dev container 실행 코드 추가
This commit is contained in:
jung-geun
2023-07-06 22:04:42 +09:00
parent c7384cdf7b
commit c163de6cb6
11 changed files with 192 additions and 132 deletions

View File

@@ -1,7 +1,7 @@
# %%
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import gc
@@ -26,58 +26,73 @@ def get_data():
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def get_data_test():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_test = x_test.reshape((10000, 28, 28, 1))
return x_test, y_test
def make_model():
model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5),
activation='relu', input_shape=(28, 28, 1)))
model.add(
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
return model
# %%
model = make_model()
x_test, y_test = get_data_test()
loss = ['mse', 'categorical_crossentropy', 'binary_crossentropy', 'kullback_leibler_divergence', 'poisson', 'cosine_similarity', 'log_cosh', 'huber_loss', 'mean_absolute_error', 'mean_absolute_percentage_error']
loss = [
"mse",
"categorical_crossentropy",
"binary_crossentropy",
"kullback_leibler_divergence",
"poisson",
"cosine_similarity",
"log_cosh",
"huber_loss",
"mean_absolute_error",
"mean_absolute_percentage_error",
]
if __name__ == "__main__":
try:
pso_mnist = Optimizer(
model,
loss=loss[0],
loss=loss[0],
n_particles=100,
c0=0.35,
c1=0.8,
c0=0.35,
c1=0.8,
w_min=0.7,
w_max=1.0,
w_max=1.1,
negative_swarm=0.2,
mutation_swarm=0.2,
)
mutation_swarm=0.1,
)
best_score = pso_mnist.fit(
x_test,
y_test,
epochs=200,
save=True,
save_path="./result/mnist",
renewal="acc",
save_path="./result/mnist",
renewal="acc",
empirical_balance=False,
Dispersion=False,
check_point=25
)
Dispersion=False,
check_point=25,
)
except Exception as e:
print(e)
finally:
gc.collect()
gc.collect()