import tensorflow as tf from tensorflow import keras # import cupy as cp import numpy as np import gc class Particle: def __init__(self, model: keras.models, loss, negative: bool = False): self.model = model self.loss = loss init_weights = self.model.get_weights() i_w_, s_, l_ = self._encode(init_weights) i_w_ = np.random.rand(len(i_w_)) / 2 - 0.25 self.velocities = self._decode(i_w_, s_, l_) self.negative = negative self.best_score = 0 self.best_weights = init_weights del i_w_, s_, l_ del init_weights gc.collect() """ Returns: (cupy array) : 가중치 - 1차원으로 풀어서 반환 (list) : 가중치의 원본 shape (list) : 가중치의 원본 shape의 길이 """ def _encode(self, weights: list): # w_gpu = cp.array([]) w_gpu = np.array([]) lenght = [] shape = [] for layer in weights: shape.append(layer.shape) w_ = layer.reshape(-1) lenght.append(len(w_)) # w_gpu = cp.append(w_gpu, w_) w_gpu = np.append(w_gpu, w_) return w_gpu, shape, lenght """ Returns: (list) : 가중치 원본 shape으로 복원 """ def _decode(self, weight: list, shape, lenght): weights = [] start = 0 for i in range(len(shape)): end = start + lenght[i] w_ = weight[start:end] # w_ = weight[start:end].get() w_ = np.reshape(w_, shape[i]) # w_ = w_.reshape(shape[i]) weights.append(w_) start = end del start, end, w_ del shape, lenght del weight return weights def get_score(self, x, y, renewal: str = "acc"): self.model.compile(loss=self.loss, optimizer="sgd", metrics=["accuracy"]) score = self.model.evaluate(x, y, verbose=0) # print(score) if renewal == "acc": if score[1] > self.best_score: self.best_score = score[1] self.best_weights = self.model.get_weights() elif renewal == "loss": if score[0] < self.best_score: self.best_score = score[0] self.best_weights = self.model.get_weights() return score def _update_velocity(self, local_rate, global_rate, w, g_best): encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights()) encode_v, v_sh, v_len = self._encode(weights=self.velocities) encode_p, p_sh, p_len = self._encode(weights=self.best_weights) encode_g, g_sh, g_len = self._encode(weights=g_best) r0 = np.random.rand() r1 = np.random.rand() if self.negative: new_v = ( w * encode_v + -1 * local_rate * r0 * (encode_p - encode_w) + -1 * global_rate * r1 * (encode_g - encode_w) ) else: new_v = ( w * encode_v + local_rate * r0 * (encode_p - encode_w) + global_rate * r1 * (encode_g - encode_w) ) self.velocities = self._decode(new_v, w_sh, w_len) del encode_w, w_sh, w_len del encode_v, v_sh, v_len del encode_p, p_sh, p_len del encode_g, g_sh, g_len del r0, r1 def _update_velocity_w(self, local_rate, global_rate, w, w_p, w_g, g_best): encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights()) encode_v, v_sh, v_len = self._encode(weights=self.velocities) encode_p, p_sh, p_len = self._encode(weights=self.best_weights) encode_g, g_sh, g_len = self._encode(weights=g_best) r0 = np.random.rand() r1 = np.random.rand() if self.negative: new_v = ( w * encode_v + -1 * local_rate * r0 * (w_p * encode_p - encode_w) + -1 * global_rate * r1 * (w_g * encode_g - encode_w) ) else: new_v = ( w * encode_v + local_rate * r0 * (w_p * encode_p - encode_w) + global_rate * r1 * (w_g * encode_g - encode_w) ) self.velocities = self._decode(new_v, w_sh, w_len) del encode_w, w_sh, w_len del encode_v, v_sh, v_len del encode_p, p_sh, p_len del encode_g, g_sh, g_len del r0, r1 def _update_weights(self): encode_w, w_sh, w_len = self._encode(weights=self.model.get_weights()) encode_v, v_sh, v_len = self._encode(weights=self.velocities) new_w = encode_w + encode_v self.model.set_weights(self._decode(new_w, w_sh, w_len)) del encode_w, w_sh, w_len del encode_v, v_sh, v_len def f(self, x, y, weights): self.model.set_weights(weights) score = self.model.evaluate(x, y, verbose=0)[1] if score > 0: return 1 / (1 + score) else: return 1 + np.abs(score) def step(self, x, y, local_rate, global_rate, w, g_best, renewal: str = "acc"): self._update_velocity(local_rate, global_rate, w, g_best) self._update_weights() return self.get_score(x, y, renewal) def step_w( self, x, y, local_rate, global_rate, w, g_best, w_p, w_g, renewal: str = "acc" ): self._update_velocity_w(local_rate, global_rate, w, w_p, w_g, g_best) self._update_weights() return self.get_score(x, y, renewal) def get_best_score(self): return self.best_score def get_best_weights(self): return self.best_weights