import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import tensorflow as tf gpus = tf.config.experimental.list_physical_devices("GPU") if gpus: try: tf.config.experimental.set_memory_growth(gpus[0], True) except Exception as e: print(e) finally: del gpus from keras.datasets import mnist from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D from keras.models import Sequential def get_data(): (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train = x_train.reshape((60000, 28, 28, 1)) x_test = x_test.reshape((10000, 28, 28, 1)) print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}") print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}") return x_train, y_train, x_test, y_test def get_data_test(): (x_train, y_train), (x_test, y_test) = mnist.load_data() x_test = x_test.reshape((10000, 28, 28, 1)) return x_test, y_test def make_model(): model = Sequential() model.add( Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1)) ) model.add(MaxPooling2D(pool_size=(3, 3))) model.add(Conv2D(64, kernel_size=(3, 3), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation="relu")) model.add(Dense(10, activation="softmax")) return model model = make_model() x_train, y_train, x_test, y_test = get_data() y_train = tf.one_hot(y_train, 10) y_test = tf.one_hot(y_test, 10) model.compile(optimizer="adam", loss="mse", metrics=["accuracy"]) print("Training model...") model.fit(x_train, y_train, epochs=100, batch_size=128, verbose=1) print("Evaluating model...") model.evaluate(x_test, y_test, verbose=1) weights = model.get_weights()