self.Dispersion = dispersion
self.renewal = renewal self.renewal = renewal
try: try:
@@ -336,7 +336,7 @@ class Optimizer:
f"acc : {max_score:.4f} loss : {min_loss:.4f}" f"acc : {max_score:.4f} loss : {min_loss:.4f}"
) )
if Dispersion: if dispersion:
ts = self.c0 + np.random.rand() * (self.c1 - self.c0) ts = self.c0 + np.random.rand() * (self.c1 - self.c0)
g_, g_sh, g_len = self._encode(self.g_best) g_, g_sh, g_len = self._encode(self.g_best)
decrement = (epochs - (epoch) + 1) / epochs decrement = (epochs - (epoch) + 1) / epochs

View File

@@ -35,6 +35,8 @@ class Particle:
self.mutation = mutation self.mutation = mutation
self.best_score = 0 self.best_score = 0
self.best_weights = init_weights self.best_weights = init_weights
self.before_best = init_weights
self.before_w = 0
del i_w_, s_, l_ del i_w_, s_, l_
del init_weights del init_weights
@@ -107,7 +109,6 @@ class Particle:
Returns: Returns:
(float): 점수 (float): 점수
""" """
# self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"])
score = self.model.evaluate(x, y, verbose=0, use_multiprocessing=True) score = self.model.evaluate(x, y, verbose=0, use_multiprocessing=True)
if renewal == "acc": if renewal == "acc":
if score[1] > self.best_score: if score[1] > self.best_score:
@@ -138,6 +139,15 @@ class Particle:
encode_g, g_sh, g_len = self._encode(weights=g_best) encode_g, g_sh, g_len = self._encode(weights=g_best)
r0 = np.random.rand() r0 = np.random.rand()
r1 = np.random.rand() r1 = np.random.rand()
encode_before, before_sh, before_len = self._encode(weights=self.before_best)
if (encode_before != encode_g).all():
self.before_w = w
w = w + (self.before_w)
else:
self.before_w *= 0.6
w = w + self.before_w
if self.negative: if self.negative:
new_v = ( new_v = (
w * encode_v w * encode_v
@@ -161,6 +171,7 @@ class Particle:
del encode_v, v_sh, v_len del encode_v, v_sh, v_len
del encode_p, p_sh, p_len del encode_p, p_sh, p_len
del encode_g, g_sh, g_len del encode_g, g_sh, g_len
del encode_before, before_sh, before_len
del r0, r1 del r0, r1
def _update_velocity_w(self, local_rate, global_rate, w, w_p, w_g, g_best): def _update_velocity_w(self, local_rate, global_rate, w, w_p, w_g, g_best):