version 1.0.2
back propagation 설정 가능
=> 초기에 한해서 역전파 1회 실행 가능
This commit is contained in:
jung-geun
2023-10-21 02:29:44 +09:00
parent 230d9f9290
commit c8741dcd6d
4 changed files with 16 additions and 12 deletions

View File

@@ -1,7 +1,7 @@
from .optimizer import Optimizer as optimizer
from .particle import Particle as particle
__version__ = "1.0.1"
__version__ = "1.0.2"
__all__ = [
"optimizer",

View File

@@ -328,6 +328,7 @@ class Optimizer:
check_point: int = None,
batch_size: int = None,
validate_data: any = None,
back_propagation: bool = False,
):
"""
# Args:
@@ -393,20 +394,21 @@ class Optimizer:
except ValueError as ve:
sys.exit(ve)
model_ = keras.models.model_from_json(self.model.to_json())
model_.compile(
loss=self.loss,
optimizer="adam",
metrics=["accuracy", "mse"]
)
model_.fit(x, y, epochs=1, verbose=0)
score = model_.evaluate(x, y, verbose=1)
if back_propagation:
model_ = keras.models.model_from_json(self.model.to_json())
model_.compile(
loss=self.loss,
optimizer="adam",
metrics=["accuracy", "mse"]
)
model_.fit(x, y, epochs=1, verbose=0)
score = model_.evaluate(x, y, verbose=1)
self.g_best_score = score
self.g_best_score = score
self.g_best = model_.get_weights()
self.g_best = model_.get_weights()
del model_
del model_
dataset = self._batch_generator_(x, y, batch_size=batch_size)