mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
23-07-09
dev container 조정
This commit is contained in:
@@ -16,7 +16,9 @@
|
||||
"donjayamanne.python-extension-pack",
|
||||
"tht13.python",
|
||||
"esbenp.prettier-vscode",
|
||||
"ms-python.black-formatter"
|
||||
"ms-python.black-formatter",
|
||||
"github.vscode-github-actions",
|
||||
"eamodio.gitlens"
|
||||
]
|
||||
}
|
||||
},
|
||||
|
||||
3
.vscode/settings.json
vendored
3
.vscode/settings.json
vendored
@@ -1,6 +1,5 @@
|
||||
{
|
||||
"[python]": {
|
||||
"editor.defaultFormatter": "ms-python.black-formatter"
|
||||
},
|
||||
"python.formatting.provider": "none"
|
||||
}
|
||||
}
|
||||
8
mnist.py
8
mnist.py
@@ -50,7 +50,7 @@ def make_model():
|
||||
|
||||
# %%
|
||||
model = make_model()
|
||||
x_train, y_train, x_test, y_test = get_data()
|
||||
x_train, y_train = get_data_test()
|
||||
|
||||
loss = [
|
||||
"mse",
|
||||
@@ -73,9 +73,9 @@ if __name__ == "__main__":
|
||||
loss=loss[2],
|
||||
n_particles=100,
|
||||
c0=0.35,
|
||||
c1=0.8,
|
||||
w_min=0.4,
|
||||
w_max=1.1,
|
||||
c1=0.7,
|
||||
w_min=0.5,
|
||||
w_max=0.9,
|
||||
negative_swarm=0.2,
|
||||
mutation_swarm=0.1,
|
||||
)
|
||||
|
||||
19
mnist_tf.py
19
mnist_tf.py
@@ -43,21 +43,14 @@ def get_data_test():
|
||||
def make_model():
|
||||
model = Sequential()
|
||||
model.add(
|
||||
Conv2D(
|
||||
32,
|
||||
kernel_size=(5, 5),
|
||||
strides=(1, 1),
|
||||
padding="same",
|
||||
activation="relu",
|
||||
input_shape=(28, 28, 1),
|
||||
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
|
||||
)
|
||||
)
|
||||
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
|
||||
model.add(Conv2D(64, kernel_size=(2, 2), activation="relu", padding="same"))
|
||||
model.add(MaxPooling2D(pool_size=(3, 3)))
|
||||
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
|
||||
model.add(MaxPooling2D(pool_size=(2, 2)))
|
||||
model.add(Dropout(0.25))
|
||||
model.add(Flatten())
|
||||
model.add(Dense(1000, activation="relu"))
|
||||
model.add(Dense(128, activation="relu"))
|
||||
model.add(Dense(10, activation="softmax"))
|
||||
|
||||
return model
|
||||
@@ -66,7 +59,9 @@ def make_model():
|
||||
model = make_model()
|
||||
x_train, y_train, x_test, y_test = get_data()
|
||||
|
||||
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
|
||||
model.compile(
|
||||
optimizer="sgd", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
|
||||
)
|
||||
|
||||
print("Training model...")
|
||||
model.fit(x_train, y_train, epochs=1000, batch_size=128, verbose=1)
|
||||
|
||||
@@ -379,8 +379,10 @@ class Optimizer:
|
||||
score[0] = np.inf
|
||||
if score[1] == None:
|
||||
score[1] = 0
|
||||
|
||||
loss = loss + score[0]
|
||||
acc = acc + score[1]
|
||||
|
||||
if score[0] < min_loss:
|
||||
min_loss = score[0]
|
||||
if score[0] > max_loss:
|
||||
|
||||
Reference in New Issue
Block a user