# %% import json import os import sys import numpy as np import tensorflow as tf from keras.datasets import fashion_mnist from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D from keras.models import Sequential from pso import optimizer os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" def get_data(): (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train = x_train.reshape((60000, 28, 28, 1)) x_test = x_test.reshape((10000, 28, 28, 1)) y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10) x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test) y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test) print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}") print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}") return x_train, y_train, x_test, y_test def make_model(): model = Sequential() model.add( Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1)) ) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, kernel_size=(3, 3), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dropout(0.25)) model.add(Dense(256, activation="relu")) model.add(Dense(128, activation="relu")) model.add(Dense(10, activation="softmax")) return model # %% model = make_model() x_train, y_train, x_test, y_test = get_data() pso_mnist = optimizer( model, loss="categorical_crossentropy", n_particles=200, c0=0.7, c1=0.5, w_min=0.1, w_max=0.8, negative_swarm=0.0, mutation_swarm=0.05, convergence_reset=True, convergence_reset_patience=10, convergence_reset_monitor="loss", ) best_score = pso_mnist.fit( x_train, y_train, epochs=1000, save_info=True, log=2, log_name="fashion_mnist", renewal="loss", check_point=25, batch_size=5000, ) print("Done!") sys.exit(0)