# %% import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf tf.random.set_seed(777) # for reproducibility from tensorflow import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K # from pso_tf import PSO from pso import Optimizer # from optimizer import Optimizer import numpy as np from datetime import date from tqdm import tqdm import gc # print(tf.__version__) # print(tf.config.list_physical_devices()) # print(f"Num GPUs Available: {len(tf.config.list_physical_devices('GPU'))}") def get_data(): (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train = x_train.reshape((60000, 28, 28, 1)) x_test = x_test.reshape((10000, 28, 28, 1)) print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}") print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}") return x_train, y_train, x_test, y_test def get_data_test(): (x_train, y_train), (x_test, y_test) = mnist.load_data() x_test = x_test.reshape((10000, 28, 28, 1)) return x_test, y_test def make_model(): model = Sequential() model.add(Conv2D(32, kernel_size=(5, 5), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(3, 3))) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(10, activation='softmax')) # model.summary() return model # %% model = make_model() x_test, y_test = get_data_test() # loss = 'binary_crossentropy' # loss = 'categorical_crossentropy' # loss = 'sparse_categorical_crossentropy' # loss = 'kullback_leibler_divergence' # loss = 'poisson' # loss = 'cosine_similarity' # loss = 'log_cosh' loss = 'huber_loss' # loss = 'mean_absolute_error' # loss = 'mean_absolute_percentage_error' # loss = 'mean_squared_error' pso_mnist = Optimizer(model, loss=loss, n_particles=50, c0=0.4, c1=0.8, w_min=0.4, w_max=0.95, negative_swarm=0.3) weight, score = pso_mnist.fit( x_test, y_test, epochs=500, save=True, save_path="./result/mnist", renewal="acc", empirical_balance=True, Dispersion=False, check_point=10) # pso_mnist.model_save("./result/mnist") # pso_mnist.save_info("./result/mnist") gc.collect()