dev container 조정
This commit is contained in:
jung-geun
2023-07-09 00:36:02 +09:00
parent 02228db1ba
commit f18932d6d2
6 changed files with 22 additions and 24 deletions

View File

@@ -16,7 +16,9 @@
"donjayamanne.python-extension-pack", "donjayamanne.python-extension-pack",
"tht13.python", "tht13.python",
"esbenp.prettier-vscode", "esbenp.prettier-vscode",
"ms-python.black-formatter" "ms-python.black-formatter",
"github.vscode-github-actions",
"eamodio.gitlens"
] ]
} }
}, },

View File

@@ -1,6 +1,5 @@
{ {
"[python]": { "[python]": {
"editor.defaultFormatter": "ms-python.black-formatter" "editor.defaultFormatter": "ms-python.black-formatter"
}, }
"python.formatting.provider": "none"
} }

View File

@@ -50,7 +50,7 @@ def make_model():
# %% # %%
model = make_model() model = make_model()
x_train, y_train, x_test, y_test = get_data() x_train, y_train = get_data_test()
loss = [ loss = [
"mse", "mse",
@@ -73,9 +73,9 @@ if __name__ == "__main__":
loss=loss[2], loss=loss[2],
n_particles=100, n_particles=100,
c0=0.35, c0=0.35,
c1=0.8, c1=0.7,
w_min=0.4, w_min=0.5,
w_max=1.1, w_max=0.9,
negative_swarm=0.2, negative_swarm=0.2,
mutation_swarm=0.1, mutation_swarm=0.1,
) )

View File

@@ -43,21 +43,14 @@ def get_data_test():
def make_model(): def make_model():
model = Sequential() model = Sequential()
model.add( model.add(
Conv2D( Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
32,
kernel_size=(5, 5),
strides=(1, 1),
padding="same",
activation="relu",
input_shape=(28, 28, 1),
)
) )
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(2, 2), activation="relu", padding="same")) model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2))) model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25)) model.add(Dropout(0.25))
model.add(Flatten()) model.add(Flatten())
model.add(Dense(1000, activation="relu")) model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax")) model.add(Dense(10, activation="softmax"))
return model return model
@@ -66,7 +59,9 @@ def make_model():
model = make_model() model = make_model()
x_train, y_train, x_test, y_test = get_data() x_train, y_train, x_test, y_test = get_data()
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) model.compile(
optimizer="sgd", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
print("Training model...") print("Training model...")
model.fit(x_train, y_train, epochs=1000, batch_size=128, verbose=1) model.fit(x_train, y_train, epochs=1000, batch_size=128, verbose=1)

File diff suppressed because one or more lines are too long

View File

@@ -379,8 +379,10 @@ class Optimizer:
score[0] = np.inf score[0] = np.inf
if score[1] == None: if score[1] == None:
score[1] = 0 score[1] = 0
loss = loss + score[0] loss = loss + score[0]
acc = acc + score[1] acc = acc + score[1]
if score[0] < min_loss: if score[0] < min_loss:
min_loss = score[0] min_loss = score[0]
if score[0] > max_loss: if score[0] > max_loss: