loss + mse 로 조기 수렴 시 초기화 적용
파티클의 초기화를 opeimizer 에서 particle 객체로 변경
메모리의 점진적인 누수 #6 현재 누수가 다시 조금씩 증가하는것이 보임
This commit is contained in:
jung-geun
2023-10-21 02:19:45 +09:00
parent 6e838ddfd5
commit dd56ab1a60
4 changed files with 242 additions and 224 deletions

View File

@@ -36,16 +36,16 @@ def get_data():
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="sigmoid",
Conv2D(32, kernel_size=(5, 5), activation="relu",
input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3, 3), activation="sigmoid"))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.25))
model.add(Dense(256, activation="sigmoid"))
model.add(Dense(128, activation="sigmoid"))
model.add(Dense(256, activation="relu"))
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
return model
@@ -90,26 +90,24 @@ loss = [
pso_mnist = optimizer(
model,
loss="mean_squared_error",
n_particles=900,
c0=0.2,
c1=0.4,
w_min=0.3,
w_max=0.5,
loss="categorical_crossentropy",
n_particles=500,
c0=0.5,
c1=1.0,
w_min=0.7,
w_max=0.9,
negative_swarm=0.05,
mutation_swarm=0.3,
particle_min=-0.3,
particle_max=0.3,
early_stopping=True,
early_stopping_patience=10,
early_stopping_monitor="loss",
early_stopping_min_delta=0.0005,
convergence_reset=True,
convergence_reset_patience=10,
convergence_reset_monitor="mse",
convergence_reset_min_delta=0.0005,
)
best_score = pso_mnist.fit(
x_train,
y_train,
epochs=200,
epochs=300,
save_info=True,
log=2,
log_name="mnist",
@@ -118,7 +116,7 @@ best_score = pso_mnist.fit(
check_point=25,
empirical_balance=False,
dispersion=False,
batch_size=1024,
batch_size=5000,
)
print("Done!")