Files
PSO/mnist.py
jung-geun 6e838ddfd5 23-10-20
조기 수렴 시 파티클 리셋 적용
모델의 초기화 수정 => 랜덤값은 문제가 많음
미니배치 초기화 시 자동 shuffle 적용
negative 파티클 특정 수치마다 초기화
2023-10-20 05:47:25 +09:00

127 lines
3.0 KiB
Python

# %%
from pso import optimizer
from tensorflow import keras
from keras.models import Sequential
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.datasets import mnist
import tensorflow as tf
import numpy as np
import json
import os
import sys
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
x_train, x_test = tf.convert_to_tensor(
x_train), tf.convert_to_tensor(x_test)
y_train, y_test = tf.convert_to_tensor(
y_train), tf.convert_to_tensor(y_test)
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="sigmoid",
input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3, 3), activation="sigmoid"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.25))
model.add(Dense(256, activation="sigmoid"))
model.add(Dense(128, activation="sigmoid"))
model.add(Dense(10, activation="softmax"))
return model
def random_state():
with open(
"result/mnist/20230723-061626/mean_squared_error_[0.6384999752044678, 0.0723000094294548].json",
"r",
) as f:
json_ = json.load(f)
rs = (
json_["random_state_0"],
np.array(json_["random_state_1"]),
json_["random_state_2"],
json_["random_state_3"],
json_["random_state_4"],
)
return rs
# %%
model = make_model()
x_train, y_train, x_test, y_test = get_data()
loss = [
"mean_squared_error",
"categorical_crossentropy",
"sparse_categorical_crossentropy",
"binary_crossentropy",
"kullback_leibler_divergence",
"poisson",
"cosine_similarity",
"log_cosh",
"huber_loss",
"mean_absolute_error",
"mean_absolute_percentage_error",
]
# rs = random_state()
pso_mnist = optimizer(
model,
loss="mean_squared_error",
n_particles=900,
c0=0.2,
c1=0.4,
w_min=0.3,
w_max=0.5,
negative_swarm=0.05,
mutation_swarm=0.3,
particle_min=-0.3,
particle_max=0.3,
early_stopping=True,
early_stopping_patience=10,
early_stopping_monitor="loss",
early_stopping_min_delta=0.0005,
)
best_score = pso_mnist.fit(
x_train,
y_train,
epochs=200,
save_info=True,
log=2,
log_name="mnist",
save_path="./logs/mnist",
renewal="acc",
check_point=25,
empirical_balance=False,
dispersion=False,
batch_size=1024,
)
print("Done!")
sys.exit(0)