{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "\n", "%matplotlib inline\n", "\n", "data = pd.read_csv(\"result/mnist/07-13-02-05_75_200_0.25_0.4_0.3_acc.csv\", header=None)\n", "print(data.shape)\n", "\n", "loss = pd.DataFrame()\n", "acc = pd.DataFrame()\n", "\n", "for i in range(len(data.iloc[0])):\n", " if i % 2 == 0:\n", " loss[i] = data[i]\n", " else:\n", " acc[i] = data[i]\n", "\n", "print(loss.shape, acc.shape)\n", "\n", "fig, axes = plt.subplots(nrows=2, sharey=False, sharex=True, figsize=(6, 6))\n", "\n", "loss.replace('nan' ,np.inf ,inplace=True)\n", "loss = loss.fillna(np.inf)\n", "\n", "loss.plot(kind=\"line\", ax=axes[0], legend=False, alpha=0.5, ylabel=\"loss\", grid=True, title=f\"best loss {loss.min(numeric_only=True).min()}\")\n", "\n", "acc.plot(kind=\"line\", ax=axes[1], legend=False, alpha=0.5, ylabel=\"acc\", xlabel=\"epoch\", grid=True, title=f\"best acc {acc.max(numeric_only=True).max()}\")\n", "\n", "plt.show()\n", "plt.clf()\n", "plt.clf()\n", "plt.close()\n", "plt.close()\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "pso", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": {}, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }