mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
23-10-18
batch size 적용 -> 속도 개선 역전파 1회 적용 -> 조기 수렴을 일부 방지
This commit is contained in:
45
mnist.py
45
mnist.py
@@ -1,19 +1,17 @@
|
||||
# %%
|
||||
from pso import optimizer
|
||||
from tensorflow import keras
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.datasets import mnist
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from keras.datasets import mnist
|
||||
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
|
||||
from keras.models import Sequential
|
||||
from tensorflow import keras
|
||||
|
||||
from pso import optimizer
|
||||
|
||||
|
||||
def get_data():
|
||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
@@ -24,8 +22,10 @@ def get_data():
|
||||
|
||||
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
|
||||
|
||||
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
|
||||
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
|
||||
x_train, x_test = tf.convert_to_tensor(
|
||||
x_train), tf.convert_to_tensor(x_test)
|
||||
y_train, y_test = tf.convert_to_tensor(
|
||||
y_train), tf.convert_to_tensor(y_test)
|
||||
|
||||
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
|
||||
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
||||
@@ -40,8 +40,10 @@ def get_data_test():
|
||||
|
||||
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
|
||||
|
||||
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
|
||||
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
|
||||
x_train, x_test = tf.convert_to_tensor(
|
||||
x_train), tf.convert_to_tensor(x_test)
|
||||
y_train, y_test = tf.convert_to_tensor(
|
||||
y_train), tf.convert_to_tensor(y_test)
|
||||
|
||||
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
|
||||
|
||||
@@ -51,7 +53,8 @@ def get_data_test():
|
||||
def make_model():
|
||||
model = Sequential()
|
||||
model.add(
|
||||
Conv2D(32, kernel_size=(5, 5), activation="sigmoid", input_shape=(28, 28, 1))
|
||||
Conv2D(32, kernel_size=(5, 5), activation="sigmoid",
|
||||
input_shape=(28, 28, 1))
|
||||
)
|
||||
model.add(MaxPooling2D(pool_size=(3, 3)))
|
||||
model.add(Conv2D(64, kernel_size=(3, 3), activation="sigmoid"))
|
||||
@@ -83,7 +86,7 @@ def random_state():
|
||||
|
||||
# %%
|
||||
model = make_model()
|
||||
x_train, y_train = get_data_test()
|
||||
x_train, y_train, x_test, y_test = get_data()
|
||||
|
||||
loss = [
|
||||
"mean_squared_error",
|
||||
@@ -104,12 +107,12 @@ loss = [
|
||||
pso_mnist = optimizer(
|
||||
model,
|
||||
loss="mean_squared_error",
|
||||
n_particles=2000,
|
||||
n_particles=600,
|
||||
c0=0.2,
|
||||
c1=0.4,
|
||||
w_min=0.3,
|
||||
w_max=0.7,
|
||||
negative_swarm=0.1,
|
||||
w_max=0.5,
|
||||
negative_swarm=0.05,
|
||||
mutation_swarm=0.3,
|
||||
particle_min=-4,
|
||||
particle_max=4,
|
||||
@@ -118,16 +121,16 @@ pso_mnist = optimizer(
|
||||
best_score = pso_mnist.fit(
|
||||
x_train,
|
||||
y_train,
|
||||
epochs=300,
|
||||
epochs=200,
|
||||
save_info=True,
|
||||
log=1,
|
||||
log=2,
|
||||
log_name="mnist",
|
||||
save_path="./logs/mnist",
|
||||
renewal="acc",
|
||||
check_point=25,
|
||||
empirical_balance=False,
|
||||
dispersion=False,
|
||||
|
||||
batch_size=32,
|
||||
)
|
||||
|
||||
print("Done!")
|
||||
|
||||
Reference in New Issue
Block a user