Files
PSO/bean.py
jung-geun 389027409d 23-10-25
version 1.0.3
최고 점수 클래스 변수로 변경
log 저장 위치 고정
bean, seeds 데이터셋 추가 실험
2023-10-25 12:53:23 +09:00

70 lines
1.8 KiB
Python

import os
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import to_categorical
from ucimlrepo import fetch_ucirepo
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
def make_model():
model = Sequential()
model.add(Dense(12, input_dim=16, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(7, activation='softmax'))
return model
def get_data():
# fetch dataset
dry_bean_dataset = fetch_ucirepo(id=602)
# data (as pandas dataframes)
X = dry_bean_dataset.data.features
y = dry_bean_dataset.data.targets
x = X.to_numpy()
# object to categorical
x = x.astype('float32')
y_class = to_categorical(y)
# metadata
# print(dry_bean_dataset.metadata)
# variable information
# print(dry_bean_dataset.variables)
# print(X.head())
# print(y.head())
# y_class = to_categorical(y)
x_train, x_test, y_train, y_test = train_test_split(
x, y_class, test_size=0.2, random_state=42, shuffle=True)
return x_train, x_test, y_train, y_test
x_train, x_test, y_train, y_test = get_data()
model = make_model()
early_stopping = keras.callbacks.EarlyStopping(
patience=10, min_delta=0.001, restore_best_weights=True)
model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam', metrics=['accuracy', "mse"])
model.summary()
history = model.fit(x_train, y_train, epochs=150,
batch_size=10, callbacks=[early_stopping])
score = model.evaluate(x_test, y_test, verbose=2)