Update PSO and neural network parameters
best score 초기화 를 무작위 값에서 계산 후 설정으로 변경
This commit is contained in:
jung-geun
2023-11-05 17:14:07 +09:00
parent 80695f304d
commit c45ee5873e
7 changed files with 191 additions and 46 deletions

View File

@@ -1,7 +1,7 @@
from .optimizer import Optimizer as optimizer
from .particle import Particle as particle
__version__ = "1.0.4"
__version__ = "1.0.5"
print("pso2keras version : " + __version__)

View File

@@ -152,7 +152,6 @@ class Optimizer:
tf.keras.backend.reset_uids()
tf.keras.backend.clear_session()
self.particles[0].update_global_best()
print(f"negative swarm : {negative_count} / {n_particles}")
print(f"mutation swarm : {mutation_swarm * 100}%")
@@ -449,6 +448,15 @@ class Optimizer:
dataset = self.batch_generator(x, y, batch_size=batch_size)
for i in tqdm(
range(len(self.particles)),
desc="best score init",
ascii=True,
leave=True,
):
score = self.particles[i].get_score(x, y, self.renewal)
self.particles[i].check_global_best(self.renewal)
try:
epoch_sum = 0
epochs_pbar = tqdm(
@@ -477,7 +485,8 @@ class Optimizer:
position=1,
)
w = self.w_max - (self.w_max - self.w_min) * epoch / epochs
# w = self.w_max - (self.w_max - self.w_min) * epoch / epochs
w = self.w_max - (self.w_max - self.w_min) * (epoch % 100) / 100
for i in part_pbar:
part_pbar.set_description(
f"loss: {min_loss:.4f} acc: {max_acc:.4f} mse: {min_mse:.4f}"

View File

@@ -12,6 +12,7 @@ class Particle:
4. 가중치 업데이트
5. 2번으로 돌아가서 반복
"""
g_best_score = [np.inf, 0, np.inf]
g_best_weights = None
count = 0
@@ -40,7 +41,12 @@ class Particle:
self.loss = loss
try:
if converge_reset and converge_reset_monitor not in ["acc", "accuracy", "loss", "mse"]:
if converge_reset and converge_reset_monitor not in [
"acc",
"accuracy",
"loss",
"mse",
]:
raise ValueError(
"converge_reset_monitor must be 'acc' or 'accuracy' or 'loss'"
)
@@ -154,7 +160,13 @@ class Particle:
return score
def __check_converge_reset(self, score, monitor: str = None, patience: int = 10, min_delta: float = 0.0001):
def __check_converge_reset(
self,
score,
monitor: str = None,
patience: int = 10,
min_delta: float = 0.0001,
):
"""
early stop을 구현한 함수
@@ -173,8 +185,7 @@ class Particle:
elif monitor in ["mse"]:
self.score_history.append(score[2])
else:
raise ValueError(
"monitor must be 'acc' or 'accuracy' or 'loss' or 'mse'")
raise ValueError("monitor must be 'acc' or 'accuracy' or 'loss' or 'mse'")
if len(self.score_history) > patience:
last_scores = self.score_history[-patience:]
@@ -187,10 +198,10 @@ class Particle:
self.model.compile(
optimizer="adam",
loss=self.loss,
metrics=["accuracy", "mse"]
metrics=["accuracy", "mse"],
)
i_w_, i_s, i_l = self._encode(self.model.get_weights())
i_w_ = np.random.uniform(-0.05, 0.1, len(i_w_))
i_w_ = np.random.uniform(-0.1, 0.1, len(i_w_))
self.velocities = self._decode(i_w_, i_s, i_l)
del i_w_, i_s, i_l
@@ -210,28 +221,31 @@ class Particle:
encode_p, p_sh, p_len = self._encode(weights=self.best_weights)
encode_g, g_sh, g_len = self._encode(weights=Particle.g_best_weights)
# encode_before, before_sh, before_len = self._encode(
# weights=self.before_best
# weights=self.before_best
# )
r_0 = np.random.rand()
r_1 = np.random.rand()
# 이전 전역 최적해와 현재 전역 최적해가 다르면 관성을 순간적으로 증가 - 값이 바뀔 경우 기존 관성을 특정 기간동안 유지
# if not np.array_equal(encode_before, encode_g, equal_nan=True):
# 이전 가중치 중요도의 1.5 배로 관성을 증가
# self.before_w = w * 0.5
# w = w + self.before_w
# 이전 가중치 중요도의 1.5 배로 관성을 증가
# self.before_w = w * 0.5
# w = w + self.before_w
# else:
# self.before_w *= 0.75
# w = w + self.before_w
# self.before_w *= 0.75
# w = w + self.before_w
if self.negative:
# 지역 최적해와 전역 최적해를 음수로 사용하여 전역 탐색을 유도
new_v = (
w * encode_v
- local_rate * r_0 * (encode_p - encode_w)
+ local_rate * r_0 * (encode_p - encode_w)
- global_rate * r_1 * (encode_g - encode_w)
)
if len(self.score_history) > 10 and max(self.score_history[-10:]) - min(self.score_history[-10:]) < 0.01:
if (
len(self.score_history) > 10
and max(self.score_history[-10:]) - min(self.score_history[-10:]) < 0.01
):
self.__reset_particle()
else:
@@ -270,22 +284,22 @@ class Particle:
encode_p, p_sh, p_len = self._encode(weights=self.best_weights)
encode_g, g_sh, g_len = self._encode(weights=Particle.g_best_weights)
# encode_before, before_sh, before_len = self._encode(
# weights=self.before_best
# weights=self.before_best
# )
r_0 = np.random.rand()
r_1 = np.random.rand()
# if not np.array_equal(encode_before, encode_g, equal_nan=True):
# self.before_w = w * 0.5
# w = w + self.before_w
# self.before_w = w * 0.5
# w = w + self.before_w
# else:
# self.before_w *= 0.75
# w = w + self.before_w
# self.before_w *= 0.75
# w = w + self.before_w
if self.negative:
new_v = (
w * encode_v
- local_rate * r_0 * (w_p * encode_p - encode_w)
+ local_rate * r_0 * (w_p * encode_p - encode_w)
- global_rate * r_1 * (w_g * encode_g - encode_w)
)
else:
@@ -296,7 +310,7 @@ class Particle:
)
if np.random.rand() < self.mutation:
m_v = np.random.uniform(-0.05, 0.05, len(encode_v))
m_v = np.random.uniform(-0.1, 0.1, len(encode_v))
new_v = m_v
self.velocities = self._decode(new_v, w_sh, w_len)
@@ -341,11 +355,28 @@ class Particle:
score = self.get_score(x, y, renewal)
if self.converge_reset and self.__check_converge_reset(
score, self.converge_reset_monitor, self.converge_reset_patience, self.converge_reset_min_delta):
score,
self.converge_reset_monitor,
self.converge_reset_patience,
self.converge_reset_min_delta,
):
self.__reset_particle()
score = self.get_score(x, y, renewal)
while np.isnan(score[0]) or np.isnan(score[1]) or np.isnan(score[2]) or score[0] == 0 or score[1] == 0 or score[2] == 0 or np.isinf(score[0]) or np.isinf(score[1]) or np.isinf(score[2]) or score[0] > 1000 or score[1] > 1 or score[2] > 1000:
while (
np.isnan(score[0])
or np.isnan(score[1])
or np.isnan(score[2])
or score[0] == 0
or score[1] == 0
or score[2] == 0
or np.isinf(score[0])
or np.isinf(score[1])
or np.isinf(score[2])
or score[0] > 1000
or score[1] > 1
or score[2] > 1000
):
self.__reset_particle()
score = self.get_score(x, y, renewal)
@@ -362,9 +393,7 @@ class Particle:
return score
def step_w(
self, x, y, local_rate, global_rate, w, w_p, w_g, renewal: str = "acc"
):
def step_w(self, x, y, local_rate, global_rate, w, w_p, w_g, renewal: str = "acc"):
"""
파티클의 한 스텝을 진행합니다.
기본 스텝의 변형으로, 지역최적해와 전역최적해의 분산 정도를 조정할 수 있습니다
@@ -389,11 +418,28 @@ class Particle:
score = self.get_score(x, y, renewal)
if self.converge_reset and self.__check_converge_reset(
score, self.converge_reset_monitor, self.converge_reset_patience, self.converge_reset_min_delta):
score,
self.converge_reset_monitor,
self.converge_reset_patience,
self.converge_reset_min_delta,
):
self.__reset_particle()
score = self.get_score(x, y, renewal)
while np.isnan(score[0]) or np.isnan(score[1]) or np.isnan(score[2]) or score[0] == 0 or score[1] == 0 or score[2] == 0 or np.isinf(score[0]) or np.isinf(score[1]) or np.isinf(score[2]) or score[0] > 1000 or score[1] > 1 or score[2] > 1000:
while (
np.isnan(score[0])
or np.isnan(score[1])
or np.isnan(score[2])
or score[0] == 0
or score[1] == 0
or score[2] == 0
or np.isinf(score[0])
or np.isinf(score[1])
or np.isinf(score[2])
or score[0] > 1000
or score[1] > 1
or score[2] > 1000
):
self.__reset_particle()
score = self.get_score(x, y, renewal)
@@ -429,17 +475,25 @@ class Particle:
return self.best_weights
def set_global_score(self):
"""전역 최고점수를 현재 파티클의 최고점수로 설정합니다
"""
"""전역 최고점수를 현재 파티클의 최고점수로 설정합니다"""
Particle.g_best_score = self.best_score
def set_global_weights(self):
"""전역 최고점수를 받은 가중치를 현재 파티클의 최고점수를 받은 가중치로 설정합니다
"""
"""전역 최고점수를 받은 가중치를 현재 파티클의 최고점수를 받은 가중치로 설정합니다"""
Particle.g_best_weights = self.best_weights
def update_global_best(self):
"""현재 파티클의 점수와 가중치를 전역 최고점수와 가중치로 설정합니다
"""
"""현재 파티클의 점수와 가중치를 전역 최고점수와 가중치로 설정합니다"""
self.set_global_score()
self.set_global_weights()
def check_global_best(self, renewal: str = "loss"):
if renewal == "loss":
if self.best_score[0] < Particle.g_best_score[0]:
self.update_global_best()
elif renewal == "acc":
if self.best_score[1] > Particle.g_best_score[1]:
self.update_global_best()
elif renewal == "mse":
if self.best_score[2] < Particle.g_best_score[2]:
self.update_global_best()