# %% from pso import optimizer from tensorflow import keras from keras.models import Sequential from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D from keras.datasets import mnist, fashion_mnist import tensorflow as tf import numpy as np import json import os import sys os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" def get_data(): (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train = x_train.reshape((60000, 28, 28, 1)) x_test = x_test.reshape((10000, 28, 28, 1)) y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10) x_train, x_test = tf.convert_to_tensor( x_train), tf.convert_to_tensor(x_test) y_train, y_test = tf.convert_to_tensor( y_train), tf.convert_to_tensor(y_test) print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}") print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}") return x_train, y_train, x_test, y_test def make_model(): model = Sequential() model.add( Conv2D(32, kernel_size=(5, 5), activation="sigmoid", input_shape=(28, 28, 1)) ) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, kernel_size=(3, 3), activation="sigmoid")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dropout(0.25)) model.add(Dense(256, activation="sigmoid")) model.add(Dense(128, activation="sigmoid")) model.add(Dense(10, activation="softmax")) return model def random_state(): with open( "result/mnist/20230723-061626/mean_squared_error_[0.6384999752044678, 0.0723000094294548].json", "r", ) as f: json_ = json.load(f) rs = ( json_["random_state_0"], np.array(json_["random_state_1"]), json_["random_state_2"], json_["random_state_3"], json_["random_state_4"], ) return rs # %% model = make_model() x_train, y_train, x_test, y_test = get_data() loss = [ "mean_squared_error", "categorical_crossentropy", "sparse_categorical_crossentropy", "binary_crossentropy", "kullback_leibler_divergence", "poisson", "cosine_similarity", "log_cosh", "huber_loss", "mean_absolute_error", "mean_absolute_percentage_error", ] # rs = random_state() pso_mnist = optimizer( model, loss="mean_squared_error", n_particles=500, c0=0.2, c1=0.4, w_min=0.3, w_max=0.5, negative_swarm=0.05, mutation_swarm=0.3, particle_min=-0.3, particle_max=0.3, early_stopping=True, early_stopping_patience=10, ) best_score = pso_mnist.fit( x_train, y_train, epochs=200, save_info=True, log=2, log_name="fashion_mnist", save_path="./logs/fashion_mnist", renewal="acc", check_point=25, empirical_balance=False, dispersion=False, batch_size=1024, ) print("Done!") sys.exit(0)