mirror of
https://github.com/jung-geun/PSO.git
synced 2025-12-20 04:50:45 +09:00
668 lines
166 KiB
Plaintext
668 lines
166 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"2023-05-24 15:30:18.194977: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"2.10.0\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import os\n",
|
|
"os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'\n",
|
|
"import tensorflow as tf\n",
|
|
"# tf.random.set_seed(777) # for reproducibility\n",
|
|
"\n",
|
|
"from pso_tf import PSO\n",
|
|
"from tensorflow import keras\n",
|
|
"\n",
|
|
"print(tf.__version__)\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"from tensorflow import keras\n",
|
|
"from tensorflow.keras.models import Sequential\n",
|
|
"from tensorflow.keras import layers\n",
|
|
"\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"def get_data():\n",
|
|
" x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])\n",
|
|
" y = np.array([[0], [1], [1], [0]])\n",
|
|
" return x, y\n",
|
|
"\n",
|
|
"def make_model():\n",
|
|
" leyer = []\n",
|
|
" leyer.append(layers.Dense(2, activation='sigmoid', input_shape=(2,)))\n",
|
|
" leyer.append(layers.Dense(1, activation='sigmoid'))\n",
|
|
"\n",
|
|
" model = Sequential(leyer)\n",
|
|
"\n",
|
|
" sgd = keras.optimizers.SGD(lr=0.1, momentum=1, decay=1e-05, nesterov=True)\n",
|
|
" # adam = keras.optimizers.Adam(lr=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.)\n",
|
|
" model.compile(loss='mse', optimizer=sgd, metrics=['accuracy'])\n",
|
|
"\n",
|
|
" print(model.summary())\n",
|
|
"\n",
|
|
" return model"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Model: \"sequential\"\n",
|
|
"_________________________________________________________________\n",
|
|
" Layer (type) Output Shape Param # \n",
|
|
"=================================================================\n",
|
|
" dense (Dense) (None, 2) 6 \n",
|
|
" \n",
|
|
" dense_1 (Dense) (None, 1) 3 \n",
|
|
" \n",
|
|
"=================================================================\n",
|
|
"Total params: 9\n",
|
|
"Trainable params: 9\n",
|
|
"Non-trainable params: 0\n",
|
|
"_________________________________________________________________\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"/home/pieroot/miniconda3/envs/pso/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:111: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n",
|
|
" super().__init__(name, **kwargs)\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"None\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"init particles position: 100%|██████████| 15/15 [00:00<00:00, 82.69it/s]\n",
|
|
"init velocities: 100%|██████████| 15/15 [00:00<00:00, 39297.04it/s]\n",
|
|
"Iter 0/20: 27%|##6 | 4/15 [00:00<00:01, 5.80it/s]"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"WARNING:tensorflow:5 out of the last 5 calls to <function Model.make_test_function.<locals>.test_function at 0x7f3185f88310> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 0/20: 33%|###3 | 5/15 [00:01<00:01, 6.72it/s]"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"WARNING:tensorflow:6 out of the last 6 calls to <function Model.make_test_function.<locals>.test_function at 0x7f3185f885e0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 0/20: 100%|##########| 15/15 [00:02<00:00, 7.16it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.01894655227661133 | acc avg : 0.03333333333333333 | best score : 0.5\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 1/20: 100%|##########| 15/15 [00:01<00:00, 9.30it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.016662003596623738 | acc avg : 0.016666666666666666 | best score : 0.5\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 2/20: 100%|##########| 15/15 [00:01<00:00, 8.80it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.02029351592063904 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 3/20: 100%|##########| 15/15 [00:01<00:00, 9.08it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.026707116762797037 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 4/20: 100%|##########| 15/15 [00:01<00:00, 8.70it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.029503581921259563 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 5/20: 100%|##########| 15/15 [00:01<00:00, 9.35it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.027975618839263916 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 6/20: 100%|##########| 15/15 [00:01<00:00, 9.34it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.023983001708984375 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 7/20: 100%|##########| 15/15 [00:01<00:00, 9.31it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.019697668155034383 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 8/20: 100%|##########| 15/15 [00:01<00:00, 8.59it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.01731112798055013 | acc avg : 0.016666666666666666 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 9/20: 100%|##########| 15/15 [00:01<00:00, 9.13it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.01932766040166219 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 10/20: 100%|##########| 15/15 [00:01<00:00, 9.43it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.020982118447621663 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 11/20: 100%|##########| 15/15 [00:01<00:00, 9.40it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.023207948605219523 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 12/20: 100%|##########| 15/15 [00:01<00:00, 8.24it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.015533120433489481 | acc avg : 0.05 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 13/20: 100%|##########| 15/15 [00:01<00:00, 9.24it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.02530163327852885 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 14/20: 100%|##########| 15/15 [00:01<00:00, 9.29it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.03278601765632629 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 15/20: 100%|##########| 15/15 [00:01<00:00, 9.12it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.033097052574157716 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 16/20: 100%|##########| 15/15 [00:01<00:00, 9.23it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.03319232066472371 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 17/20: 100%|##########| 15/15 [00:01<00:00, 8.21it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.029442755381266277 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 18/20: 100%|##########| 15/15 [00:01<00:00, 9.26it/s]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.016768980026245116 | acc avg : 0.03333333333333333 | best score : 0.75\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Iter 19/20: 100%|##########| 15/15 [00:01<00:00, 9.41it/s]"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"loss avg : 0.03326260050137838 | acc avg : 0.03333333333333333 | best score : 0.75\n",
|
|
"1/1 [==============================] - 0s 43ms/step\n",
|
|
"[[0.5687527 ]\n",
|
|
" [0.52202636]\n",
|
|
" [0.5148632 ]\n",
|
|
" [0.48929393]]\n",
|
|
"[[0]\n",
|
|
" [1]\n",
|
|
" [1]\n",
|
|
" [0]]\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"'''\n",
|
|
"optimizer parameter\n",
|
|
"'''\n",
|
|
"lr = 0.1\n",
|
|
"momentun = 0.8\n",
|
|
"decay = 1e-04\n",
|
|
"nestrov = True\n",
|
|
"\n",
|
|
"'''\n",
|
|
"pso parameter\n",
|
|
"'''\n",
|
|
"n_particles = 30\n",
|
|
"maxiter = 20\n",
|
|
"# epochs = 1\n",
|
|
"w = 0.75\n",
|
|
"c0 = 0.5\n",
|
|
"c1 = 1.5\n",
|
|
"\n",
|
|
"x, y = get_data()\n",
|
|
"x_test = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])\n",
|
|
"y_test = np.array([[0], [1], [1], [0]])\n",
|
|
"\n",
|
|
"model = make_model()\n",
|
|
"\n",
|
|
"loss = keras.losses.MeanSquaredError()\n",
|
|
"# optimizer = keras.optimizers.SGD(lr=0.1, momentum=0.9, decay=1e-05, nesterov=True)\n",
|
|
"\n",
|
|
"\n",
|
|
"pso_xor = PSO(model=model, loss_method=loss, n_particles=15)\n",
|
|
"\n",
|
|
"best_weights, score = pso_xor.optimize(x, y, x_test, y_test, maxiter=maxiter, c0=c0, c1=c1, w=w)\n",
|
|
"\n",
|
|
"model.set_weights(best_weights)\n",
|
|
"\n",
|
|
"y_pred = model.predict(x_test)\n",
|
|
"print(y_pred)\n",
|
|
"print(y_test)\n",
|
|
"\n",
|
|
"history = pso_xor.global_history()\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"# print(f\"history > {history}\")\n",
|
|
"# print(f\"score > {score}\")\n",
|
|
"# plt.plot(history)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Text(0.5, 1.0, 'acc history')"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUZf7APzPbS3rvCaEGCL2DiqKADRULonB2xS7qWc6znnr+9M4uFlRUUCxYEVEQUapIDTWEkt57Nttn5vfHpBCSkIQins7nefbZ3Snv+87szsz3/VZBURQFDQ0NDQ0NDY2ThHiyB6ChoaGhoaHx10YTRjQ0NDQ0NDROKpowoqGhoaGhoXFS0YQRDQ0NDQ0NjZOKJoxoaGhoaGhonFQ0YURDQ0NDQ0PjpKIJIxoaGhoaGhonFU0Y0dDQ0NDQ0DipaMKIhoaGhoaGxklFE0Y0NP4kzJs3D0EQyM7OPtlDaYEgCNx6660dbvdHHb+GhsaJRxNGNDQ0/mdxOp08+uijrFy58mQPRUND4xjQhBENDY0/BDNmzMDlcpGUlNTpfZxOJ4899pgmjGho/I+jCSMaGhp/CHQ6HWazGUEQTvZQqK+vP9lD0ND4S6EJIxoaf3Jee+01+vbti8lkIjY2lltuuYXq6uoW22RlZTF16lSio6Mxm83Ex8czbdo0ampqmrZZtmwZY8eOJTg4GLvdTq9evXjwwQc7PY4vv/ySfv36YTKZ6Nu3L0uXLm2xvi2fkY0bNzJx4kTCw8OxWCykpKRwzTXXAJCdnU1ERAQAjz32GIIgIAgCjz76aNP+K1asYNy4cdhsNoKDg5kyZQq7d+9u0e+jjz6KIAjs2rWL6dOnExISwtixY3n33XcRBIEtW7a0OpannnoKnU5HQUFBp49fQ0OjffQnewAaGhonjkcffZTHHnuMCRMmMGvWLDIzM5kzZw6//fYba9aswWAw4PV6mThxIh6Ph9tuu43o6GgKCgpYvHgx1dXVBAUFsXPnTs4991zS09N5/PHHMZlM7Nu3jzVr1nRqHKtXr+bzzz/n5ptvJiAggJdeeompU6eSm5tLWFhYm/uUlpZy1llnERERwf33309wcDDZ2dl8/vnnAERERDBnzhxmzZrFhRdeyEUXXQRAeno6AMuXL2fy5Ml069aNRx99FJfLxcsvv8yYMWPYvHkzycnJLfq75JJL6NGjB0899RSKonDxxRdzyy23sGDBAgYNGtRi2wULFnDaaacRFxfXlZ9DQ0OjPRQNDY0/Be+++64CKAcPHlQURVFKS0sVo9GonHXWWYokSU3bvfLKKwqgvPPOO4qiKMqWLVsUQPn000/bbfv5559XAKWsrKzL4wIUo9Go7Nu3r2nZtm3bFEB5+eWX2x3/F198oQDKb7/91m7bZWVlCqA88sgjrdYNHDhQiYyMVCoqKlr0K4qiMnPmzKZljzzyiAIol19+eas2Lr/8ciU2NrbF+du8ebMCKO+++25nDl9DQ6MTaGYaDY0/KcuXL8fr9XLnnXciis2X+vXXX09gYCDffvstAEFBQQB8//33OJ3ONtsKDg4G4KuvvkKW5S6PZcKECaSmpjZ9T09PJzAwkAMHDrS7T2Ofixcvxufzdam/oqIitm7dylVXXUVoaGiLfs8880yWLFnSap+bbrqp1bKZM2dSWFjITz/91LRswYIFWCwWpk6d2qUxaWhotI8mjGho/EnJyckBoFevXi2WG41GunXr1rQ+JSWF2bNnM3fuXMLDw5k4cSKvvvpqC3+Ryy67jDFjxnDdddcRFRXFtGnT+OSTTzotmCQmJrZaFhISQlVVVbv7nHrqqUydOpXHHnuM8PBwpkyZwrvvvovH4znqYwfo06cP5eXlrZxUU1JSWm175plnEhMTw4IFCwCQZZmPPvqIKVOmEBAQ0OE4NDQ0OocmjGhoaPCf//yHjIwMHnzwQVwuF7fffjt9+/YlPz8fAIvFwi+//MLy5cuZMWMGGRkZXHbZZZx55plIktRh+zqdrs3liqK0u48gCHz22WesW7eOW2+9lYKCAq655hqGDBmCw+E4ugM9AhaLpdUynU7H9OnTWbRoEW63m59++onCwkKuvPLK496/hsZfGU0Y0dD4k9KYryMzM7PFcq/Xy8GDB1vl8+jfvz8PPfQQv/zyC6tWraKgoIDXX3+9ab0oipxxxhn897//ZdeuXTz55JOsWLGihQnjRDBy5EiefPJJNm7cyIIFC9i5cycLFy4EaDcMuL1jB9izZw/h4eHYbLZO9T9z5kxqa2v55ptvWLBgAREREUycOPEoj0ZDQ6MtNGFEQ+NPyoQJEzAajbz00kstNBBvv/02NTU1nHPOOQDU1tbi9/tb7Nu/f39EUWwyiVRWVrZqf+DAgQCdMpscDVVVVa00J4f3abVaAVqFKsfExDBw4EDee++9Fut27NjBDz/8wNlnn93pcaSnp5Oens7cuXNZtGgR06ZNQ6/XAhE1NI4n2hWlofEnJSIiggceeIDHHnuMSZMmcf7555OZmclrr73GsGHDmkwNK1as4NZbb+WSSy6hZ8+e+P1+PvjgA3Q6XZOT5uOPP84vv/zCOeecQ1JSEqWlpbz22mvEx8czduzYEzL+9957j9dee40LL7yQ1NRU6urqeOuttwgMDGwSJiwWC2lpaXz88cf07NmT0NBQ+vXrR79+/Xj22WeZPHkyo0aN4tprr20K7Q0KCmqRi6QzzJw5k3vuuQdAM9FoaJwITnI0j4aGxnHi8NDYRl555RWld+/eisFgUKKiopRZs2YpVVVVTesPHDigXHPNNUpqaqpiNpuV0NBQZfz48cry5cubtvnxxx+VKVOmKLGxsYrRaFRiY2OVyy+/XNm7d2+H4wKUW265pdXypKQk5W9/+1u749+8ebNy+eWXK4mJiYrJZFIiIyOVc889V9m4cWOLdtauXasMGTJEMRqNrcJ8ly9frowZM0axWCxKYGCgct555ym7du1qsX9jaO+RwpaLiooUnU6n9OzZs8Pj1dDQ6DqCohzBg0xDQ0NDg/LycmJiYnj44Yf55z//ebKHo6Hxp0PzGdHQ0NDogHnz5iFJEjNmzDjZQ9HQ+FOi+YxoaGhotMOKFSuaIocuuOCCVinkNTQ0jg+amUZDQ0OjHU477TTWrl3LmDFjmD9/vlaLRkPjBKEJIxoaGhoaGhonFc1nRENDQ0NDQ+OkogkjGhoaGhoaGieV/wkHVlmWKSwsJCAgoN30zxoaGhoaGhp/LBRFoa6ujtjY2BbVww/nf0IYKSwsJCEh4WQPQ0NDQ0NDQ+MoyMvLIz4+vt31/xPCSGOp7ry8PAIDA0/yaDQ0NDQ0NDQ6Q21tLQkJCU3P8fb4nxBGGk0zgYGBmjCioaGhoaHxP0ZHLhaaA6uGhoaGhobGSUUTRjQ0NDQ0NDROKpowoqGhoaGhoXFS0YQRDQ0NjQbqVq6k6OFH8JeVneyhaGj8pfifcGDV0NDQONHULltGwZ13gSTh2b+fpHnvIhgMJ3tYGhp/CTTNiIaGxl8ex+o1FM6+GyQJANemTZQ+/8LJHZSGxl8ITRjR0ND4S+PctIn8W29F8fkIOOss4l54HoDKd96hdtmykzw6DY2/BpowoqGh8ZfFtWMneTfehOJ2Yxs3jrjnniVw0iRCr7oKgKIHHsSbk3NyB6mh8RdAE0Y0NDT+kniyssi77jpkhwPr0KHEv/QigtEIQOTds7EMHozscJB/x53IbvdJHq2Gxp8bTRjR0ND4y+HNzSX3mmuRqqsx9+9P/OtzEC2WpvWCwUDc8/9FFxqKZ88eiv/1r5M4Wg2NPz+aMKKhofGXwldURO5VV+MvK8PUowcJb76Bzm5vtZ0hKoq4/zwHgkDNZ4uoXvT5SRithsZfA00Y0dDQ+Mvgr6gg9+pr8BUWYkxKIvGdt9GHhLS7vW3UKCJuvw2A4scfx71nz+81VA2NvxSaMKKhofGXQKqpIffa6/BmZ6OPiSHx3XfQR0R0uF/YjTdiO2UcisdD/h13INXV/Q6j1dD4a6EJIxoaGn96JEc9uTfcgGfPHnTh4SS9+w6G2NhO7SuIIrHPPIM+NgZfTi5FD/4DRVFO8Ig1NP5aaMKIhobGnxrZ7Sb/lltwb8tAFxRE4ttvY0xO7lIb+pAQ4l94AQwG6pYto3LeeydkrBoaf1U0YURDQ+NPi+L1UnDHnTh//RXRaiVh7luYe/U8qrYs6elE3X8fAKXPPYdz06bjOVQNjb80mjCioaHxp0SRJAruuw/Hzz8jmEzEvz4HS//+x9RmyPTpBJ5zDkgSBXfNxl9RcZxGq6Hx10YTRjQ0NP50KLJM0T8fpu67pWAwEP/Ky9iGDz/mdgVBIObxxzCmpuIvLaXgnntQGurZaGhoHD2aMKKhofGnQlEUSp7+NzWffw6iSNxzz2EfN+64tS/abMS/+AKC1Ypz3XrKXnnluLWtofFXRRNGNDQ0/lSUvfQSVR98AEDMU08SOPGs496HqXt3Yh57DICKOa/j+OWX496HhsZfCU0Y0dDQ+NNQMXcuFXNeByDq4X8SfMEFJ6yvoPPOJWT65QAU3vt3fAUFJ6wvDY0/O5owoqGh8aeg8sMPKX3uPwBE3D2b0OnTT3ifkfffj7l/f6SaGvLvvAvZ6z3hfWpo/BnRhBENDY3/eaq//JKSx58AIOymGwm//vrfpV/RaCT+hecRg4Jwb99O6b+f+V361dD4s6EJIxoaGv/T1P7wA0UP/gOAkBkziLjjjt+1f0NcHHH/pwohVR9+SM3ib3/X/jU0/gxowoiGhsb/LI5Vqyi4+x6QZYIuuoioB+5HEITffRz2U08l7KYbASh6+GE8+/b97mM47jjKYP8KWPsyfHETvD4WnkmBHVr1Yo3jj6D8DxRZqK2tJSgoiJqaGgIDA0/2cDQ0NP4AOH/7jdzrb0BxuwmYPIm4555D0OlO2ngUSSL32utwrl+PMTWVlE8+RrTZTtp4Oo3fA+V7oXgHlOyAkp3qq7607e0tIXDrJrCF/b7j1PifpLPP76PSjLz66qskJydjNpsZMWIEGzZsaHfbefPmIQhCi5fZbD6abjU0NDQAcG3fTt5Ns1DcbuynnkrcM8+cVEEEQNDpiPvPc+gjI/Hu30/Rw4/8sQrqKQrUFkHWMlj9PCy6Dl4bBU/FqlqPL2+Cda/AgZ8aBBEBwrpD2hQY/w+Y9iFE9gVXFfz46HEfXuX775N9+XT8VVXHvW1Q88/8oX4PjRbou7rDxx9/zOzZs3n99dcZMWIEL7zwAhMnTiQzM5PIyMg29wkMDCQzM7Pp+8lQo2poaPw5cO/dS9511yPX12MdMYK4F19AMBpP9rAA0IeFEff8f8mZ+Tdqv/0Wy5DBv0tUTyt8Lijb06Dt2Nms8XBVtr29OQii+kNUX/UV3Q8i+oDR2nI7Syi8Owk2vw+DZkDCsWe1baRi7ts4KyuRf1iGacoFOCUZpyzjlGRcktz0vemzJOOSmz8faZ2rYZ0gQJBeR6BeR6BOfQ8y6AjQ6QjS6wjQ65rX68WG94btGtbrtOfXCaHLZpoRI0YwbNgwXmnIOijLMgkJCdx2223cf//9rbafN28ed955J9XV1Z3uw+Px4PF4mr7X1taSkJCgmWkOY1NNPfWSjL3hognQqReLRRSOKPBJsoLD7afW7aPO7aeu8d3T+F1d5/ZKBFoMhFiNhNpav8yGY5uJKoqiCaaHISsKXxWWsDg/Hz8CCKL6EnXNnxu/I8BRnr4TNUH0uWopL9mJoPO37K/NQahv7f0F2trH7xEpz7YhSw0bHM3xH+HYBUFAQABFUBtXDvkMLb4LHXWuNO6ioACKUMsI4zfECQcxKyJmWcAsCVhlEZMiYJUFzLKAoWF3UVFAUdD5FQS/guCV0PlkBL+M6JMQfTKCT0bwKYheGcGvIPpkbIoLg+Jvb1T4RR2SqFffdTr8oh5ZENQfot1z07zC5q7D4vfhE0XKbBb1dNB4itT/pAIgHNLYIaevBUJz29mG7myLSueDyRcin2Qt15GwSDJWScIqydgaPse4S5lW/gYh/moAlFb/DaHFqT18vXLItdzyJ1AXSn4Bn0vEJHsQj/QHPkpq3D3QiR7qI3sy5fYnj2vbnTXTdEkz4vV62bRpEw888EDTMlEUmTBhAuvWrWt3P4fDQVJSErIsM3jwYJ566in69u3b7vZPP/00jzVkN9Romw8LK5i99SCCW0LwyeBXEPzqu+iXMUqglxTEhu+KX0H2Sfi9Mn6/fFzGYNSL2CwGLBY9JpMOo1mP3qRDNIoIBgFFD7IBJB14DeDWCbgUcMrgVAR8CBgFAaPY8BJEjKKA6ZDvJlHAcMjnw7dVtxdbtiOKmASBfgEW0gOsHR/IH4TVpaU8viuTDCWAlpemArT/cPnDEdD+tX0siIpE330ZjC/fxEo5nVrsJ6SfI6NwRGnmUHT16K0H0Vn2o7MeQGcuIbdKwVioYPXQ8FLwNXyWPSB5FOxusHrVdWYPiK2e4EfGgwFPk0hz5GMR8WPs4n9LQo+j4f8ZyLHdSxQEfAYrPoOdFINMwoE91AXuJisxFaPXj8Hvx+CXMPolDH4Jg19GLzW+K+glGb2soJMUdLKCTgadDKIMOkU9d6IiIAo63EYJh7WM8eb+uEwidXoBh17AYRAaPkOdoWGZXmj4TNN2br36O7h0Ii6dSGOJxHh3Ma9kPkQ31/9u0rsPa2dR5U8kULfmpI2hS8JIeXk5kiQRFRXVYnlUVBR79uxpc59evXrxzjvvkJ6eTk1NDc899xyjR49m586dxMfHt7nPAw88wOzZs5u+N2pGNFSy6t08+OsBTL+Wtjs3kxpeR0IRAb2IohdBL6AYGt71IuhFRB3IPkUVdrwygldq/qyA1y/jrfNQVefpoKeG/gAMIopRRDCI6AMMeHsH4VWEhsEe/4Jjp4UEMDs5iuHBJ+PB1Tl2V5TzRMZWVhAOBGCWnIyq/I6zPLUYZT9IPpD9za/jhBAYB4OvhMC2r8POoMgS9Rt/o7TsOzypasIvX72OuqIQDAYTrVQX7T5XW2sabJKTJE8RSZ5Ckj2FJHqKMSteMMIBMYYHg66nRtfB76qoc1IBGRRFnVUq6v9XoEEzJwCICOgIIgQFBZeuDkSp5UuQEEQ/CHLLWX8DkuLFSRn1lFJPKR6qDxmHwpmbFa5eLqGXOitcNG8nCeA0gcukvqsv4bBl6nezJ4w+/hiS5IoGtZPSxnlXGpQYSvOc/fBjavguNGwvCCJBJAECsncd8d5aJAR2WgLwCyKKAjIWJMWOhA1JCEAS7EioL7/QsJzGdxsSFlXTdwh9i6BvkeuQJWLDqzMCVjsoYPeA3RPGHoqJ028gOrKohdfkoWJms/wnNK3zCSJOnQmX3oSj4d2k1DO99hOCffWUmwL4Mnw8ukNaPESn1tRa0/ls0Owdul48bFskBbdLZHd5tLosysDg2qzD9CzHhiyZqfInApDUJ+64tdtVuuwz0lVGjRrFqFGjmr6PHj2aPn368MYbb/DEE0+0uY/JZMJkMp3oof1P4pFlZu3KQdpXgw6ICDARG2QmwGzAbtZjNeowmnQYDDr0BhHRKIJeh6IXkHUCPj34RBGPTqFeUajzy9RJEnV+iTq/n1qvFyetVaSiImGU3RhlNwa/G6PPg97rQe/xIXj9iF4ZfAqKD2SfgOTX4ffr8PmNeCQjXtmkXlwNqmUAsdrLo8H7OP3CGXgVGa+s4JUVPLL62acoeGQFryzjUZSG9Q3bKe1v61UU6vwSa6odrKyqY2VVHWOC7cxOjmJ0sP0PYxoqqC7jyc3r+IJ4FCEcQfFjdvyIteYrdsh1DOxzJfcNv6/lTrIMkgf8bvB7G949Dcsalx9pnQe89bDlAyiugH3vwqn3wdg7Qdf5m72iKNT/8gu5856g7IxsUlPVm2PprmiK1gUxdswYzr3hys6fDFmC0l2QtwHyf1PfK/e32qxOsSAj0E0uYmHV4/gQqSKYKn00VYZoKsVwqpRAqiQLVV4dUgdaBavVSmhoKCEhIdjdRgw7XdjCAlCGp1BZWUllZSUVFRVUV9cd4vyooNd7kQ0OKi1llJoqKTbWUCY6W7UfY9AxqK6eS76WsO1XhTNvoowUClh1YDUh2i2IdhvY7fitdnw2Gz6rDY/VhtNswmHUUyuIOPwSDp8bh7ceh9dBva+een89TsmJU3Likl24FBeK7OAn5VbWXdOF4oCyBD6n+t9ofB363efE66hn0w9x1FWbUcKnk+/Zhdutw6WPxi2G43YpKEepKHEbQMFLZGURgt6HP8mPPSAVqy0GnU5A1Ivo9A3vOhFRL6jvOgGdKKHDh4gXneJV32U3ouImy5nDW2VrcAkeTH4Lp+y/DLMURq57CGGVy5l6YTomqw10RvWlb3jXmdTrod1lJijPQvroYnS+euotOr42jWX0mAdIS0s7upNwGNuWLWH523NYFzyMjcFDIMSIu38EUwZ1Z9RxnFwd2FLGd29sJzTWxinTrjlu7XaVLgkj4eHh6HQ6SkpKWiwvKSkhOjq6U20YDAYGDRrEvj9DHP5J4Mn9RewsqMFU4UEnCnw+azQJocdoiijaBhvfxb/9U37WS3wSHIAvPJAYo4GfaxWqfT7A10KC93OI4UAHWBpebWACjIqIIlnVl9+Gv3YQvurhLN7n4TrriRE8c1weXsop4ePiStZUO1iz1cHIIBuzk6MZF3JyhBK3383q7F94ZW8WG0zDkEV1RmKqX4+t5lP0/jJSglI4UFPHp3s/5Zp+1xBhjWhuQBRBtIChnZPdWUbdAovvgj2L4ad/qe8Xvg6RfTo+hj17KHn2GUota6i9XAI96CUb39bFELXKBMgMGD/myI3UV6hCR/4GVfAo2Ay++tbbhfWg0B/IpppgvvUN5gdpADeGbuU++S1w12CI6kPklV8QGRDValdZlqmrq6OqqorKykqqqqpafHa5XDidTpxOJ/n5+epORqAOWNp6KIpBwRPuodJWSb6YT74vH+WwGWpyYDLDoocxPHo4Q6OHErBuKfkvPIa31gQoKJPOZb0yCmtwODMeO7XDc90VZEVm8LzhSKKH4oJM9jiG0tveyf+JqANTgPpqhzUf7GZXSREgg0cPpKsrfHCo6cpg0mG2G7DYDZgbXhabsfnzocvtRt4sq+DZ3BJSC3OZ+8T/oQDFl3jBZmTI4AUEBQ0+qvPx9f6veWTNXPzBfgbW96KbLYav+77CRZl3oCeSivpJLFy8kUseuh9rUHDXGs/bgPzhxeg8DmrtOhYHjSG3oDdT446PZuHXLz9l9UfvISOQGdgPgGSTwh5gcWn1cRVGCvdVAxDbPfi4tXk0dEkYMRqNDBkyhB9//JELGgpQybLMjz/+yK233tqpNiRJYvv27Zx99tldHuxfneUVtbyZX4bhYB0A5w+IPXpBxFsPOxbBpnlUFG3h8wA7P8Xb6RUM51v9mMVqAPrYk9mlG4GCgqzIKIqCjPre1jJZkVFQWn9GbtpWQeFg2Wbyqoez1ZVIYVERsTExx+ckHUKSxcR/eidyZ3I0r+SU8FFRJetr6rl0236GBFqZnRzN6aEBJ1Qo8ct+dpTv4NeiX1lbsJZ17gjqAqegWNSHtcG9h+7133F6XCoj+t3H8OjhWBQjt35+Hev923l7x9vcP7y1Y/gxY4+Ey+bD9k9hyb1QtBXeOEUN4Rx9W4ODbEt8JaWUvfgiFSs/p3qmD29P9QEUHjye6tALKJw3lyj8iPog4nsnN+8o+VWtR/4GyGsQQCoPtB6TMQDih0D8cIgfBsGJrP3sFX6oCEdWYJ3cGxmREVNuhOCp8N65aoTIx1fAjC9aPUhFUSQoKIigoCCSk5Nbded2u5sEk8rKSgp+zKRWqkeKMBAaFYYt2EaFuYIcKYddjl3sqd6DpEgtbKCJAYkMix7W9Iq0NkcU1n7wMtnPvIrs16MzC0huBWXjZvz9z6a2RKK+xoMt6PgJ4qIgkqxPYL+8D73uAE9tzub9UzoWLjtDVXE9u9cWAZASZMTo8RPUN4xg5XvMB7/EEhqK+eoFmIOs6Lvg2O6RZd7equYzSaoppS7ATkCdA+vaAOon1JGxfRbDhn6B2Rzb6TYVRWHu9rm8tOUlAMY7RnBX3hXknO/l86yl/Dzkfc7bMQtnbSh1NSP58J9PcOnD9xEY3nY0aCv2/4Sy8HJEn4vqQD37RpzL3mXJ2O32Yw6wUBSFVR/O47evFwFgOv0K6g6asMhwPk72AN+W1fBEjzjE43TfKsyqBiC2R/Bxae9o6bKZZvbs2fztb39j6NChDB8+nBdeeIH6+nquvvpqAGbOnElcXBxPP/00AI8//jgjR46ke/fuVFdX8+yzz5KTk8N11113fI/kT06Jx8cdu3MR6n3oStwA3HRqatcbKt4Bm95FyfiEDNx8HBhAUe8oRtklrjU3+yPojVH4vSXEC+VcPvoRdLrjq734ev/X3JV9AMnZjS9+3sAt06Yc1/YPJcFs5JleCdyZHMWruaXML6xgU62TKzIOMCDAwuzkaM4KCzwuQomsyGRVZfFr0a9sKN7AxpKNOHxOPNYR1AdfgWxRb3jB3kKmm3O5fsx5xAROA8BZW8OWrxezdek39K53UDzIyqfip1zd92qibK1n/seMIED6pZA8Dr65A7K+h+WPqFqSC16H8O7qMdXXU/HOu1S88w71fR3UPCihWEEULPTq9TDR0Rcz47sZJJUGARVERici7P2+U1oPEhoEj4ThENFbFYIUBTa/z9ZP/s0P/lMAiI0IoCbfQrDVwJju4aCLhJlfwbxzVQ3LgkvgykVg7HySMbPZTGxsLLGxsXjz6ih1Q7m1llVj9vNt6bdsL92O/zAfnTh7XJPmY1j0MKJtrTXCitdLyWP3U7XoO0DAmmQl5s3PyL9jNp49ewhwFVNnjmbbzY8S4z3MFHVomFN7n6GlRuaQj90HudmfBDpLLit3lVI8ojvRpmPwtWhg/VcHUBRIGRDOqUMjqVqUha7cRfRt1yLMeR3qt8Put2Dc7I4bO4RFJVWUSQo2t5PUsgKqomMIqMtCXmnCdl409a4sMrbfxJDBH6PTdazlkWSJpzc8zceZHwNwZeilXL77FAyhVoYNSUO3T0eWspNTb+/G6jk51FUE4nafxkf/fJpL/nk3obEd+E/t+Rbl06sQJC8VIQYODh+BV7kaWElcXNwx3UNkWWL53NfY/uP3AJx65TXMKU8ASunr1XNhr0Dm6ESKvT421ToZFnTsCfW8Lj/leerkNuZ/STMCcNlll1FWVsbDDz9McXExAwcOZOnSpU1Orbm5uYhisxtOVVUV119/PcXFxYSEhDBkyBDWrl173OxqfwVkReH23blU+PxE5LmoAyb0iaRXdPsq1RZ4nbDzC9j0Lu6CjXxns/JNlI2IECuj7H4CdD5A9a0PD59AYsJMgoOGs2bNOLy+EgpyvyE8dAKCKCKIImLDuyDqmj938SIcGzcWQ9DnSM5ufLLHxc2/Q5hvjMnIv3rEc3tiFK/llfJeQQXb6lz8bftB+trN3JUUzdkRQV2acSiKQn5dPuuL17OhaAMbijdQ6W7O5eA19cEddRkekyo4hvtruD8Mpg2YhF6nXie15aVsXPwF23/8Ab+32Rl4UEUc2TFZvL3jbR4c8eBxOgttEBgD0z+GrQtg6QPqw/31MSjj/0lNYRRlL72M11FKzTQJ1zDVKSAwcBB9057Dak1mfdF6MsozGFCbTpylhosD34GPXmvZx6Faj4ThEDcErKGtx1KxH765g8zsAr7iPABGpnfnZ9IhP49JfaMxNJw3ovvDzC/hvSmQuw4+vAymf9I6N0YncO9VE229kLSATTu2Ny2PtkU3CR7DoocRZz+yGt5XVET+LbNw71LzKoWNCCRizjIEayDxL77AwUsuJah8D3Xx0ZTV6AnZt/2I7XWVNNHO90mgs+Yg5Lt4M6+Uh7sfm+mg5GAtB7aUIQgQEmND7BGCaNMj1XhwHfBjPfMJNWHaL89C/4shOLFT7cqKwpxcVSvSv+AAJkXBNmwoZGWh90qkem9gp+Fp6up2smv3ffTr++IR7xFuv5v7frmPFXkrEBC4b9h9nLG0N36c2EfHYjPZ6B3am50VO9ntzeDi+87ky+c3UlUEPulMPnrkP1z8wC1EdevedgfbPkb5chaCIlEabmRvejJDB73F4sVrAYg7BhON5Pex5OX/sHf9agRB5MwbbiVy6Cn89PSPAAypc5B4yljOyilnUUkVi8uqj4swUnSgBkWBwAgL9pCT66d5VA6st956a7tmmZUrV7b4/vzzz/P8888fTTcaDczJK+PnqjrMHglXngOAWae1c8EcSsku2DQPti0kT3LwSUAAGT2iGRQoc7lFQhQaHEn1oSQlzCA29lLMJnWmt+6zj8jP8xE5ADYs/xc5y+cduS9BQBRFRFHXhtDS+FnXYvlFSg0fWr3kuAPYmlvNoKSQYzhLnSfSZODR7nHcmhjFG3mlvFNQzk6Hm+t2ZtPLZuaupCjOiwxuN7mRrMgsy1nGmoI1/Fr0K4X1hS3WW3Qmuhu6U2A+g8zAYQDYZA+3BkvcMGAMNr162VXk5/Lb14vYvXolsqTq/aO6daf70JGs+WQ+oaUCggyf7f2Ma/pd0+Ys/LghCDDoSuh2Gnx1K461aym9+wU81QY8PWWq71aQAmUEQUdy8m0kJ81CFNXjeCvjLWwuM/G6PC5K2IlekdQHUvK41lqP9pB8ag2Ulf8mWwrnUy5CQWRAen/GnzeFB55eAcC56Yep62MHwYzP4f0LIHsVLJwOly8EQ9eyPLv3VlGlq2ULOwF4aMRDjI4bTbw9vtNCsmPVagrvuRupphbRIBM7KYiAx78Hi6q6NyYlkfr9UjxfbSF/PTj7jyf+7tNbJFpp0dfh/bb43sZ2iozrzltAAdFQjeiv5L1dhdyZHE2g/ujydiiKwrovVf++kBgbm5fmULy/htOHx1D3Ux6ONYVYb5qmJkHLXasKs9MWdKrtHytqyXJ6MPu89CnKJtpuJ3TwYPjwI2z1TvwbDtD/ulfZsnUGpaXfkm3rSUpK28+danc1t624ja1lWzGKRv59yr8Z5x1KeekOBKMO21B1sjwkagg7K3ayqWQT53Q7h6n3DuPrFzdTmgOKMpFP/vUqF957LfF9+rXs4Le58O09CCgURpnI7BXK4AFvYjbHNvkbHa0w4nO7+fq/T5G9bTOiTs85t99Dz5FjefWnfcgKxPpF0uQSdDYb50b4VGGktJpHU2OPeQL3RzHRwO8QTaNxbGytdfL0AfVhN7oa1soKI1JCGdLeg9vngp1fwqZ3kfN+ZY3FzKJQO1J4JGPsfgYafE2bBgQNIznhKsLDz0AUm1W5+bt3sPazD7GEBRI5oJKgJAeiQUL2HeGGpijIktT0UO0MYUBIj0yq/P1ZtGY7g5JO6fS+x4Nwo55/pMYyKzGSt/LKmJtfRma9m5t25fBcdjF3JkVxQWQIerHlBb/k4BIeWNWca0cv6kkPT2dEUA9Si/NY4kni04iJyIIOvSIxI1Bidv9BRJjULKFFWZls+OpT9v22vqmNxH7pDJ9yKYn9B6AoMpu++xp3XS3jxAH8Im9j7va5PDTyoRN+TtwlTkpXRVC/KgxFr1B3sQ/HeBkEAYslib5p/yUoaGDT9ltLt7KheANTC6O5KHETRp2kCiFXfNp5J9uCzfD17VCynSIi+Eicil/W0bNnT86fcgGr91dS5fQRZjMyslsb2pT4oWp/86eqqcw/maH6w+g7N9OTnT68ubWsCdqKjEy/sH5c1vuyzo0dtSZN+WtzKH/tNVAUzCFe4s62Y7zzG7AEt9hWHxJCtymjWbV+LVXVYBo1DqP5+N2GQ7unEe7MptxWj86Sg7swjvcLyrk16ejMfHm7KynIrEbUC03RRIVZ1eT0DiFUFPDm1OItcGA85z9qSvk9i2Hv99BzYodtz8krA2B4ZgYmyU98cjKxgwez32LB6nJRs3o1Pe+9h149H2NP5j84cPB5bPYeREa0bLvAUcBNy24iuzabAGMAL5/+MkOihlA+TxUsbUOjEBvO8eCowby/6302l2wGwGQ1cMHsoXz72lYKMmvAMJnP//0u5945jW6D1IkEq/4LP6p5r/JizexNtZHW5ymCggZRX1/flNAzNrbzfi2NuOsdfPHM4xRm7kJvMjHl7n+QPGAwsqzwycY8ANK9OmIT1HvHaaGBWHUiBR4fW+tcDAo8tuCFokZhpHvQMbVzPNCEkT8wDr/ErF3Z+BU4K9DGxp9U+/Ks09rwFSnLhI3vwraPqPHW8KXdzspu0fQIVpholTCKDUKIaCEu5hIS4q/AZmutXfE46/nu1f+CopCSdjYWyxJcrmymPXsjUZHnIcsyiiyhyHLDZ7mdz9IR1+9evZJtP3xL77pM1ln6883uav7plzAd5QzucGSvKhSJxo7bCzXoua9bDDclRDA3v5y38svY5/Rw6+5cnssu5o6kKC6OCsXQIJR8f7DBpht/KtN6T2OwGIB/3Zu8WlrNTXFX49Kps/JzbBIP9utLqtWMoihkb9vMhi8/JW9Xs2q++7BRDL/gYmK692paJgg6kvoPJHPtL5zq788v+m0sylrEtf2uJcZ+/B19AfxlZZS99DLVixaBLONL1FF3qxG3vQYQiC1y0UOyoO/TUhh4M+NNeni9/J1tmHUSpVI8kdM/7pwg4q2Hn56C9a+BIlNhSmQ+l+LxSCQmJnLJJZeg0+n4NkMVxif1i24ybbUiaZRqalpwCWT9AJ9eDZe+16lwZff+alBgTfhWAM5KPqvjsTfgr6qi8J57qV+jJosKTq0n6hQr4g1fQRsRPgD2EDMBYWbqKtwUH6ghMe34FZyzDBxIcllhkzAilgzizbxSrk+IwCS2c+7aQZEV1n2h3nP6jI5l56rmpF5rl+YwZUg40p4qHGsKCb0sDUbdrGq3ltwLKacc8T+wtdbJ2mo1dVpawUEwG0jq25fg4GCqo6OwHsymtrAQ2eslLm4ajvpM8vPfZ9eue7AMSSLA3huAPZV7mLV8FuWucqJt0cw5Yw7dQ7rjK3Pi3lMJAthGNwsJgyPVyJz9NfupdlcTbA7GYNJx3q2DWDp3O9nbKhDNk/nmhc+YeH09vd0r1To+QHZiAPuTjCQmXU9MzEUAFBSo5yQ8PByLpWsRbvXVVSx66mHKcg5istm48L5HieulOhyvP1hBToUTowK9vDqSRnUDwKITOTMskK9Kq1lcVn1MwojfK1GSXQv8MTQjR1UoT+P34YGsfA66vMSZDKSVSzi9EmkxgZzasyHU0+eGjE/gncnw6nB2b5nLYwEi9/WJQepj4cp4PyPsEkYRjJbu9O71JKeN20DvXo+0KYgA/PjO69SWlRIUGcXpV88iKupcAEpLv0XU6dAbDBhMZowWK2abHUtAINagYOwhoQSEhRMYEUlwVDQhMXGExSUQnpBERFIKUSmpRKf2IKZHL+J69WHAmZMBGFBahqCvocanY8XudqqEdhHXrgqK/rWe0le2ovg6n/ggyKDn7pRofhuVxoPdYgg16Mh2eblrTx6jf93NB4XlVHvqWVuo2ohvSzqb4Wvf4cPFLzLSfgkvJl6JS2dmuFlh8eAevD18CClmA5nrVjH//jtZ9NTD5O3ajqjT0fe0CVz1nzlMuecfLQSRRlIGDgHAu6+Y4dHD8ct+3tr+1nE5P4ciu1yUz5nD/omTqP70UxRFwjerO+UP+HHbazAYQkk3XUifgzL6A6vhtdGw6T1QFHZV7CL/4AreKi7FKnooctnZ2/OJzjmR7vsRXhupFmZTZGp7X8YHpquo96hJFS+//HIMBgNev8zSHcVAGyaaw0kZB5d/pOaDyPwWFl2rRvJ0gGdvNdW6OjIMewE4M+nMjscPuLZu5eCFF1G/Zg2CXiBmRBUxp4iIV38BIclH3DemYSZatK+mU311FsuggfTOVQVxvTUH0SVRVu5iUUnXi8/t21xKeZ4Dg1lHVEogKBASbSUhLRTJJ7MlX82r4swoQ6r1wqn3Q0AsVOeo2oQjMCdPvdYnumrApM6JGxNbyn0a/AklCfdOVbvRo/s/CAkZjSQ5yci4Aa+3gnWF67hq6VWUu8rpEdKD+ZPn0z1Eva851qoCrLlXKIbwZiEhxBxCtyD1wb65dHPTcp1BZPIN/ek5IgpBENFbJnJw4YdNgsjBHlHsTzYRFj6e7ql/b9qvURjpqommtqyUhY/8nbKcg1iDgrnskX83CSIAH/+makV6e3WEOgoIGz2kad25EcGAGuJ7LIX/Sg7WIksKtiAjgeFdE6ROBJow8gfl85IqPi2uQgT+0z2ehb/mAqpWRBAEpIJMCi4cRPFjs/mucBs3J0YyPy2MQT1FLgnzkmSSUdARHnkuQ4d8ytiRS4mLm4ZO174kvWfNz+xe9ROCIDL51nswWa1NwkhF5Sp8vurjdnzhCUkERUVjkCFMr2oKFm3MOeZ2HesKqfhgF4pXxl/qpP634i63EaDXcXtSFL+NTOPh1FjCDXry3F7uzcxn9K97qLGeQpxoY8/3bzLONpWHut9OpSGY7kaY1y+Fr0YOZKDVSMaPS3n3rptY/MIzlGbvR28yMfjsKVz70lwmzbqTsPi2swpLsoS1p7qu5OA+rkv9GwBf7PuCQkdhm/t0FUWWqf7iS/ZPmkzZiy8hO53oR/XG+UZvyvrvQlF8hIWNZ8SI74gY8xzMWgMJI8BbB9/cDgsu5os1T/FWcSlhkkyp28ai3P70Of20I3fsrIQvboL5F0F1LgQl4Lp4IfMrB1JdW0dISAhXXnll0yxz9b4yat1+IgJMDE9pw0RzOKnjVZ8FnRF2fQVf3Kgm9GrvPCgK7r2VrAnYgoxM37C+xAccOaJCURQqP5hP9oyZ+IuLMYaZSJ5QQnBPEa74rFO5WhpzOhTtr+74mLqAZeBABu1V/cpEcyEIPnQlLubkliJ34cElSTK/fqWGXw86M5HyXDXiIq5XCKfP6I3RoudgvgNvoBEkBcf6QjDZYZIaRcmaF1Rn5DbIdXn4prQagInbfwNBIFAQsNvV3Bm2YUMBMLvdOH/7TT0WUU//fi9jsSThdhfwxqoruXn5LOp99QyPHs57k95rijiTXX6cm9RcWPaxrQXYwVGqdqTRVNOIqBOZ8Lc0+p+qah8P+Kex0XERmd0SOBAjYbWm0q/vCwhCs7b1aISRivw8Pnr4XqqLiwiMiGLa4/9HRFJK0/pqp5fvGgTwAV49EUIpuqBmM8rpYQFYRIEct5cdDler9jtLU36RHsF/iESQmjDyByTH5eHvmapkfFdyFPv3VlLt9JEUZuXs/uqFUvHio9TsVygSbVhCrUxNljk90I9NB6IhktRu93LK2HUM6PciQUGDO/yz1ZaXsnyuGgEx4qLLmqR0u60HdntvFMVHadn3x+0YBUGg+9CRAPSpVSMPVu6toNzRudTyh6PICtXfHqD6q/2ggCFGnZ3X/pSH4ju6NPM2vY6bEyPZMCqNx7vHEmXUUynpcIT+jR2xL3Jj2qPkWOKI0MH/9Yxn5agBnG43sHHxF8y97VqWvfkK1cVFmO0BjLr4cq5/5R3G/+16AsMjjtjvq1tf5fwfplI0wASKQnCxzIiYEfhlP29mvHlUx3IorowMDl58MUUPPIC/pARDbCzm56+g8OocavzbEUUzvXo9wYD0tzAZw9WdwlLh6u/grH+BzkR29kqu3raEKEmiVh/FZ7n9kIxJhMW1IzAoCmR8Cq8Mg20fAQKMmIX3ul/48NdCSktLsdvtzJw5k4CA5iixxdvU3Bbn9I9BJ3byhtnjTLjkPRD1sOMz+OoWNXNtG/hLnUg1XlYFbQE6NtFIjnoK776bkiefBJ+PgP6RJJ+WjTlMVIWg+KGdGmJMajAAJQdqkaTjUysKwBAdTbI+FIvPCIKMzpyPvsRNVr2bZRW1nW5n95oiaspcWAIMDDgjgYKGaKO4niHYQ8ycclkPADJK1Idh/a/FqhYybQqkngGSF5bc02ZFxrfyy5CBU0MCMB7IAiAmrNlUFTVsGB6jEZ0s4/j5l+ZjMwST3v8NVjhsvJmfj1+RmJQ8iTkT5hBgbP7P1G8sRvHK6KOsmBrO86E0mmoO1Yw0IshexvEvhto+AeBXxww2V05Gkcyk938Dvb65H0VRuiyMFO/PYuGj9+GorCA0LoFpjz9DSHRLgenLLQV4/TJREkRJArFJLZ2xbTodp4epTtHflh29Zu2P5LwKmjDyh8MnK8zalYNDkhkeZOOWuEjmrlJnKDeekopOFFBkmYLNWyl92EflLD9SbwVkMGUaSSmdxilDl5OcfBNGY+ds0bIs8d2r/8XjrCemey9GTZ3WYn1UpKodKSlZfFyPtfuwBmGk1IVozsOvwFdbuz7zV3wSlR/twdFg0w6cmETkLQPRBZuQ67w4fu26duRQrDqRGxIiWT28B2E1CxH9FfhFE1Yk7kmOZv3o/lwcYGD9J/N585ar+WX+O9RXVWIPDeO0mddx/avvMPqSK7AGduwkpigK3xz4BoCf47KpN/vJ3raZWwbeAsBX+74ivy7/qI9FdjrJu+FGPLt2IwYEEPb32/C8OIADpnfx+2sICOjP8GHfEB83vbUAK+rUhGhXLsKOQKwkUarT8V3+MFySkbCE3m13Wp2r+nJ8fh04yyEyDa5bjnTWk3zy1RLy8vIwm83MmDGDkJBmx2y3T2LZLnWGe056F31lep8NF78Dgk4Vfhbf0aZA4s6solpXx3aLaqI5K6l9YcSTlUX2pZdSu+Q70OuJumgAcWlb0RkFmPq2qpXpJCHRVkw2PX6fTHmuo2vH1gG2QYOIq1I1oEZbDjj9CHU+Xs3tnBnU55X4bfFBAIaenYzkl6koUPPExPUMBqDniGi6DYyg0CPjFkCu9+HcVqpG9pz9rKqZ2r9C1U4dQrXPz4IiNfT9xqggGnN5J/Vu/u/ExcdTHq4KwY49e1AafjdJlnhp56d8XaUKOOMDfNzarR9GnbFpX0VWmkw0AWPazvsxJEo1eeyq2IXTd0gKf289fHgpQuZiRgR/Tvpg1URUuWcye7+6itXzFyMfomVrzOKr0+la1Wtri7ydGXz6xIO462qJTu3BZY/+m4DQ8BbbKIrCwgYTTT+PAVH2kziyR6u2Gk013xylqUaSZIoPqIJMjCaMaLTFsweL2FzrJFAv8mpaEoszCimqcRMZYGLqEFX6diz7Au9gP1IUSJiI9I4n9s0kwl4Ez6Ofc2Di2VR99BGK19upPjd+8wX5u3ZgMJmZfNvdiIeV746KOgeAqqr1eDxlx+1YY3v1wRIQiMmnI0yfAcDnm7v2oJXqfZTN3YFreznoBEIv60Xg+EQEvUjg6Wq+g7qVeU0OrcfCttLfEGu+ZXDBnfy7/BF+SK3iBrvI+vff4q1bruHXLz7GU19PSGw8E2+6g+tensuQcy7AaO68PXZf9T6K61XhyY2XdX0rObhtEwPDBzA6djR+5di0IzXfLEaqrsaQkEDY5/8mq/fHFJd9BYgkJ9/C0CGfYrN1a78BRxm+b24j3O8jX6+jUmegsFpNwtctztJyJixLsP51eHUk7FumPqDGPwQ3/IwcO5gvv/ySffv2odfrmT59eqsb+i97y6jz+IkONDMk8SjCvtOmwEVvqoXYNr8P393baqbuzqpSTTSCckQTTc0333Dw0svwHjiAPiqKpHvOJtT4nRpVe95LkHZ+l4YmiEKTduREmGp6FKkP4QB7NgDGEjcbaurZUN2x4JOxIg9nrZeAMDN9x8VRuFcdX2isDUuA+uAXBIFTp/fCZDew36leW441heqDMSwVxt6lNrb0AfDUNbX9fmEFTkkmzWZmeEEOFaGqJi2pT7Npy2w240xOAsAr+fEeOIDb7+aen+/hoz0fAXBd6limBPvYv+9JKiubK826d1UgVXkQrXqsg9rWQMbaY4mxxSApEtvKtqkLXdVqePiBlWCwUXPeP/B2f5HoIe8DCop/CJnrRRa/8BySXw0GaNSKREdHo9cfORZk/6ZfWfT0I3hdLhL6pnPJP59sc3KSkV/DnuI6DIJAmk9HUM0BAkcOabXdhLBATKLAfpeHPfXuI/bdFmW5dfi9MmabgdDoY89XcjzQhJE/EKur6ni5YfbyXK9E4owGXv9ZtbteOzalKdIk8/2XcY5UZwt9ej9F/0lz6b3ge2L+9QT62Bj8paUUP/Y4+yefTfXnX6D423fiKzmwjzUfzwdg/NU3tFIZAlgsiQQGDgRkSkuXHLfjFUUdqUNHqMdRuw8BPzsLa9lT3Dl1sr/CRdmcbXhzahHMesKv6Yd1UHNKZ+uQSHShZmSHj/r1Rcc83h9zfyRUJzMrup6EsB1k77yPubdfy9bvF+P3eojq1oPzZz/IVf95lX7jz0Sn73rmy1UFqwDoEdIDg2ggP8rFTmshZbnZ3DzwZkDNXptXm9flthVFoWr+fBSdguvmaLZl3YDbnY/ZnMCQwR+R2m12ixDvVjgr4f0pGCoPUqzTMWfgOQSeMR9Z8QB6+ub/H3z6N6gvV3PcvH0WLL1Pzb6aOBpuWgOn3ouiM7B06VK2b9+OKIpceumlJCa2TpS1OKPBRJMeg9hZE83h9L8YLpgDCGquiKUPNAkkslfCc6CGVYHtm2hkr5eixx6j8N6/o7hcWEeNJOWRS7Bmv65ucOYTMHjGUQ0tJlV9GDWqy48XloED6b9ffUD5jNmAQkC5BxSF1/KOrB1x1/vY/L3qnzbi/G7o9CIFmQ0mml4tBUJroJHTruhFjlfGryj4iurxHmwwG4y9C4KToK4Qfn4GUFO/z81XJzOzEiMp2boFr8mETlFaCaKGAQPUd5+fog2ruXHZjSzPXY5BNPDsKc9y+5jXiI6+AEWR2L7jNpzObADq1qhaEduIGIQjpKVv8hsp3QyOsoZMvhvAHIzr0lfZUvMOoJA2LpYzr+2LIIDO1IfsHaF88cyT+NzuTptodq/6ia+eexLJ5yN16Aguuv9RjJa2ffcatSIDRBGzIhBBKfrw8FbbBeh1nBaqmowWl1Ufsf+2aPzPxXQPQjjaa+s4owkjfxAqvH5u3ZWLAlwRE8r5kcH8sKuYA2X1BJr1TB+h3qz9lVXgLUIOBknSERetRqUIBgPBF19M6tKlRD30ELqIcHwFBRQ9+CAHzjuf2iVLmtSdjfg8br59+TlkyU+P4aPpd1r7UQSNjqwlpcfbVKNWdE4tEdHZ9wCwaFPH2hFPbi2lr23FX+5CF2wiclY65sPsw4LuEO3Iz/nInqPXjkiyREbBD9we6cFsFEBREEzV2GIcJPYfyMUP/YsrnvovPUaMRjxScq8OWF2wGoCLe1zM9enXA7AhrZLtW1YzIGIAY+LGICkSb2S80eW2nb9uwJ21l8qbFUqD1gAKMTEXM2L4NwQHd+Dr4KqGDy6A0p2U6XRcGxPJxcNns3O7+nAxmmMIMtWoavlXhqp1bgo2gikQzn0ervoWInoC8PPPP7NhwwYALrjgAnr27Nm6O6/E8t2qEv/crppoDmfANDj/ZfXzr3Ng2cOgKHgO1FBNLdutbZtovPkF5Ey/guqPFgIQfvMsEu86F/0v/1A3GDsbxtx+1MNqtNUX7a85pqiIwzH37k16ngdRFvHr3BjNlThqvYgOP0vLa8k6wkx689IcvC4/YXF2eg5TBYT8Bs1Io4nmUFIHRZIyLIo8r3pvqW0M/zVY4Ozn1M/rXoOSXXxeUkWp10+MycCUyGBy96kTrUijsZVmIWzYMPw6HXpJ4vHs19hcupkAQwBvnPkGk1ImIQgCvXs9RWDgQPz+GrZl3Igzr0gVhkQB+8gj/2ea/EYK1sG7k6FkO9gi8V25kC3lLyNJDoKDh9Or56P0HBbN2TenI+pAZ0yl8EAyn/7rMfJyVaHtSMLIlu8Xs+SV/6DIMmnjxnP+7AfRG41tblvv8fP1VvX89WqYj8WltB9w0BRVcxR+I0V/MH8R0ISRPwSKonDXnlyKvT56WE083iMORVGYs1K9WGeOSibArM5Yd7z/HzzD1Qs/KmISotgysZNoNBJ65RV0/+EHIu+9B11wMN6DBymYfTcHL7yIuhUrmm58P3/wDlWF+dhDQjnzhluP6OQaFXk2IFBTsxmXq6Dd7bpKYv8BGExm7G49oQbVVPPl1kL8R3Dqc+0op+zN7cj1fgxxdiJvGYghqm1Vo3VQJPowM3K9D8e6o49E2Zz/NTOCignWKwQWSIxZU0WfzDoGT43mkof+RVL/gcfskV7nrWNLiTpLHxc/juv6XUe8Pgq3Sebtwg8BuGWA6juy+MBicmtzu9R+1YL5+LopePr4EQQj/fu9SlqfZ1o45bWJpw4WXAxF23AaLFwXHUlUwmgGRQ4id8dWAMJT0uG6H1V/EFcVyD7odQ7c8isMvUatNgxs2LChKUvz5MmTSU9Pb7PLlZmlOL0SccEWBiYEd+k422TwDDinIdx07Uvw05N49laxNmArsqCQFpbWwkTj+PlnDk6dinvHDnRBQSS8+QYRZ/dF+PJGQIEhV8MZDx/TkCISAtAZRNwOH9Ulzo536CSC0UhQn/5E1qvXRHKUer32qFWvqTntaEccVW4yVqoTgZEXdEMQBZy1XqqK6kGAuB5tm8rGXdaT4oZ8Pu7dlfgrGiI8ep4Fvc8FRUL5djZzctR+r4uPwCiKFFY3aFzaSBYWl5RESYSqOQouqSfSGsm8yfMYFj2saRudzkR6/zmYTNE4nfvYuXM2CjKW/uHoOihA2Og3klG2FV9FFgQlIF+1mB1lc3C5cjCb4+nf7xVEURUckvuHc/4dg9AbBXSGRCqK+1GUpwrLbQkjiqKwftFCVryjatAGTTqPSTff1coEfijfbi+i3isRH2gmxmdA73MSO6p12H8jZ4UFYhAEMuvdRxQwD0eWFQobQso1YUSjBe8WlPNDRS1GQWBOWhI2nY61+yvYll+D2SBy9ZhkQP2D1y39Gne6elPZsTOWL7/8krKy1n4cosVC2LXXkrp8GeG334Zot+PJzCT/5lvIvmwaO+fPY9sy1eQy8ea7sAQcudqkyRRFcPBwAEqPo3bEYDSRPFCdpfSsycMoOiir87BqX3mb29etLqBiwW7wy5h7hxJxQzq6gLZnGgCCTiDgDFU74vglH9ndcd6Jw6mtzaBy3z8I0IGjXqHHHhdmWSa2xEP3DctwVe3scpttsb5oPX7FT3JgMgkBCRh0Bh4a/AAosN1ewMqDK+gf0Z9xceO6rB3xFRRQ9+MKNZsqEB19PpGRkzre0etUa77k/4ZsDuLa6AgOGA1c3/96ZEmipkRNFd59yGCIHQg3rFRnxJd/rEaXBDY/aLZv386SJep/7tRTT2XEiBHtdttoojk3Peb4hR0OuxYmqSYDfnkW3Y6XWBWoRlQ0akUUSaL0hRfIu/Em5JoazP37k/L5IuwpZvj4SlXI6nshnPOf1unau4jOIBKVrF53RfuPb74R66CBpJSqExiTSY1Y8Rc5QVH4rLiKYo+v1T6/LT6I5JOJ6R5EUj/V+b0xiiYszo7Z3rYJz2wzMHxmGqU+GQEoXnKweeWkp8FgRchdx4CDX2HXicyIDUOqqaHMpAoMyf36tWozR8lhfaqqHhi0X2HesBfoGdJag2YyRZLefw6iYKLWuIHyHp9hH9NxJtRubhfBsoJbENgV2Q2u/o6sqoVUVq1Bp7OSnv5GqwCAuJ4hXHj3EIxmEVEfQ1DVQESfHsNhoeOKovDzB2+z5hPV/D3q4ssZf9UNCB0knfukwURzSpANAYGQ6kzsw9rXWAYZ9IwLUcOhv+2Cqaay0IHX5cdg0hEeb+/0ficaTRg5yex2uHhsvzpj/2dqLP0CVLVco1bksqEJhNnVi3bf2u8wJ7vBAD5XCFlZbrZu3cqrr77KRx99RF5eaz8Cnd1OxM030335MsJuuAHBYqFm105WfK5WtUwfMpLk9EGdGmuTqabk22M76MNoNNUkl5jRBW4FWptqFFmh+uv91Cw+AArYRsYQNiMN0dSxScQ6IBJ9hAXZ6W/ytO8sVdW/sXnLlejxcNAj0n2Dh2CDG5dsQtLrCanxoZt3PlQde46URhPN2LixTctG9z6dgaVqTZrH1z1Gva++yXdk8YHFZNdkd+44PvoIKUjCPUgVRhLir+p4J58bFl4OOWvAFMhHwy5hhx7Sw9MZGTOS3B27UGQvCCZ6j+2v7qM3wfDrodekFg/rrKwsvvjiCwCGDRvGaaed1m639R4/P+5pNNF0PcX2ERl5kxqeDPj875NhVcPKG/1Fih5+mIrXVSEvZPp0khbMx6CvVqOBfE41bPXCN49cZ6cLNPqNFDXkfDheWAYOpE+OKnjXsB+jTqSgwskAwYBXUXgrv+UEpqq4nt1rVQFw1AWpTQJgQYOJJr7nkR2Ik/qG4WvIneLfWYG7uiFEPzgRTlWThD1yYA7XhekJ1Ouo2bqVmobcGYm9Ws7+lxxYwi0/3cLORPW/OiBbJHBn+1rAwMB0kqV7AKhMWUKl4ccjjpX8jQjzzmGQS9XgbBpxNQX1a8jPfx+AtLTnmjK8Hk5kUiAX/X0oerOC3m8juHIAHz38GBX56r1XliR+eOMlNn37JQDj/3Y9oy+5okOBel9pHRtzqtCJAt0btGQRcjGGDlLMnxsZDHTNVNPkL5IahNheRuOTwB9nJH9BnJLMjTtz8MgKE8ICuS5edVTKyK9m9b5ydKLA9ac0RzbsmfcSrgbH1dxCNdNgaqqaGj4zM5O3336bd999l6ysrFY2aF1wMJGz7yL1h+/ZPWoQXoOOAJeHmHc/JPe663Ft77h6aGTEJARBT51jJ/X1B47LOQDoNmgYgigS4jBiM6ummh92lVDjUmdvsleiYv7uJkEiaHIywVNSEXSdm5kKOoHABu1I3aqCTmtHKipXs3XrVUhSPXvdIsvzBXqLaohjbuIMai7+N26jiLGmHGXuGVC4pUvHfSiKorAqX3VeHRc/rnnsgsC00HOxO3WU+Sp5afNL9Avvx6nxpyIrcqe0I7LLRfWnn1F/igQiBAePICCgg8Rcfi98MrMpusBx6TxeKlaFpRvSb0AQBHatVv0+zPYUAkLat23n5eXxySefIMsy/fr1Y/LkyUe8Of+4pxS3TyYpzEq/uCNr7I6K0bfh6XEXP9osyAL0MYWTEJCAY9VqahZ9DoJA7LP/R/TD/0R0FMAHF4K7Wq04fNkHoG9fE9dVGsu2Fx7vTKwDBzIoU41iqRIrGZGqTmgaTTXvF5RT62+e0f/69QEUBZLTw1uUkm92Xm1e1h4D/5aGE7XGyK55zdrCjH5Xs9eaRLivmlv3q5FguVu3oYgiNlkmMFD9jRVF4b2d73Hfqvvwy35MKf2RBQGDX8Lxy6p2+1X8Mqb1aYQeUCdLezIfpKZma9sbH/wF3p8C7mqGmFWfmF/LNpC59xEAuqXc1ar2zeGExdoJG+5A0rnQKTb88kQWPvoUBZm7WfzCM+z4aRmCIDJx1p0MPntKh+cNmjOuntYjAnep+hvFpXastZgUHoROgB0OFwedncvR1CSM/IFMNKAJIyeVR/cVsNfpJtKo54XeiU036EatyJQBscQ33ORLyrOJyj+IL1FBkQVKS1Lo3bs3M2bM4JZbbmHQoEGIokhOTg4LFizg9ddfJyMjA+mwwnU7N2+gsLYKnV7PuLTB6HQ66levJvuSS8m75VbcmXvbHa/RGEpo6Bh1PMfRVGO220lIU2fWqZVVhBhL8PpllmwvQnJ4KX9rO+5dFWro7uW9CTg1ocuqe0t6BPpIK4rLj2N1xz4vZWXL2bbtemTZjcOQwltlRh4vqUInKBx0hBB59l0E97ya7SN6UmfTIdSXwbtnq0XCjoLMqkzKXGVY9BaGRrVUzfYaOJLR21WV8Ud7PmJr6dYm7ciSg0s4UHNkwbBm8WJ8zmqcDTJOQsLfjjwYyQ+LroGs70Fvhukf835dJk6/k14hvTglXi1omL9LFRwjU/q221RpaSkLFizA5/ORmprKBRdcgNiBunrxNlXoPK4mmsOoky7lW4sq6E8sykJe9RrFjz4KQMiMKwk67zyoK1addh0lENkXrvikc6nuu0B0t0AQoLbMRX3N0SX8awt9eDjxAdEEeCyqv0eIqlnYe6CKnlYzdZLMB4UVAJRk17J/cxkIMHJK8+Snvtqj+rIItBBQ2sNkNWBtcBy1FjjIzlC1L3MKqnmg+50A2DfPg4LN5DdocWPszQ/ct3e8zXMbVafXK/tcyZ0D7qcqVNXINGZibQtnRhmyw0dU6TTCwyYgy14yts/C7Tksv9Ceb2H+xeB1QMqpDJn0AgBby7YhyX4iI88hOfmWDo8ToKQqn+rQbVhDRAQxAEU8h48fe5asDWvR6fWcN/t++p02oVNtef0yizar96QJMSEoiJjdFYQPT+tw31CDnrHBnY+qURTlD5fsrBFNGDlJLCmr5v2Gm8HLfZIIN6re5PtKHSzdqV5ENx1SEO/n955GHqpKzOUVCfj9Jk4//XQAIiIimDJlCnfccQejRo3CaDRSUlLC559/zssvv8yGDRvwer1U5Ofx8wdvA3DKFVfT59/PkPrdEoIuuABEEcePP3LwggsomH03VTv2kbe7ElluqWE5NAHa0UYAuOt9/DhvFwuf+JWNS7JxVLnpPlw11SSVWjEEqDPuz9bnUvraNrx5dYhWPRHX98c64MjZS9tDEAUCJzRoR1YXIDtb28wbKSlZzPYdt6AoXiIiJjG/KoCJdS56+r34ZJEM4xmExMYjinoiUq9m04AgasJDVDX+R9Ng4ztdHl+jiWZE9IgWSZwAEvv2J77aTvd8GwoKj6x9hO7B3RmfMB5ZkXl92+vttquG8y7ANVxGtsqYzfFEhB/hJilLagr13d+oeUGmfYgjbhDzd6v27+vTr0cQBHweN3UV2QD0GN46DwKoSaE++OAD3G438fHxXHbZZR3mY6hz+1i5V32IndP/OJtoGlD8MiUH8thiVX0Szqp3Uvbc0/gKCtDHxBBx+x2qE+4HF0JVtlpnZsbnYDmKXCcdYLIaCItTH8jHvU7NwIHEV6k5btzSDgw6gb0lDi5uEADeyivDI8us/1Kd/PQaEd00Fmj2F4lICMBs61yYeuzkFGSdgF0nsH3BHvZV1vN1WTVrQgZT3ftCQIFv76bYpWoYE5KTATVa7b2d7wFw+6Db+fuwv5MQn0BZhHq9e4uKkOrqWvWnKAqOhnBe+6h4+vb9DzZbT7zeUjIybkKS3FC8XfV7WjgdJI/qWD39E7qH98QkCDhlqDP2JK3PM50Sfj0eD2VlZcg6L+fekU54vA1BtGIMuASDJYkL73+UHsNHd+p8ASzfXUJlvZeoQBOxVep9KaRyT1Na/I44p8HRtzPCSHWJE1edD51eJCrpBGgdjwFNGDkJFLi9zN6jzgxuSYzk1NDmaIY3f9mPosCEPlH0jFKXO7wOLN+vxjVMFUZKiruTnp5OZGRki3aDgoKYOHEid955J+PHj8dqtVJdXc2SJUt44YUXWDDnFXySRFL6IAZNOg8AY0ICsf9+mm6Lv8EwaQr5MWNZWdCDD1/O5usXt7L6w5bOmRERZyKKRpzO/Tgce7p87Pl7Kvn4XxvYs76YioJ6fv36AO8/uJbsHZGIhh5EVlnx23YgorCpsIacSie6UDMRswZgSj62MteWfuHoo6wobom6drQjhYWfsWPnXSiKn+ioCwhOuofC8kzurVRvzOvLE0kY25zgKjb2EhSjmU29Rbx9J4Miw+K7YPmj7aYgb4u2TDSNGC1WYnv1YdjuEIJEOwdqDvBmxptN2pGlB5eyv7rtOiDO337DnbmH+tNVwTE+fkaL2hotkGX4+nY1hbqoh0vfh+5n8HHmx9R560gOTGZCoirIHNyaAYoEgp0ew1t7/DscDj744APq6uqIiIhg+vTpGNsJaTyU5btVrVi3CBt9YjqI8jlKPDm1rDFvRhYU+oT2ITx6GpV7VY1H9JWnoDMCCy6F0l1gj4YZX0JA9AkZC0Bso9/I8U5+NmggPRr+5vvq9zC2u2oGloqcRBsNFHt9fLw2l/w9VYh6geHnprTYv+AIIb3tIZp02Eeo2pE4v8wTv+xHUuCUEDvB5/xbDfUu3Ex8sHr/SxmsOq/vrtxNtacau8HOVf2uQhAEQkNDqW6IVFEEAdfWba368+bU4itwgF7ENjwavd7OgPQ3MRhC8JdspW7eSHh9LOxdqmbjHX4jXPoeit5I5p77SDKqJtv64AvQ6TqXnLCwsMFcHBRERHQoF949hJjUQATBRHjy5ST1H9jp8wXNuUUuGZJAQYbqKxXuL8DYIKh1xOSIIERgW52LXNeRtWuNWpGolEB0hj/W4/+PNZq/AJKicOvuHKr9EgMCLNyX0nyTK6px8cUW9e5x8/hmrciSH18nLtSPbAePx0JNTdwRHQCtViunnnoqd955J2effTbBwcE4nU4qDRbqewzA3H8odQ41E2N9jYftK/NZ8kU133vOYm/PaVSH9FSzVgLbV5dQcrA5CZleH0BYmJr2uqTkm84ft09mzWdZfPXCVhxVHoIiLIy9pAexPYJRFCjMcmC0n4c56EauyLqSUyV1Bv1DoEDkzQMwRBx9qexGBFEg6Ew1s6NjTWEr7Uhe/gfs3nMfIBMXezlpac/yU94v3FVVTagsU+6xsqkygV6jT2nax2gMIzLyHBRRICstFk57UF2x+nn4/Hrwd6x6r/HUsLVsK9DSefVQkgcMweTTMbFSjTx4e/vbiILIGYlnoKC0qx2pmr8Aby8Ff4yMTmclNubStgehKGotka3z1d9+6tvQazIuv4v3d6mOfdenX4+uwXFzzxpVbW4J6obtsDBKt9vN/PnzqaysJCgoiBkzZmC1du73a6xFc2567Akz0Xiyqlgd0BBFkzCBom+LQREITHQRkPeCmqytIQEWM76A0JQjtnesNJpAjrdmxDpwIAP2qc6QhXIhE/uqWobvdxRzQ0IEKAo53zWkHj8lrlXl1vaSnXVE4Ng4EMBsEfnJppqJZyVEqgLdeDVHy6mGX7HLDmIbHriNmsGRMSMxNCTeEwQBU0PyM50s41i9ulVfjVoR2+BIdA3aG4tXYERxKiM3VhGc1xDZ028q3PobnP1/oDNw4OALlJcvJ7Wh7Mv2yraF+bY4PNmZ0aJn8k3pCAJUFXupLe988br8KierslRN4Lm9IqmqavAX6RHU6f9/hNHAyGBVo7WkA0fWQ4vj/dHQhJHfmZdySlhXXY9NJ/J6WjLGQ+znc1cdxCcpjEgJZXBD+muf5KPs04U4R6sXdWlJN4YMGUZoaMcVTI1GI8OHD+fCM07DXHgA0e1EEUU2bt7C88+/wEtPvsPcfyzjl4V7VYlZgcjkQEZf1J2pU81El2wABH58Y2OLYl6HJkDrjKmmosDBp//+ja3L1Rtf2rhYLv3HMAackcCFdw/misdHMmRSEgaThCBaMLt6MrTOyIw6EwcdfjqX1L5zmNPCMMTYUDwSdauatSM5OW+wd++jACQkXEOvXk8gCCK5Oz/h4jpVpby8qDvx/QdhC255c06InwlASel3eEdfq2b8bCzS9sFFqsr/CKwrXIesyHQP7k6svW3TRPIAdQYZuLmK0+JPw6/4eXTto9yQfgMA32d/z76qfS328RUWUrd8OY7x6n8nOvoiDIY2VLOKAt//Aza+DQhw4RvQ9wIAPs/6nEp3JXH2OCanTG7apSBTdXiOTm0ZlilJEgsXLqS4uBir1crMmTObHBQ7osbp45fGG/OxJjo7AiV7c9lmU32jxq+pw7N7N2JQIFFXnw0oULIDDFa1Am9Ux3b7YyWmu6oZKc+rw3sUoeftYerZkz4lEnpZh0/0EWrNRy8K7CmuY5zRzOACP6EVPgSjyJBJyS32dVS5qSlzIQjNFYY7iz7UjCUtjM8TjHj1AlG1EsP1DQLrsOtwCFFY8HCOsKbJbLemQE3pPiZuTIu2ort3p7oh6qZ+zZoW6/xVblw71BQA9tGxaibVpQ/AS4Mw7VyKCJSFGvl1cAhlp05X09SjmmGzs18FYHyPawHYVLKp02bntjKvWgKMTULlwW1tpyVoi0835qMoMKZ7GEKJOnGx1+USMrzt/DvtcW4nTTV/VH8R0ISR35Xfaup5Llv1B/l3z3hSrM0zyqp6Lx9tUJ3Mbh7fvWn50qxvGLzfgTtNvVDKy3pwyimn0FncDgdL57yAoaaSHqZgUiwjMHiDUBSZSl8uVWEb8cTupc9ZQcx4chSX3D+UQWclEn3maIYN0WPwOaiqhi3fNTtJhoeNR6ez4XYXUFu7td2+FVlh6/JcPnn6NyoK6rEEGDj75nTGX9Ebo7nZdyA40sqI87px7tAwRtp0xBoEFGSiJZGhlfDufWv44e2d5O2uRJGPzk+lEUEUCGzSjhTgd3jZf+B59u3/PwCSk2+hR/cHEQSBckcR07J+BSCzNowCVxB9xp7Wqs3AwHQCAwegKF4KCz+BgdPVB5kpEHJWw9sTjxj625gCvj2tCEBkUgrWoGD8bjfXhE7FbrCzvXw7G4s3cmbSmSgozNk2p8U+VR8txB8q4emvnrOE+HYcV1c8AevVmzPnvwTpqvbEK3l5Z4fq/3JNv2uaZqwuRx3OajX0uudhdTN2795NdnY2RqORGTNmEHZINdaO+GFXMT5JoWeUvclEebyR6rz87FyLLMiMklLwvaX6wkT9/e/oL3sFRtwEgXFqjpSEYR20dnywh5gJCDWjKGoV3+OFoNcT2C+d6Fp11rytcD2jG0w1v+wsYdIuNVFWVn871sCWJrRGrUhEYgBGy5H9fNrCMDqWhYnq/2X0bhcrF2SqD3udnvWOhhIQwi7IWUeNp4aMctUZekxsS2EkLi6u2W/k4MEW9bYc64pAAXM3HYZdz8OLA2D9a2rF4ORxcO0yKibejMOuY+eu2TgcmdTWbmfXbjXUODHxOk7rdTN6UU+pq5R8R+fqYrWXBr7bQHWcB7Z2rn6XJCt8ulGdoF02LJH8XaoPYWhVJtahXfvvnR0RjABsrHVS6G57+lZb4cJR6UEUBaK7HZvJ+0SgCSO/EzU+P7N2ZSMpMDUqhEuiW2o23luXjdMr0Tc2kFN6qDcMRVHY8Omr6AbICCLU1EQwYMBZLUqsHwlHlZvPnnoWR0U5ghhMRfFgHAdNBFcOoJtxDNGhiaonv1zMLxnf8Pk3H7Nv376mGULcnbPoVbYcgN++zaa6VFX56nSWJifI4nZMNY4qN1+9uJU1n+1D9isk9w9j2j9HkJLeus6C7JWo+GAX8s56IvUCevfP/JjwJAciSygTZRRJIeu3Er5+cSvvP7SWDd8c6JIq9HDMfUIxxNmRvRK71/6T7OxXAEjtdi+p3WY3qUcLl/+DHj4fdYLI8uIe6A3GppwohxMfp9YnyS9YgCz71Qqu1yyFgFgoz4S5E9oM/ZUVuUlFPS6utb9II4IoNuWDqdudzd1D7wbgla2vcFH3ixAQ+CHnB/ZWqTN+2e2m+pNPqD9NAgHCQk9puwDez8/Cqv+on89+DgbPbFr19f6vKXWWEmmJ5ILuFzQt379xS8OYQuk+uGWbGzduBGDkyJHExHRNu9Gc6OzEOK4CuPdWsSpgMygKV3/nQXG7sY4YQdBFF6lZYic/A3fthNTTT9gY2iKmR0OdmhNQNC+lVBUmMsozOKe/ahbevroAXZWPepPAoiQdv9XUt9ivKQV8F000jSyxSJSbRSLcMueX+snOKCdzfTGKorDLH84mGjRq387m14K1yIpMt6BuxNhb/mcOFUZkScK9a5f62Svh3JBNgO4zwsqnwS/PqjWQYgerPj5/+wYShtOzx0OEBI9EkurZlnEjGdtvQpY9hIWdRvfUv2PRW+gbpkaDbS7Z3OFx1dbWUltbiyAIrf7fKQPUe1vRvmpcjo71uauyyiiscRNsNXBWn0jydqhCTJg3D1OP7h3s3ZJok4HhQarf05Lytk01jWbAiKQADJ3Iz/R7owkjvwOKovD3vfnku30kmY38u2fLyqD1Hj/z1mYDMOu05oRDqwtWk7a2kNpx6s9UUdqNMWPbf2ABOKo8bFuRx+fPbeKdu+dSsn8TIGCwTSa6WzhjLu7OzKdGM/PBM7np9mu4+eabGTBgAKIokp2dzfz583njjTfYvn07WMwMvPlcQqr2ICsiP729tUlQaTTVlJYuQVFahg9nbSxh4RMbKMisQm8UOXV6L86+Ob3V7AvUmWrZGxm491SCXqQksYi9tRuJKYeqqEXMC/DwaYiP3mNjMFr0OCo9/PZtNh88tI6vXtjC3g3F+LtYkVcQBAImJFDS5z1K9Z8B0LPHwyQn39S8UVUOvTO+BGC9IxK3ZKDbkOGY2vF9iIw8G4MhFI+nmPLyhqRLUX3huuUQ1Q/qS9sM/d1dsZtKdyU2g41BkUdOPtdoqsnetpmpPaYyLHoYLr+L93a9x5lJal2hRt+R2m+/xeepxjmmQSuScFXrBte8BD+pCcA4619qsrIG/LKfudvnAnBVv6taRPhkrlP9RazBqS2ycpaVlZGdnY0gCAxucEzsLFX1XtY0ZN09kSaa4swcttn2csoOheDtuQhGIzGPPdrSPn+CfFWORFMF3+MdUTNoIH1zVN+oA+4DnJkWjUkQSClWrxnXyDC8BoFXc0ta7Fe49+j8RUC9381pSKo2LcdHmt2IAKz6eC+lWzKpCghgOWORzSFQuos121Tt2+EmGgC73Y4nVRV4BcCxdh34Pfi++C9RytUEGeYheGsgog9ctgCuX6FOBBp+Q1E00L//K1jMibjdeXg8xVit3enX94UmR+4WRfM6oNF5NSIiApOppa9UYLiF8AQ7igLZGR2bahpzi1w4KA5XpYf6ehlR9hHbI6TDbK1t0RRVU1rd9tgbTTRdNLv9XmjCyO/AR8WVfFVajV6AOWlJBOhbSqULf8uj2ukjOczK5H7NN+LPf3mdXoKCEOZDknT0DB/VpiOgo8rDth/z+PzZTbz3wBpWf5JFQWYuvvoVAHQbci5X/d9ULr5vKAMnJBIQam7aNzIykgsvvJDbb7+dkSNHYjAYKC4uZtGiRbzyyivUpPVmUPB+RMlLYY6bPetVM1No6Fj0+iC83jKqqtVQXI/Tx7J3dvLD3J14nH4ikwO57B/D6XdKXJvOWL5SJ6WvbsVX4EC0qaG7MRNUW2lCqYVM424SQkxkK37q+gZy9TNjOPPaNOJ7qzfI/D1VLHtnF+/et4afP8ykNKe2U3ZfWfZzUH6amoSVoAgkee5umXtDUfB/exdGWeI3k4m9hWpIcO+xp6rHeeAgeTffQu3SZsFCpzMRG3uZOq6CD5rbCoqDq7+DbuPbDP1tNNGMjBmJQXfk8MmkBs1IWfYBnDXVPDrqUUw6E+uL1tMrpBcCAstylrGnYg+V8xfgHCmjmBSs1m6Ehh4mxP76Jiz7p/p5/EMw+rYWq787+B0FjgJCzaFM7TG1xbrifTsAiO3Z0l9k06ZNAPTo0YPg4OAjHsvhLN1ZjF9WSIsJpFvEiUlRrcgKPxWvxOaSuHqF+n8Mv+WWTkctnEga/UZKDta08M86ViwDBjBoj2r6qdXVUu8u4QJbAHZFAKuOy8/pjgAtCujVVrioLXcjikJThtiu8FNlHZn1bmw6kYurFHReiT5xVrxuie8/34EiiuAzIJz5GAqwplKN2Bsb27aZMrxnTxw2GwLgW7cQ5eUhmHb/C51QhWxJUDPizloDfc5tU5A0GEJIT38DvT4QgyGUAelvtKjHNCRSNTV2RjPSUaXeZlPNkYWRcoeHZbtUAfCyYQnk7VaFv6CaAwQM65og38jZDYXzfq2pp7SNdP9/1GRnjWjCyAlmn9PNP/aqf+D7UmIYHNQyaZLXLzN3leqPceOpqegayjnvLN9JyI9bKJuoCh/VZfGMnNhcqlyRFXauKmgWQD7NaqpvEZVix2JZCXiJ7ZXGlHuuayGAtEVwcDCTJk3irrvu4rTTTsNisVBVVcX8+fMx33gFKfk/ALDmw1246ryIorEpU2FJyTcUZFax8IkN7N1QgiDA0HOSuejewQRHta1J8GTXUPraNqRqD/owM5GzBmJKCiSmR0+sQcEY/SK2GiujolXhZ9HmfPRGHT2HRTPlzkHM+Ncohp2bQkCoGa/Lz45fCvj06Y18/K8NbPsxD1dd22pSWfayY+cdFJd8CeiI2X4j5jUDkGoP2X731+j3/YgP+IwI3H4TJquNlIFD8VdUkHfDDThWrKDgnntwbm42vcTHTQdEqqrW4ajPam7PHAhXfAoDr2wV+tsojBzJRNOINSiYqG6q+jZ722YSAxObwnvn7ZrH+Hg1yumLRU/h3rOL+vHNviJCQ3QU1bmw8t/w3b3q93H3wKn3tjxHisxb298CYEbaDKyG5t+wrqIct6MMEOg5qjkPgtfrZevWrYCa7r2rfNtgojnnBGpFfAUOfjH9xlXLZWxOCVOvXoRdc/UJ668rhEbbMFn1+L0y5XmO49auPiSEqIgEgl3qfeen7T+TVKpqRTJCoGeglUnhqsDRWECvILMagMjkgBa+XZ3ltVy1nStjwogeqv6evQKN6A0iJU7VHBRtNCAMmsH++EGU6HWYEJo0FIcTHxeLL0LVQujr9yPU5CEpoVQpt8JtG2DAZR2m57fbezJ61M+MHvUTVmtyi3UDIwciIJBdm02568hCREfCSEpDHqS83ZX4jlAl/PPN+fhlhYEJwfSODiR/t+ovElK1G2sn84scTrzZyOBAKwqtTTXOWm9zArujEDB/DzRh5ATikWVm7czBJcuMDbZzS2Jkq22+3FpAUY2byAATFw1u/oPP2/4O4zIFhD7qxRvnicRkD25av2lpNisXZDYJINHdghh7SQ9mPjWa+O4HqCnZj9Fi4exbZ3eppL3VauW0007jzjvvJDk5Ga/Xy8Lvvyducgp2Rz4en8Dqj1S7bVTUuciSnozvdXz5whYcVR4CIyxcdO8QRpzXDV07dQ8UWaFyYSaK248xKZCImweibwgrFEUdqUNVB7fEEisWUa2Ds3pfOUU1zX4igeEWhp+bwox/jeL8OwfSY1gUOr1IRUE9qz/NYt79qrZEPmSWKUluMrbPoqxsaUPV2lcIN50Ffpm6nxvq+rhr4bv7AHgnOJCoQjUSpOeosYiSRP7Nt+DLz1f9C/x+Cu64A39DoUKzOZaICNWXJj9/fsuD1hlgyistQn+rFl3F9jI1KuVIzquHcqipBmBm2kz6hPahzluHW3YjIBC1ZCOevgpShIxeZydaSYWfnoI5Y+GF/rDyabWxUbfC6Q+16mN5znIO1hwkwBjAtF7TWqzL2qD6hAi6SJIPSUq2c+dO3G43wcHBTSUKOku5w8Pa/epD4LwT6C9SvDsbpWQP43YqIAjEPPE4gqFzybxONMIhWogTUacmsVKdjOSsr0fxypSJMj84HORVOpvuS40F9BqTncV2UI+mLTLqnKyudqAT4PqECOwjY0AnIBfVM3Z8PD6jqqWJCI8FUWRNX3VCM9TpxJyztmVjigJZyxmy+R7SItQJW32JkTrrDRR53kIYdi1iJ0PGAQyGQPT61lq3IFMQ3UNUIX9LafslHWRZ7lAYCYuzERhuRvLJ5DY4pB6OoihNuUWmDUtAlmTy91Sq+7tyMPfpoFTDETi3QTtyuKmmUSsSFmvvdAK73xtNGDmBPHWgiO0OF6EGHa+kJSEepkKUZIXXf1bj268bl4KpwXyTV5dH6cofqB8Tjk7vx+OyMTz9vKb9ig/WsGFxNgBDz07mb0+PZurfhzDgjAQclTms/UwtN3/GtTcTFHl0yZpMJhPTp08nMTERj8fDt8564uV1oMjs3VxJ3q5KFFd/clf8k/Ld40GBtDExXPaPYR16ansOVCNVexDMesKv7deUH6CR7sNGApBYamGbbwfDk0NQFPhyS+sid4IokNA7lLOu7ctVz4zhlGk9iUwKQJYUdvxSwLJ3dyFLMn5/Pdu2XUtFxUpE0cyA9DeJjDyrKSur49cipBqP+tCuKyLPYOBteyC6CvVYeo8aR+EDD+Datg0xKIjkTz/B2D0Vf1kZ+XfdheJT1aLxcVeqv1HxF/j9h2WMFAQ47b6m0N+12ctQUOgZlEqULapTv0tyuiqM5GRsQZFl9KKex8c8jk7QsbZwLSOtfRmRJaMf46JXloPRv1agf3sS/PwMlGxXc4gkjYHzXlT9RA77TyqK0qQVmd57OnZjy5t31gbVFGMP7d7iptbouDpkyJAO070fznc7ipEVSI8PIjHs2PPJtMdPWUu57ns1dDZkxpVY0rsWPnmiOVH5RiwDB9IzX8HmCSIoJxmAshQzigBLthcxNMjGiCAbXkVhbl5pUyRNR8Xx2uL1PFUwnxIZQrzZiC7A2JQ1OcrpQdKrbZdVxCDLCqvrVCFjrMsN397TnJcnZ53qY7VgKqaK3egj1UmFq8JEddlkEEzYRx0/LVqjqWZTyaZ2t6moqMDj8aDX61slnGxEEARSOoiq2ZhTxYGyeqxGHecOiKU0pw6fV0HvcxDVMxKhgyzFR6LRb2RttYNyb3OY+B85v0gjmjBygjjo9PBmw4X5Qu9Eok2tpdFlu4o5UFZPoFnP9BFJTcs/2PUBp2YI+IapF2ZwiYAh7WwAvG4/y97eiSIr9BgWxfDzUrCHmBvWuVjy8nMoskyv0ae0GYbaFYxGI1dccQUJCQm43W5+6xtPaOXPAHz/xjY+fXoT7qpYdKY6+p69kfEz+nRKrevcrKpxrQPCEY2ttTaJfQdgMJmwufVUO4yclqxqRBZtzj+iT4jZZqD/afFc8sAwJt/UH1EnsG9jKd+/vY0tW66mqno9Op2NgQPeJSxMNYuYugdjTA4Ev0L9kh9gg1p47omwYHqUWvBLeuwhoZh/WEHdd0vBYCD+5Zew9O1L/EsvI9psuDZuovQ5taZGSMhorNZUJKmeouIv2h5oQ+jvKruqdRlXmtPpqr8xPXtjtFhw1dVSclAVZHuH9ubqXpcDkFW7g9ipJfSvqSG+yI3BWQcGG/Q5Dy54He7dD1cvgSFXtWlfX1Wwij2Ve7DoLVzZ58oW6xRFoeSAat+P69O/aXlhYSEFBQWIosigQZ2rAH0oh9aiOVHITh+s+prIGnCHBRB5xx0nrK+jpUkY2V991KUW2sIyaCDp+10MyZ+ITjEQ1S2AEWNVJ/olO1QzaKN2ZF5BBRV1HkSdQHT3rqnz891evipVhY2bEprLNtjHqFqEsp0FSHoZFIG6QhMbfshqeviPFmxQuV/VSs6/GN6dBLlr1dpIo2/j05R7cJnNCIBUlY25Txj6sM5lTO0MQ6I69htp1IrExMSg07WvbW70G8nZXtGm/8/CDapW5Lz0WOwmPXm7Va1ISNVebMPaLq3QWZIsJtIDLMjA0kNMNX/k/CKNaMLICWJufhkKcEZoIGeFt76oFUXhtYaCeH8bnYzdpD7Eq9xV/LhlEQEhSQSGlqEoMMAY21QXY9XHe6ktd2MPNXHq5T1bOIaufO8tqouLCAiLYMJ1Nx+XDJYmk4krrriC+Ph43D4fOb3MoHjweBQkv0JsLz0pZz0KQfPVOhAdIHukpkRF1sFtawP0RiMpg4cDkFRixeT7EpNeZF+pg4z8zs0auw2MYNIN/RB1Agc2V7H7h8HoxGAGDfqAkJDhTdsJQmPeEQnz7sdAkcmI7sk6i4WB+erNbqA9jIq3VG1BzBOPYxuu7m/qlkLsM/8GoPK996lZ/C2CIBAf3xDmm/9Buw8VKeUU1gSpOTjGVRS0G/p7ODq9nsR+albKot9+gPVzYN653PT9MyR7fZTr4cXIYDxGkb3RITD9U/j7AbhsPgy8HKztJ8tTFKWpCvC0XtMINge3WF9ZmI/PXQvo6D2y2b7fqBVJS0vDbu+a82lprZsN2erN+Oz+J04YKViynKENyaiCHroX0XZ8C94dDyITA9DpRVx1PmpKjz50/XBM3buT4Aijd6mqcTQPrmNyvxgEAbblVZNf5WRCWCA9rCYcsszmVDNRKYEY2pgoHIm38sqQFBgbbCc9oFnDZYyzY0wOpFRQTTQBPhDQ8eWqH/DJPmJtsaSc/oS68aZ3Yd8yNWng0Gvg9i1w1r8IS+xFeURDOvuKLOxjjq85r9FfJbMqE4e3bZ+dRmEkPj6+zfWNRHcLwhJgwOP0U9gQIt1IrdvHt9tV4fuy4QkATcKIml/k6PxFDuVwU4273kdFgXpMMe0ImAdrDlLrPX45bo4GTRg5AdT4/HxUrP7BbjxkhnAoa/dXkJFfg9kgctXo5KblCzMXMiJDxjlGFSRMVXpsPS8C1JDZPeuKEQQ48+q+mKzN2pasDWvZvuIHEAQm3zobs+34RSSYzWauvPJKoi09sFUMBcGEggIojL5oAPaQACSpnoqKlR225dpZjuKV0YeZMSa2ny+lyVRTYuHXyg1M7KuamxZt7lxiIoDY3goppy0C0U9d3nDqd79MgK1/q+3MqcEERa7AKGYhi3b+addh8AnoKgMIq3MS+N0yAMJvvpngCy5osW/AhAmE3XgjAEX//CfuzL3ERF+ITmfH6TxAVdXaw7sDYGfFTqp9dQTobQwI7t5u6G8LZBkKNjEyeB8zUzYxaM+DsPR+yF6FSZb4Z5368FgUYOfdAWH8PdjKjtBYMBzZebmRDcUbyCjLwCgamdl3Zqv1jSYaUR9LfJo6k3a73WoYODD0KG6kS7YXoSgwKDG4qUL18Ubx+Sh55SlEBbal2ek2+ZIT0s+xojOIRCar10ThcfQbEUSR3L6XIqIjO2QH2/zriAgwMTxZFUyX7ihGFARubtCO/NrTTGQX6tGAes+bX6T6SNzchm+cfUwcpaI6kUiyGkjqH0ZOwG4ARseORki/BHpOAgRIv0xN3X7u8xCoCh2H5hvxl2xHtHWuwrEsK5Rk17JpaTbfvLyV1Z9ltTlBiLRGEm+PR1bkptIMh9ORv0gjoig05VM63FTz9dZC3D6ZnlF2BiUE43X7KT6gnpcwx37M/Vvfn7pKo6lmdXUdVT4/xftrQIHgKGur0g2NPLr2UU7/5HRW5K445v6PlqMSRl599VWSk5Mxm82MGDGCDRs2dGq/hQsXIggCFxx2Q/+z8VFRJU5JppfNzLiQtoWC11aqqbunDUskzK7+Qdx+Nx/t+pAUVy/CY9SaCt1LKqH3OdRVuvn5w0wAhkxObqFuc1RW8MObauKuYedPJSHt2P/Qh+Jx+Vm98ADSwRhExYBPX0dN8Cb8Ohc/v7eTyIhzgPYToB1Kk4lmcNQRNTfdBg1F0IkEO4xk1nk4p69q0vh6WyFef8ehj253IZs2T8MQ9h3J4xYi6iB7m5vlDT4kLagtwu5SqxlXe2ficJnoU2TG6vIzJLcUJInAc88l/LZb2+wr4vbbsI0Zg+JykX/bbQhOmZjoCwHIy3+/zX0ao2hGxY1Bf/XSdkN/8Xsga5kagfN8Grx1OlH5XxBhdiIrICeMholPo9y+lfDVvTitIVLio2oL+z0ir219rcNz1cibGW8CMLXnVMItrZPT7d+oCiMBET0wNWTlzMjIwOfzERERQVJSUqt9OuL3SHRWMe89bMXlOMzgmDm14x1OIs2mmuPnN1KaU0uRmISCwoaEb9leoQqPjZFLS7arv8GFkcEEumXqrCIZ8V1zcvygsIJ6Saa3zcz40NaTDEtaGKWCOkGLCe7G+Ct7kx+qFtqMKu6pmgwvWwD3ZcNFb0Joy2R6cTGHJD+rysa1uW3fDkVRqCh0sG1FHkvmZPD23av47N8bWf/lAXJ3VrJteV67DsJN+UbaMNX4/X6Ki1WTVkfCCNDkN3JwW3mLrNGNuUUuG5aIIAgUZlWjyGB2lRPaKw7R1Law0BVSrWbSbGb8CnxfXnNIfpG2tSK5tblsLt2MT/Y1JYA7GXRZGPn444+ZPXs2jzzyCJs3b2bAgAFMnDiR0tLSI+6XnZ3NPffcw7hxHYcw/i/jlxXmFqjS8A3xEW0+cLflVbNmXwV6UeC6cc1FuL7a9xVx+9w4+9sxm50IPog09UO2x7D83V14nH6iUgIZek5y0z6KLLN0zgu462qJTEllzKVXHNfjKcyq5uMnNpC5XtXIpE+Iw9S3CJ/ZSU3oNopKKqnNVUM5Kyp+au20eQj+Gg+ehgyT1kFtO4A1YrLaSOyrmiNiS20Izq+JDDBR7fSxYs+R/2s+XzWbNl+Oy5WD2RzP6Rc8yqQbVB+SrI2lrQWSpfcj+Bz4jGk4/ZOYVjGJIQfMDDtYhN4vYRkyhJgn/9Wu8CTodMQ+9yyG2Fh8ubkU/v0+4mKnA1BevgKXq3WF4BZVetsK/f36NvhkJvxfN1hwsSqg1BWB0Q5pU/i5fiRz9o5kf/9/wqibcWVX4d6zi7NTvATpZCr9ICCyqmAVGWUZRzxfAFtLt7KheAN6Qc/VfVuHu8qyRFmO+vBISFMdPxVF4bff1ARoQ4cO7bJZsLDaxcacKgQBzjlBJhpvbi5lL78MwPtniEwY106hwD8ITRE1DQ+Q48G6L1RzsOjZRqWtkIPegyiKwsS+0QgCbM6tprDahbvcw/A9qqn1I289cif9VryyzNx81QR2U0Lb9zyf00GFoJoKIuqjqBRKqTaVIsoinp+CKM2pBZ0eLMFt9mEvE3AEhuA1GECRqFv+Y9O62nIXu1YX8sPbO3n3vjUsfHwDqz/J4uC2crwuP0aLnpQB4cT1UtvesiyvzT4a/UbacmItLi5GlmWsVmuncujE9w7BYNJRX+2hNEe9J+4oqGF7QQ1GnciFg1SBJr8hv0ho1R4sRxnS2xbnRqpjXFxW06Hz6lf7vwJgVOyoTjvSnwi6LIz897//5frrr+fqq68mLS2N119/HavVyjvvvNPuPpIkccUVV/DYY4/RrVsbKan/RHxfUUO+20eoQcdFUW17o89p8BU5f2Bsk2pakiXe2/UeA8v7EBmrakViy1zoep/Plh9yKMyqxmDSceY1aS1CZrcs/YacjC3ojSbOvu0edPrjE7YlSTLrvtzPF//dTF2lm8BwMxfePZhxF/di5swZRAQFIet81IRmsP4rJ2ZTCrLsoaz8x3bbdG4pBQWMKYHoO8h7AjSlXk8ssbAqd1nTBdyRqSZz72O43flYzIkMGbwQiyWRlAERTLy+X2uBJGsZ7PoSBB3ypP8CImdWDGFMhhOr148uLpb4V17ucMaiDwkh7uWXEIxGHCtX4vpgOSEhowGZgsIPW2xb7ipnZ0VDoqfGkN7DQ383vw+7vgKvAwJiVPv5FYtU/49L30dKuwi3bCB7qzqLq5o/H/cABWOowuXh6lhVUxqd0o40akXO735+q5TcAKUH9iP5XICRniNVYSQ3N5eysjIMBgMDGqqrdoXGGfmwpFCigzpnSuoKiqJQ9Mgj4PWyPUkgr18yyWF/7PtPTGoQCFBT5qK+pnOmiCORt7uS/D1ViDqB/ru/RlAEnKKT/WX7iQo0MzRJvUct3VFMwd4qBu93Y5YUslwelld0zofgi5Jqir0+oox6Lmznnpfz6wZkUcCsGLBU6fh5m1pmIpme6H1mfnxvN35f+3k5nGuLCReCKQ9XNXbF23JZ8cFu3v/HWj54aB0/zd9D1m8luGq96A0iCX1CGHVhKhffP5Rr/zOOs2elc+rlvQDI3l6u5tw4jEZhZHv5djxSy3N/qImmM0K33qAjqZ/qE3Zgmzo5/aShDs1ZfaMItakZjfP2NPqL7Dku/iKNNPqNrC2tbRKG2kp2JisyX+//GoALUi84bv0fDV0SRrxeL5s2bWLChAnNDYgiEyZMYN26de3u9/jjjxMZGcm1117bqX48Hk9TDYDG1/8KbzVE0MyMDcfSRp6NfaUOvt+lqvtmndqcj2FF3gpcRZX4wmIID1cL5sUWeyixn8WGr1XhZNxlPQmKaLarl+Vm88uH8wA4dca1hMUlHLfjWP1xFpuX5oACvUfHcNk/hjepkG02G1fdcAMhgoCs81IRlEF1jvowKmnHVKMoSpOJxtaO4+rhpA5VHUUjqk38WlnIhYNVVf5Pe0qpcLR9oy4t/Z6Skq8Bkb79XsBsbn6wdht4mEDy9nbkxfeoK0fOYl9iIL9Zd+Db9D6B9fX4DXqS5s5FH9K5EEdL375EP/IIAOUvv0JUvnpzKyz8GOmQm9vaQtWPpE9on5bmkMbQ34veUgt9nXIvXP8TzN6t2s97TICG6qfJAxvyjWRsxltcTO33P1DfUJ13Us8rmZQ8qanZNYVr2Fq6td1x767YzaqCVYiCyLX92r5Gs35r8BcxJBDXU/U1aHRc7devH2Zz14WJxSc40VnNl1/hXLcen17gzUkiZ4SPPyH9HE9MVgNhsappt/gYTTWKorD+S3Xi0/eUOOIiAghzqSaUn7PUqLhGp+El24soyKzC5IdzJPW3fDX3yBrIxj4ak6VdFx+BqZ2w7pxdqvAd6dcjILDqgNr/pP5nYAk0UllY33SfOxzHviq8ObWEy4FNppp6j57da4qoq2jOFDv0nGQumD2I6/57CuffMYjBE5OISg5EbEgkGRJtI7l/GCiw7cfW2pHEgETCzGH4ZB87yne0WNdZf5FDSRmoXtsHt5bh9kl8sUVtY9owNZ1AfY2HysJ6UGRCavdhHTiw0213RE+bmR5WE5HlPhRZwR5qIrCN6KNfi36luL6YAEMA4xNP7vXRJWGkvLwcSZKIimr5MImKimqypx3O6tWrefvtt3mrIRqhMzz99NMEBQU1vRISjt9D9kSyrc7J+pp69AJcFdfa5g7wxs/7URQ4My2KHg2VSRVF4d0d7zK6II2IqFxEUcbm8GMy9mHZ/7P33+FxlGf7P/yZ7UXSqrdVl61i2ZbcewNTDJgeIHRCeUJJSAgESL4PCUkIARJCSIEAoYTem23ce6+SZfXee9mm7TPvH6NqdWMSnvfHeRw+ELuzM7OzM/d93td1Xuf1iRVRlEidHUnGogHPEJ/Xy4a//hG/10vK7Hlkn7dmxOOdCZoqLJzaLT84590+jXNvzhzWudNoNHLrD+8moMeNqPRQWCO/39m5F6+3a9g+vQ12fK09oFKgnzHytTkdgaHhRKWkICAQ2KbH6zrGDLMJnyjxZd5wzxGPp53iEtnEKynxfzAFDV+tDyEkxzvYWnMFYmACrHyUbbXbaCn7N77GYyAo4ba70CYnD9vHWAi+6kqCr7sWJAn7b99Fb43E6+2itXVd/zZDUjQjYeY1cOs62ZDMPHvEEtz4zBkoVSqsba3UvP4qnlgvnikSgqAiznwDj8x/BJN2IEc8VnSkz1fkwqQLSQhKGHGbyuNyBMYUlYZGp8LhcFDY27TsTBxX6zp7yK3rRiHAmhln5oUzFnydnbT+Qa50+miJgpZQgTXTLznrx/km0Ffx8HX9RiqOt9FaY0OlVTJ3TRL6nFkktMtk9liTTC4vnC5f+6M1XRSWyqv0OxPC0QgChyyOYQ30TsfOThvFvdbvN8eO3qG5oUUmLDFBGrz4OOGXJ/sVyctZdYMcsTixtZam8m68Hj+1hR0c+LScD588Qv4/5DSj0hPYX1ET0l1KVqaCS+7L5vZnl/UbLZrTQlCqR5/Wcnp9hYoPNOGyD7VMFwRhVN3ImZCRxOnhKJQCXc09fLGnBpvLR1yInsWp8nWqL5bHyUB7HYHpyWe9wuuSiGAS2+TvOFo/mr4UzZrkNWiVX1+v8nXwjVbT2Gw2brrpJl5++WXCwyc2AQE8+uijWCyW/n91dSPn+L5teHmQ4c9IviKN3U4+y5Vv6rtXDkRFjrUco7ahFrUmgagoeSUT2+Jin/NeLK1OAkK0rLwhfUh4sGDnFtprqzGYgrngh/eflTJekNMzO9+WtQEZi2NImzf6RGGKiuT6FUvROUUcbj12WxiS5KO1dXhFSF9URJ8VhmISFtNTF8gTdkKLgV1F7/W71H58fKgOQ5Ikiksew+vtJMCYTnLyj4btqw8pORFccE0wCnyUuZazVfEnRJUBy8efsOJINwC6WTcTFblywuc5GFG/+AW67JmIViuhL6kQPAOOrD7R1x8ZmYgF/GhQ63SYM2SxWcX2rTjOkTUwkZEXodVGEaYP4+F5D/dvf6DpwIjukhXdFWytkUPmd8y4Y8Rj+TweOuple/vEGTkAnDhxAr/fT2xsLLGxkxefru9N0SxIDiMy8OynaFqe/AN+iwVnXCRfLIAUbxypSeln/TjfBPrJyNfo4Cv6RQ59IRuK5ayOxxCkQZ+TQ3q9fJ+U2uXuzjEmPXN6UzX5LhdKtYIZU8K4Olp+7R/jREf6oiI3xIRhUo/+XLeIctQuMTOVivQ2nEo3IYKJjNAMkrMj5IWWBOv+lscrP93Nl8/ncXxTLZZaG2a1PLYFpybQGRqKT6lE7eshvXsXidPDJmVZH5sWTERCID6vyKndw9O9/bqR1gHdiNPppKNDrhSaDBnR6lXE9TYaPLxHPta1c+P7IzX1/f4iZ6ek93SsjQwmoU02PgtLCRr2vs1jY1uNnFa/bMplZ/34k8WkyEh4eDhKpZKWlqEdHltaWoiOHj5pVVRUUF1dzdq1a1GpVKhUKv7973/zxRdfoFKpqKioGPE4Wq2WoKCgIf++7Whxe/m8t677zriRy3lf2VOF1y+xMCWU2QkDof/XC15nXnMWBkMXgUEdCKKEq3YGRVVRIMDqW6cNcbuUJIncTbJN+vzLvofBFHzWvkfe1jo6Gx3ojGoWXzm+rXfMRRex1tqJyqOmrU1edTQ0DjX7kvwiPXl9VTRjC1dPR1+Jb0y7jr2NeVyaHYtKIZDfYKG0ZUAs29LyJW1tmxAEFdOm/RGFYgyWL4qkVDzKBcHPoBBEykpUfPqHzVz2qUwm62LjUCcswlPQjbd1eG55PCg0GuL+8heUYWFIle2Y3tVgtZ7EYs0jvz0fq8eKSWtiRvjXq3pKypEHzvYgH8658iQzuDvvJSmXsCR2oBPq3078bdg+Xsl/BQmJcxPOZWrI1BGP01hajCT6QDAyZV46oij2N8U7k3JegHUne43Oss9+isa+Zy/WL78EhYKPLwjHrxRYFbDsrBH2bxp9HXzb6ux4XL6xNx4FRfub6G7pQRegZlZvNEA/K4ecMjnS0UordrcsKF3TGx0p0fiJTjGhVCu4O15+Tje2W/ob6J2OfFsPu7sGrN9HQ1d9PT1aLYIokrxwISfi5HF/tjUT3PJ9u/SaNAJCtHhcfkS/RECIloxF0ZyzIAqFIKBJDGLlXfPRBwXRGSqnCXsOHpr0dREEgZzVcqT95M4G/N6hlXWzI+XISF5rHv5eAtXXqTckJGTERqVjoa+qRtvqQSHA1XNljxJJkgb5i5xdvUgf0jQa4jrk+6cifDhh21y9GZffRYop5WuPRWcDkyIjGo2GOXPmsG3bgEhRFEW2bdvGokWLhm2fkZFBfn4+ubm5/f8uvfRSVq1aRW5u7v+Z9MtE8HpDO15JYr7JSE7Q8Bu2y+Hh3cOyFuSelVP6X6/oruBU+SlMYgzRUXK5b3AH7O6QHSJnn584rI13Q1EB7XU1qLRaslaee9a+g7XdyZF1ct528VVT0AdoxvmE/HBP/eUjLDl8ko5meeVptR6lvX2AaLpKuhAdPhQBanRTJmcxHWaOxxQeglIScLSCV2xnVYY8UH58TF5tuN0tlJTKWo3kpPsIDJw29k5z34LaA6QEFnDBjWYEBTTXaShNv5nasADywzV4o0SQwLqtdlLn2wd1dDTmZ58FpRLDITDsVlBf/+/+FM3i2MUoJ9EzaCT0dfFVzHOBEoKCZg1JTQmCwGOLHkOnlCMPh5sPD6kUqLPWsaFqAwB3zrxz1OOUHZG1IUp1ArFTQqioqKCrqwutVsv06dNH/dxoqG53cKrBilIhcGHW2U3RiD09NP/61wAYr7+G9RHyfXjh1AvH+NS3C4GhOgJDdUiiREvV5PVyXo+//zmeuyapP8WqSUoi1aFE79UhCRJ7yuR7cU2vbqReKWJMlvUqU406LgwPQgJerBs5OtJn/X5pRDDxutHHispe64fgHif6yEgOOeV7cI41E8dReWGr1au4/IHZrL41kxt+s5Cbf7+Yc67PQFcnLzgClsQiCMIQvxFPTU1/G4bJIHVOJAEhWpxWD6VHhsoL0kLSCFAHYPfaKe2So0dnkqLpQ3J2OBIQ61dwXnI4MSZZt9HV3IPD4kHh92CyVGKYc2adesdCW60NlR8cWoFN0nATvb4UzWVTLvtWEPVJp2keeOABXn75Zd544w2Kioq4++67cTgc3HabXA5488038+ijjwKyWdb06dOH/AsODiYwMJDp06ej0Yw/2f1fgMsv8kajXNo2WlTk9f3VOL1+smKDWDZ1IGX1+qnXmdGRhSCIRIfLZKShYi1u0UhkYiDz1w7XLORulqMimUtXnjVzM0mS2P1eKT6vSOzU4CH6lPGgiYtjxjWrSTqhwWqJRBBg06YnsNnkgaTnRG9UJCcSQTn5mz5tkSysSmgxsLvwba7qTdV8eqIBn1+kqPgX+HxWAgOnk5j4w7F35miHLY/Jf696lIT0CHLqP0QQ/bREzaMk7VZUahWRl8uTrPNkG96WsfPmo8G4YD6RP/sZAKYPlXTu38Du+p3A10vR9O+/owud30NoVjcA8fG3DNsmNiCWn8z5Sf//P3fsuf6//3XqX4iSyBLzkjH9BapOyOmd4Jh01Fplv3A1JyfnjJ7hvhTN4tSwfo+ds4W25/+Kt6EBdWwsR89Nxi/4SXaZScv6dvWhGQ8DupHuSX82f0c9DouHgFAtWcsHUmiCQoE+J5tYi6xNOFAjFx3EmnSYJSUIUKIYiMTcmyBrAz9s7qLltJb0DS4Pn/VZv49gcjYYdeUyIYzWqGnraaOkqwQBgVmODOz7G/t9OEwRetIXxhAcaUAQBHry2hAdXpQmLfosecw0m820RfaOsaKIq6ho0tdHqVQwY5UcocjdWjfEBE2pUJITmQMMlPh+HTKiCVDTppH3f27ggP9KX1TEZKnAkJaK0nT2O+n2lfTWRqjY1mnH4R+oVqqx1nCi9QQKQcElKd8OLdWkyci1117LH//4Rx577DFycnLIzc1l48aN/aLW2tpampqazvqJfpvxSWsXnV4/Zq2aNSNYvzvcPt44UA3IUZE+Ftra08rhgsOEeSIIC65FqfchuDXU1l2CSg3n/SALpWroT2Tv6qTssKw5yDn/4rP2HSqOt1FzqgOFUhimT5kIwm69hWzPSVxlcgWMwVjAG2+8ga2tG2dv98rJpmj6MGX+YgDi2vTsrtzGqoxIgg1qWm1uvjj8aW/zOw3TMp9BoRintHnz/4KzC6JmIGbfRt299xJSuhNzzStI+FFqMzFFX4M+IQT9dFl5b916ZtERgNDbbiVwzYUIooDpJYnmulIEBJaYlwzbVpIkajocfJ7bwL/2Vg3pUjwSut9+B3N8J2qDH/yBREaMvPq/Lv06MkPlTqC5bbkcbjpMs6O5f2X0PzP/Z9RjuHscWFqqAUjOycZisVBaKq8YzzRF8+U31IvGmX+Kzn/LJnPRv/4VXzXsAGClctGkdErfBpyp+ZnL4eX4JrnP0YK1KajUQ6NvhlmzmNIsjykFXXKFS2ejgyku+Xnf29Tdv+08k5H5fQ306oc6ib5cL1u/LwkOIDtw7NRFk0Xepzk2tl8vNS00kxBNCP5OF67eiXkwJEnCvk8mAQGLY/oXMWazmY6wMMTe8cm2Y+eYxx4NWUtjUWuVdDY6+olBH/r71LQeR5Ik6uvr+489WWwvbqWwl+BpWgYq6vrEq99UigYG+tFYY3U4RZEdHQNp7c/L5Wd/cexiIg1nNi6fbZyRgPW+++6jpqYGt9vNoUOHWLBgQf97O3fu5PXXXx/1s6+//jqfffbZmRz2WwlJkvqFq7fHRaBSDJ/E3z1cS3ePl+RwY796HeSGeBkdGQAkB8quiB1Vy0FSsux7UwmOGv6Q52/bhOj3E5uWSWTS2fFM8Dh97P1AnmBmX5BISPTkVd2CRkPCY48Qs6MBSRIICmrHZq/ijTf+jdPvRh1tRBN7ZlGcmClpaI0aND4FNQ2diHi4NFte8X1wWHalTUn+KQEBaWPvqGoP5L0DCEgXP0vjL/4frryT+AL0/P2CAlyuz5EkPw5HDFtfLyJglZxrd+a3420+s+iIIAjE/u53KBIjUVsFfvqZnxnB0wjVhdJhd7OjuJU/bynl1tcOM/u3W1jxzE7ufy+X364rZMXTO/n1FwW0WIfn7L0trVg2bSRwthzGt5RHj0rElAolv1/6exQoiOiWKPnZfZRfdw3f3+LmurYUZmpGrxiqK8gHJARFMCmzUzl+XB6gExMTiYgYXScwGspb7RQ321AphH6L/7MByeul6bHHQBQJuvhi/AuyOeKQIzrnJZx/1o7zn0Kf+VlzlXXEZmuj4cTmWtw9PkJjjaQtGH599Tk5TK+UJ8Uabw2SJNFQ2kW6VyYth6s7aR9UNn9fb9TjjcZ2bD55ZW31+XmrUV5g3D1OVMTn89HWW+6bNGMG+xr2AbAkbinG+fL59ZGOwfBUWfA2ORDUCoyDRPSxsbH41Gq6Q4IBcOzZM84VGRlag5rMJTIZzt06tECiTzdyrOUY3d3dOBwOFAoFMTGTJ8/vH6mjTC1ft6bSblwOL36/SENpHxn5ZsSrol/sJ7JpGbLGZl1bNyB7WvV5i3wbhKt9+K43zdfEvm47RQ4XBqWC62OGNyHz+ERe2SPnb/9neQrKXrJi99jZc2wPIZ4Q9IIVXXw3AN1Vy0mJaiBz2fBmTH6fj5NbvwIg54KzFxU5+EUlDosHU4SeOWsmb+ndB8O8eUydORVvg7yCiIpooN3eyVeaEwgzBkTIFreFrTVb2Vi1cULdSQWFgvQ5vULWFgNHarZz5SyZjBxryURlWEBCwjgeNj637GwKMPcHtH24F9umTaBW89FtqSDqEZzVCJ4NKBQCZUda2LWxBu0MuQzPumViXXVHgsJoJPIvL+LSwrQ6WP5BN8ue3s6c323ltteP8JdtZewsaaOrx4tGqSAnPphZCcF4/CKv769m+dM7+M2XhbTaBkhJ9/vv40n0gtmP6BOoPQi2jvZRzyFZGckTeek895KfucdthJW1sfawxJWvlFK6cBGVay+l+Te/wbphA96WAY1An7+IUpNIRGJAv3D1TMp5Adb3eossmxpOsOHspWk733gDd1ERSpOJqF88yvbqbfjxk+SKJT3rvy/OmyxCY4xoDSp8bj8d9SM3bjsdDoubk9vliXXhZSn9VRuDoZ8xg5kVNtn5VOGmsLmQhpJuTKKC1EAdogSbCgZ0FH0N9Kw+kTd7CcibjR3Y/SJpBh3njmD9PhgNRUWISiUat5vIObM40CSnhpaalxKwKAYU4K604GkaSvZte+XomWF2JIpBPbgMBgOhoaH9uhF32ci9ZiaC7HPiEQSoK+zsbyQHMD18OhqFhk5XJ0cr5ZRkVFQUavXkDCWbLE52lrTSrZQIiNQjihI1pzporbLidflRe+0E2OsxzP16nXpHQnu9Ha/Lj0avYk2mnLXY0mHF5Rc53HyYlp4WAjWBrIr/9njv/N+KXX4L8VJvVOTa6FCCRyht++xEA81WF1FBWq6YPRDm+6jkI1Lb5WqVacojoARnRzJqh5pVNwSOmCapOHYIe1cnBlMwU2dmwaZfgr1V7uirD5b/qws+7e/e91Qj5+Zba6zk75TDkCuuTx8W1p0soh5+iNDHL8IeB9EhjbTVzqRV2c2fy/6FyWDiePtxijuL+91B6+31o5aUDsbUJedycvdu4lv17Cr6kFuzu4gxumlyRFPrfxBBGOe89z0PHWVgjKTLkkPHy08CYPr1L/jc8QcWVQQDkJ4dRMrK6Wx66RRlR1qQZoQxDQlnQQeeBjsa8/jRHb8oUd5qJ6+umxN13eTVdVPS0s2yi7Q8/Kmb5cdq2C/spy5uFqkRRrLjg8mJDyY7LpjMmCA0KgWSJHGgooNnt5RytKaLV/dV8c7hGm5amMidixLofv99HFfIKy53SwJ+l4rqk8eZsWpoFEDyeul69z3a//53Ui3ySulkksC+aQLzu0JY1GrCU1GJu6wMd1kZXe+8C4A6MQHD3Lm4C06hx0tgShqVVeXY7XaMRiMZGRnjXoeR0FdFc/FZ7EUjW77LlUKRDz+MKiyMjftk0r7cPQ91zLevQ+94EBQC0akmavI7aCzrJjJx/IrCwr2N+LwikUlBJM0c2UpBYTQSnDyFiJ42WgK62VW6C02ZrI+6MDOavx+u5qv8Zm5YIC9K+hro/bS4jpfq2rglNqw/ZXN3wsjW74NR3as3inC5KHHW0O3uJlAdyIzwGagUKvRZ4Tjz27HvayD0ajmy6et04SqSiU/AkuGpkT4Ra3pJKZLbjae6etJ+QABB4XpSZkVScbyV3G11nHuznMrUKDVMD5/O8dbjHKw72H/MyeKjo/WIEixIDiU9OpJjX9VQldtGaO8YEtJVgjY5CdUkbC8mij6PmpgpJmYHGzFr1TS4vezqsrGjNz17UfJF/3VvkcH4jox8DVT2uNnSa5l8R9zwG8ovSry4WxZv3bE0Ba1KnjC9fi+bD2wmzZuGxuPGkCGH7LqrFrM67CV0WeuG7QvoL+edufIcVB/fCjV7J36yKv0w0iJqQ9h5+DyQgkhLtRHv2w5lwQPbGcNBNzlhlSo0lLild7Ku5ynKhFaqzLsp0zQiCRKUDmxnDjDTYG/g+ePPkx6SProBWC/ip89EqRYwuFUU1BVQHnCUxbFL+LjsUr7Md3PDIhGLxUJrayttbW20tbURHx8v6xo6KmD3MwA4Yu+g+Un57/B772V/th52iyQ1yyr3jPO/R9w02Rht08unKM/vwBupJ9vtxbq1hvBbhgo9JUmiyeIir66b3N5/+Q0WejxDra2VhmqOJfr5dJGaKw54+Xn+R/zp51cQPnNk4aggCCyeEs6i1DD2lLXz562lnKjt5uU9Vby5r5KLExewbNoWAnFgMlwCbKc670Q/GZEkCfu2bbQ+80c8NXJUR5OaSuttF/I7+4sgCCycfw+pmdfj6+ig59gxeo4epefoUdxFxXhrarHU1JIOpAP+xpfoLPmCVIOe+AsuQKmcPGktabZR1mpHo1RwftbZ6YHRZ/kuud0YFi7EdMXlWNwWDnXJPXNWR5yDMEKE4P8CYqcEU5PfQVOFhZzVY28r+kUKe6MJM1fFjUkS9DnZJLbvpiUAjjQcZa4jA7VWyVVLE/j74WoOVHbQ6fD0W5ZfGRXCU5XNNHu83FFQTZPbS6RGNWq7i8Go7/WIigkIYG+jPF4tjF2ISiFPPQFLzTjz2+nJbcV0YRLKAA32/Y0ggTYtBHXk8FS12WymZFCK0LFnzxmREZA9WCqOt1J6uJmFl6X0d7WdEzWH463HOdV9ikwyJ01GRFHi/V779+vmx5MSGsSxr2qoKejot/kP6SrGsPSb1YvETglGEAQujgjmpfo2Pm1s4Fift0jqtydFA9+Rka+Ff9W3ISGHMlMNw42bNhc0U9nmwKRX8/0FA86W6yvWE9cip2EyuvIh0ono05Dc0UrcnJFbvnfU11JXcBJBEJgn7JKJiCYQlv0UPA5wdsvCTFf38L+RwOcEmxNsA86l+Y5LaLMFoRXsLLH+CD4+TSwnKGRr8hlXj3kd/KKf4s5iDjYd5HDzYY67j+Pq6WXcWjkfbPQbieiJIE2fxk+v/CnmYDOPH3icj8s+5uHdD/PuJe+SGDR6ikipUpOSMYXSU6WcF+lAFN0sNnfzSZnE4epOHn3iT+j9Q0O9eXl5pKakELL+Z+B34w5cTP1zH4PPR9Clawm/71627vgxca16VH4lQUYV5gy5LDhl1gAhqWl14tcIzC7swFNvwxWu451DtRyt7iKvvps223BreqNGyYw4kxz1iAvmqK2AD8qg/rIwXN2N6IrcdD/4ACEffYhyDB8dQRBYnhbBsqnh7Cxt47ktpeTVW/g44RzW7VvMJWnl3Dn7fGA7tSdPIIp+3AVFtD71FD29VS/K0FAifvwjgq++mlSVihnr95Pfno/dK4emVWFhBJ1/PkHny0TGb7PhPH6c2s8+oWvXboKdbpTWTsIKOwkDOHqMsn+8gGHuHAxz56KfOxddRgbCOASlLyqyPC2CIN3Z6aHUZ/kuaLXEPP5rBEFge+32gRTNzMmXHn9b0N80r7wbSZLGJBjV+R3Yu9zoAtRMGUcobpg1i4zPd3I4CSqc5cxFXkGnRAaSFRtEQaOVzQXNXDdfHrO0CgV3xkfw24pGdnTKIsixrN8Ho8npBJWK+KRk3muQ29MP9r7RJASijgvAW2/HcaiZgKWxOHrLbQOWjBw9M5vNeLRabEFBBFqt2LZtJ/Tmm8c9l5EQnWIiOsVEc6WF/J31LLxMjlbPiZrDy/kvU+OvOSMysr+ig/ouJ4E6FWumx6BVKQgI0WLvcveXa4d2FWOYd/YJgSRJA2Sktx/NxREmXqpvY2fdZtS93iLTw79dz8Z3ZOQMYfH6eLdZVmHfNUI5ryRJvLBLjorcsiiRAK2q//X1u9Zj9pvRej2osuTXPU0ZnKP7EDJeHPF4feW8F830oSn5TLYrv+YNmDKOz4gogts6jKjYO2wc+lB+2BdNK8UQubz3vW55u55O8Dpg2+Mw7TK5kdug71ZpqZTJR9NhjrQcweYZ2q3XpNCTorORSQCKvQ9y7pUz2HbwS5ztTjZ+vJEbb7yRXyz4BeXd5eS15fHj7T/mnYvfwag29h/D4XDQ2traH+2oNcZjOqeWyBA3Pp+K0hPxRCusNIkmStwm5mhdhIeHExER0f+5+o1/IaRyBz6Pjrp1TkSbDf3cOcT87nc4fU4ONB5gcaNMBjLmzkIYNMAOJiT1HglJ8uP6uIA/O+y0WAcIiFIhkBEd2E88chKCSY0I6NcHAbz8hRzuXZl6GV23/ZXIpzTQ2+E37h9/H3LckSAIAqvSI1ngbOT9B//EaysuoNYRz8dF09lUWc+MyMXMbzxA5d334N21W/6MVkvorbcSducdKAMG0kuXT7mc/PZ8dtXv4q6Zdw07ljIwkIAVKyg/doSyqWa0mhyy5kXRvnsXCXYHpuZm/F1d2LZsxbZFdm9VGI3oZ8/GMHcuhnlz0WVlDWkuKElSv15k7VkyOvN1dPRbvoffey+aRJnMbqqQHYCX2WajHaVT6f8FRCYGoVQpcNq8WFqdIwra+1CwRyb9mYtixrRDB1nEOusZO/9eDl2qLlxKO+Y0eRK+aEYMBY1W1uc39ZMRgJtiw3iuuhmbX8QwjvV7H2w2G3aVCiSJ0JwM8gv+AjCkkkwQBAKWmOl6vwT7wSYEjQLJ7UcVrkc3deTIS3R0NAqFgpaICAKtVly9bQnOFDnnxbPxn3ILjDkXJqHWKsmOyEaBAofKgU/nm5SDOMB7R+QKvCtmmdH1pr6TcyLI31GPJIHe2Ybe1fmNiFe7mnpwObyo1AoiEmRNzzyTkSiNCnezPDZ8W7xFBuM7MnKGeLepkx6/SLpRx7KQ4TqCzYUtnKy3oFcruWVxUv/rO6t2EtYkP8hx9Q50y2RvkRntRSiVAqQNV/57nD0U7t5OZlArGR65eoRLnh2fiAAoFL2pmeAhL+95MR+vr43oFBPT7v0ZnB7K9vTAX7Khuxby3qUh7VwONR3iUNMhDjcfpt05VCwZoA5gbvRcFkQvYEHMAkxb7ZwK/j6SspMqvZNTX3Xy/R/ewDvvvUV9fT1vv/02N954I39e+Weu+fIaKi2V3P3l3XxP8z3a29ppbW3F6Rxa2qrXW0ifIfepKK+eSWrqfNb6QnnppJs2YwqPPvQDVCr5li4uLuaz914nufTfiD6oO5GOt6kFTWIicX/9KwqNhn01u5BcXuJb5RRN5kU3DLt8fYRk48v5NHglCsuttBq8JIUbuHFhIrMSgpkWY0KvGT0q0OxopqyrDIWg4Lwpt1Ds2EDnnZVEPKvHvnMn7S+8QMS9947/WwJdb73NjKQCHlt8koLuVWysv5ma2jbSqxs4p6IaryjfT6bLLiXi/vtRj2DVviJuBb/lt+S35dPubB/arK8XkiRRVyBf6+DkLA47a3FOn87M73+ftORknAUF/Wkd57HjiHY7jj17BqoblEo0yUno0tLRpqfTEhGHta4LbUAI52aenRRNn+W7NiODsNtuBWRx9KFW2ZlzlWEpygkY931boVQriEwKpKncQlNF96hkxNLmpLZQXhgN9hUZDer4eOL9GgI9SmwaB43BJZjTVwIyGXlmUwn7KzrocngI6U3VBKmU3BEXwZ9rWrglNmxEfdzpqO7rZ2S1UhjcjSiJpJpSiTYOrfIxzAjHsqES0ebBsrEa6DU5GyW9plariY6Opj0inCkVFYg2G762NlRnUN0FkJwdQVC4Dmu7i5KDTUxfEUeAJoB4XTw1rhp80T4UE4gC9aHT4WFzgWzmdu28AWPPlOxw8nfI+rzgrmLUsbEjPp9fF33+IlEppn5rCIUgsDzAzk5PGfDt8RYZjO/IyBnAJ0q80iCLuO6KGy7i8vlFntkkk4bblyYPMXb6YscXmEQTGtEPaWEoNU4U3mDibeWQeu6IGo3CPTuJFJq4IFbuD8KSn8CcW8/4/Kvy2qjMbUOh6PUUGeGhdyoEds68mENln3Mw9xka8p8Z8r5WqWVW5CwWxCxgQfQCMsMy+/PAktdP46lDGNOzsUcfJTRmF01FCdQc6uHmm2/mjTfeoK6ujhdeeAGfz8d073R2x+zmhO0E7i43md2Z/ccJDQ0lMjKSiIhQVOpn8flErLVG9tU18PxN53CJMpi3i7fSYHFzvM7K/GS5omnq1KlcqD6C0eOg9pgZV1UbSpOJ+H++2N+Fd1vtNhKbDCgkgQiTivCkKZwOvyixw2FnQ4CX860qpnlVpPo1/PDHSzFoJ/b47GmQJ+iZ4TMJ0YcQF3cjpT2P03NTEIZ/ddL+t7+jnzGDgOXLx9yPr60Ny6aNOB4WEQS4fPZCbnQ30PT28yit3QCcDEvh3blXsvqC5dwaFslIyZAoYxTTwqZR2FHInvo9XDH1imHbdLc04bJ3Agr0ScE4a0swmUxMnToVQaHAMGsWhlmz4M47kfx+3KWl9Bw52k9Q/J2deMor8JRXwIYNKIA3AZfOSEfte9gzMtClp6FNT0c7ZQoK/fCOomPBvns31nXrQKEg5re/QeitdNhRtwOf5CPJFUvalNGN3P6vICY1mKZyC43lFjIXjzxxFe5tAAnip4UO6eo9GgRBwDBrFjGWEmwRDlpCyomIlxdUyeFGMmOCKGqysqWwhWsGTaYPJkezPDSQeUETEwTXFMqGZFGixL5mOTI4kr+OoFIQsDBWrljzSwg6JYZxOnubzWYKBpEP+4GDBF+6dkLndToUCoHsc+PZ834ZudvqyFpmRlAImCUzNdTQbeye1P4+PdGAxy8yw2wiK3ZgPI+dGowggCSBztWNYd43rBc5LSqoc8jjkKifSYjuzIjbN4nvyMgZYFOHhXqXl1C1ckQR18fH6ylvtRNiUHPXigEvkON1xzHUy4NFUEc8pqVyrXeiVUIAyBzOViVJonLzO1waV4RSEGHa5XDur8743D0uH7vfk5Wk2avjCTutOsTtd/NhyYe8kv8KHa4OCJTfVyIwIyKb+THzWRizkJkRM0dVYjsLO5DcfoLtS7FzFFPcAZqKbuDkjnrS5s/lpptu4s0336S7uxuAMMJY7FjM3oC9FIYUcsHsC7hwyoWEh4f3O3xWVf+dysoyBElH3a4YEtQie2u2cXnGtVw0I4YPj9Xz8bH6fjKibDpBtvcYbScD6amSENRq4v7+NzRJSYAsIt5dt5vFjfLAmjFveHndqQYLj36ST36DBRQQF69nRp0PrV1k90unOP/e7BHLJ0/H3npZuLfUvBSAmOgrqKj4I91zmgnrPA/np7toePAhkj/+CM0YLRK63v8Ad6oHX4yEvkCP95mPaa2qRgko4+P5zBjGu8kX0aUNJXdzKf/aW8Vdy1O5eVEixtOI08q4lRR2FLKzbueIZKQ2PxcAQRVDa48ccp4zZ86IK0RBqUSXmYkuM5PQm29CkiR8ra24S0pwlZTgLimhaO9xoi0t6FwOeo4coefIkYEdKBRoEhPRpqf3ExRdejqq2NgRQ8miw0Hzrx8HIPSmG9HPGCjd3Vy9Wb7Wttno0ibXeuDbiJgpJtg0uhOr3ytSuE9Of01fPnFdgz4nm7iqNkojmmkLqkWhHPhdL5oeTVGTlQ2nmoaQEaUgsCh44l5BDa1ydCAmLJR/NewCRiYjAMYF0Vh31IJPwjg/GoV2bP2R2WzmiNGIy2BA19ODfcvmMyYjABmLYjj8ZRWWVidVJ9tJyYkgyBoEWqiTJt6oVZIk3u9N0QyOigA4bV76qpDdWhP6uWefLI+kFwFZ13eiQU5f2oxL2d9tZ8U4Zdn/aXxHRs4AfSZnN8eGo1cOHZxdXj9/3iJHMO5dNWWIUO+jLR+hkTQoJRVqrQlDpNwdN6a8ChAgfbh3SOOJPZyj2YJe6UOMmY3iihfl1MsZ4si6KuxdbgLDdMy7eECB7vF7+LjsY145+Qqtzt5238YYzlOHs6B4G3N0URhvfHWIdmQ09HXojUw6nybly/hDHJj5kgYuY8dbRXzvF/O44447aGho6Nd4aLVanjj4BO+VvMdL9S+xcubKfiJisxVRVfVXAFKSHuVEz7tEILA371Muz7iWK2fH8eGxetbnN/H4ZVnoFBJ8+RO6K/R0FMkPnO6hB4fkZ480H8Fv7SG6U56wMi4esFJ3uH38eUspr+6rQpQgUKfikTUZfH9eAqf+eZK9eR1UFHSy499FnHNz5pjVGh6/h4NN8qqwr2JIpQokJvpK6hvexHq1SGDlTFx5J6n/0Y9JevedEaMEksdD1/vv4VrhJ+x5FdoSP16qUQYHE37ffYRcew2Rj9zP9fUfEHj1T/mgRkFlu4OnNhbzyp5K/mdFCjctTOpPJ62MX8k/8v7BgaYDuP3uYcSy/IgcYhcC4mlpb0KhUDBr1qxxf3uQV97qqCjUUVEELF/Oyfpu7lDtI1Ahsee6JKgox11Sgru0BFdxiRxFqarCU1WFbePG/v0oAgIGEZTeSMrUqbLle2Mj6thYIn784/7trR4rBxplH4vl7rlo4r/9DTbHQ3SKCQSwtDrpsXowBA1NO1XktuKyezEGa0maMb6Oow+GWbOIza0GCmlVN+MTff2RzTUzYvjTllL2lbdj6fFiMkxebOz3+2n1++WxamoIrc5WdEpdv7vp6VAGaDCdn4SzoIPApcM9lk5Hn6C0JTKSxOpqenLzJn2Og6HRqchaFsvxTbXkbasjbpoJVYsKEqDOWYfFbcGkHb+y8ERdN6UtdnRqBZfmDI1k1RUPOL12hmWhn3P2/UWs7S4c3W4USoGo5IH7/1DzIVp6WlArA/DoZ7GurXsIGWnsdtLd42Va7H/vmfnO9GySyLP1cNDiQCXArebhufY39lfTbHVhDtZz48KB6pDipmIUdfLlNnanY0o6gCBIhCgS0btFiJ8PgaeFJr1O9Ot/SLDGRY8yBMUNH4B6cuHswWivt5G3Xc5ZLr8uDbVWidfv5cPSD7n404v5/aHf0+psJdoYzWOLHmP9Fet5aM3LLBcCMHbVwMkPxj2G3+bB1esuGDA7gYiI8wCIjN2O2muno8FB7pZaIiIiyMnJIS4uDm2v0PHn83/OnKg5OLwOfrzjx1g9VkTRQ2HRQ0iSl/Dw1SSm3EBwmDw4NpbW4fV7WZAcijlYj93tkw2bTvwbe14pzUflwePU9CzyTuv9sK12G8lNRgQEzGFKgmJlsd724hbO//NuXtkrE5GLZ8aw7YEV3LAgEYVCYNp16cwNUCEAxQeb2fvR2KZLx1uP0+PrIVwfTkbogDdHXNyNALRZdhDx9C9QhoXhLi6m+de/HnF/XR98iNfahuljFdoSBahVhN1xO6lbNhN64w0IajVJ2bNRIJHckc/mny7n2WuySQoz0OHw8PsNxSx7egev7KnE5fWTEZpBlCEKp8/Joaah3U8lUaShRHYEFmLk65aRkUFg4JmtpNb1CleXT48leOZ0gq+4nKhHHibh1VdJ27+PqXt2E//KK0Q+9BBBl65Fm54OajWi3Y7z2DG63nmX5l/9iurrvk/J3Hl0vvEGIFu+K4wDKYMdtXKKJtEVQ1pi5hn1Qfq2QWdUExYrf8emiu5h75/aJQtXpy2NHRLdGA+azCyMnvmoRBU+hY+8hoHJfEpkAOlRgXj9EluKWsbYy+hoaWzEr1Cg9ngoj/UAMDd67pi+FoHL44i8Oxtl0Pg6n7CwMLRaLa29wlJ/Wxui48xckvswY2U8CoVAY1k3RbkVaP1agnxBSEjktuZOaB/vH5ajKBfPiB1WMVZfJI+LgujHpQvDqjr7/iJ9UZHIxCDUg3RsffbvC+PPB0HDhjYLvt6eQC6vn7vfOsaVL+xj2xn+3mcD35GRSaIvKnJZZAjR2qE3m6XHy993yALCn56X1q+iBvjgqw9QSSqU3gA07mDC4uUyt9i23sZUGaelaEQR7wc/INTfgNOvwrn2XxBw5nk+UZTY+XYJkiiROjsCc5aJT8s+Ze1na/nNgd/Q7GgmUh/JLxf8kvVXrOd7ad9DrVSDxghL5A7C7H4G/GO3NO/JbQWpt2QvXE9UpPy9vAsFUis+AuToTHdrz7DPqhVq/rTiT0Qbo6mx1vDI7kcor3oeu70ItTqEjIwnEASB6bNku+boZh1HW46iUAj9zfPWHy3Ft/73NOwLAUlAee45FGRlkZ+f3y+IFSWR7XXbSelN0WTOn0er1cW9bx/nB68fpaHbiTlYz2u3zuPv188mMmig1FoVomPqkhhmGeTf9uT2eo5uqB71evSlaJbELkEhDDxuRuMUQkIWASLNvi39HX4tn39B1zvvDPxuDgdtzz9PyxNPoHALCJKAf3E4qV9tJPLBB1EOIghJ2fJ1qc47jlIhcOXsOLY+sIJnrp5JfKiedrub360vYvnTO3h9fzVLzbJGZWfdziHn3FpThdflQFJosSnkcu8zdVwdUkUzSi8aVUQEAUuXEHb7DzA//TQpn39GxrGjJH/+GbFPP0Xo7T/AuHQpyohw+uLcQZeuHaax2VTdV0UzB+3/H6Ro+hCTGgwMGFn1oaPRTlO5BUEhMG2UMtjR0NHqRVAGEu6Ux5TdFbuHvL9mhiwy/Sr/zPqMVefmAhDWbeGQS9aO9KUpzwYUCgWxsbEDTfOgv5T9TBEQomXqPHlBeGKffM4pGjnNPrjb9Wiwu3182Vu+ft38oSkaSZL6IyNBVtmRuypvdMfkM0WfeHVwisbmsbGtVvYWuSvzakJUSjq8Pg5a5NL+x78sIK/egk6tJC3qv5e6+Y6MTAItbi+ft3YDI3fnfWFXBVaXj/SoQK6YNZC/rW6uxlcrT+IB1hTCA/ajMDlQKo1EFJ+SNzpdL7L9N6jLNuCXBPYLawjLmUDlzBgo3NNAS5UVtU6Jc0ENl312GY/tf4wGewNhujAemf8IG67awHUZ16FRnrYymXc7GMKhqwryx46O9KVo+gRooaFLUamC8akcRGbWEdJZhN8nseudkhEjAGH6MJ5b9RxapZY9DXv458l/AZCe/hu0GnklkXbetQDEdOjYXSgz/itny6Hd7OrXaDvsQfQq0GVNI/XZZ4mKjsbn85HbO0CebDuJt9VCmFWDgMjxuEs499ldrM9vQqkQuGt5ClseWM6qjJH9GoJWJ5IUqWeGXn58Dn9ZxckdI+eV+8SrI5m6xcXdBEBj4/vo5mYT+eCDgFwl0nPkCF0ffED5BRfS/o8XQJLwJIu0PeQl5o9PookbwZkyMwuVWoO9s4OOOtnoTKVU8L258Wz/2UqeumoG5mA9rTY3j39ZyLoD8oS9s27nkN+iTy/iC0nGL/oICwsjqVdrM1kcr+2moduJUaNkZfrEG3IJGg269HRMl15K1EMPkfDKy6Tt2cPUfXtJ+uB9Yp94Ysj2g1M0y6yz/v9CL9KH0Tr4FuyWJ77kmeEEhEzOSbOvN0qMRU7t5LbkDnn/4hkycdxT1o7VNbRj70RQWy4vykJ1Co63yim/wf4iZwNmsxlbYCDe3siqddPmr73P7NUyiWhqkUnYzFC52/Ox1vHJyLq8Rno8flIijMxNHHr/dTY56LF4UEg+onvFvFW5bSPt5mthJL3IpupNuP1uUk2pZEdM58II+X5a12bhvcO1vHu4DkGA56+bRXzo+ALobwrfkZFJ4PWGdrySxHyTkZygoT9as8XFa/tkxvvzC9OHeEy8t/49FChQu0PQeQKIjZIjBFGqTJR+P0RmQeigpnfHXoe9fwZgc9NUYi+482udt8Pi5sCnsudJXtJWHst9lDpbHaG6UB6c+yBfXfUVN2TeMHoIVWOExT+S/x4jOuJptONtcoBSwNBrR61QqImM7O0me/0U0kvfQ+H3UF/cRcmh5hH3kxWWxWMLfgnAZquKavV8oiIv6n8/JCkdndGPQhIoOn4ISZJICjdyQZyXm2yb6K6Uf5uoX/4/lFpt/6r+yJEjiKLIttptpDQa6VCH8kXCVTy+tQGby8fMOBNf3LeEX1yUiUEzupzKb2nDU/4OKVqRDJ38CO15v4ySg0NXkQ32BiotlSgFJYtiFw3bT3jYuWi1MXi9nbS2rif01lsIumgN+HzU3HQzzY/9Cn97O4LBgDPLT/uDPjTTpxAaMvKgrtZoievtw1Kdd3zoe0oF185LYMeDK3niiunEmnS0t8cjiRranG38YftWXF7ZNbbi2HEkwBss54/nzp17xp4EfVGR86ZFDYkUnilUYWHoZ87sr57pw+AUTUpwKqrg4caBE0FXs4OK4639be2/Dejr4NtWZ8fjkp89r9vff79NRrjahz4yMrVBvo7lzvIh70+NCmRKZAAev3hGofvGXnG6LUHAK3oxB5jHNDU8E5jNZhAEuno7xvccPTLOJ8ZHRHwg5vQQvCrZN2lpshzNKWwvxOkbu4v2e0d6HVfnxQ97XvpSNMHWCiLb8xAE6GhwYGkbHiE+Uzi63VjbnAgCRKcOpKX7UjR93iKXRATLrzd38b+fy52bHzw/neVp/90Km+/IyATh8ou80SiH1UaKijy3tRS3T2ReUgjnDFpR1zXW4ayTb2KjLYkpte/hmyHfgLGNvTf34KhIxXZY9wAA+9sSqCadtAWLz/i8RUnko9f34HH5aTXWsif4c0xaEz+Z/RO+uvIrbsm6Bb1qAjqUeXeAIQw6KyH/wxE36TkhR0X0maFDmltFRcnfr1M6RvTFS0iulg3c9n1Yhq1zeEdagEyhmJUB8orsn7UVlHWVDXl/Wro8sAU0QJVFJoGPaD6g+6QBJIHA88/HMFsWXM6YMQONRkNnZyeVlZVsqdpJt/Vc3jNfTbUyGqNGya/WTuPTe5YMKcUbDa1PP03P3k307P4zU1V+UjTyY7TtjSKq8gZWO30pmuyIbII0w4VhCoWKOLPsbVJf/yaCIBDz29+inSqXGCtMJsJ/dB+i1431Gj8IEBd385jEIGlmb6rm5IkR39eoFNywIJGdD63i95fPRu2RdSyvnVgva0p2l1NXUYqoN+LXiKhUKrKzs8e9JiNBFCU29Ib5z2YvmpGwuUZeFS87wyqaHquHXe+U8O5vDrPxpVPkbZ94BcU3jcBQHQGhWiRRoqVadu8sO9KCx+UnKEJPXMbkvq/fL9LYm/KZU9QOElgFK022oWT6ot4O4xvyR140jAaHw4G19x6tjpHNAZfELjnrJlt9ItaGMDm6461vQPJOPopzOjKWhSOq5HFpWsx0Ig2R+CQf+W35I25f1mLjN18WklvXjao3PXo6+lI0Ie2FaA0qYtOCAajMPXupmr4UTXh8IFq9vJiqtlST25aLQhjwFlkWEkCgUkGX3487UMX506K4e0XqWTuPM8V3ZGSC+KS1i06vH7NWzZrwoRNWeaudD3r7EDyyJmPIQ/f+uvcRENC4wolTuAmJ3YukAYM+haCSXuFgn16kpRA+uAUkP9WkcaA9gZnnXoBSNXk1uyRJbKvZxl2vPoC9SIGIyNH0L7lv9n1svHIjt8+4HYN6EiE5bcCY0RHJL8l6ERjmERASPB+NJhKfz4LqzsUkWY8RYKvF5fDx+XMn+ns19KG7+yi1tf9ibbCX2WFpOH1Ofrz9x1jcAznzzBVy5VFcm56dlVug4RgRx7fiaNLhExR03TjgLKrVasnJyQHg1S37Kc/9HicD5iEKSlZPCWLLAyu4bUnykGjWaHCeKsC2eTMIAob5U3Cf/DdZOohXC0gSbPxHLqX/3ojodo+ZoulDbOw1CIIGq+0kFmseCqORhNdfJ+aJJ5iySa4scWd48UeASmUiJnp4Ge5g9OlG6otO4XWPTPRAJiXXL0jglytlq399cAltNje/21DCa9Hf41j4AnySgunTp2MwnFno9mhNF81WF4E6FcvTzr5Yrw9Wj5X9jfsBWGqdHBnxef0c21jNW48d4NTuhv6IyLGNNf1RiG8DButGJEni1G5ZuDq91xNjMmirseFz+9EZ1aR6HQS7ZZ3A7rKhupGLejU+u0rbsE0iVVNXJS8OAi1WjimqgdFLer8OgoKCCAwMpC2i994SRZwFX8+NFUARKC8SlT49Vce6mBMpV70MTtU43D4+OFLHlf/Yx3l/3s2rvVHxa+fFEx4wNMLs94s0lHYDvRbwc+aQkiMvaAcvXr4uBvej6cMXFbJ9xJLYJUQY5GMqJDB2yb9nQFIQf7pmYhYF3zS+IyMTgCRJ/cLV2+MiUJ32w/1xUwmiJIei5ySG9r9eW1uLvdEOEgR440k/+Dd6FokAxKqyEHwuCE6A6Blga4a3vwduK97oOXxWHIGgUDJz9ZpJn+vOup1cu+5afrbtIVJOylEVxYxu3rv1de6aeRcBmol7BQzBvDtBHwqdFXDqoyFvucu7EG1eFEbVsMlAEJT9aZZ2x06iH3qAmaf+ic7diaXVyRd/ycVllx8Ov7+HwqKHAIm4mKv4y+p/YQ4wU2+v5+e7f45flFMJUXPXoNB4UfsVnDiwAemrX9KaK0cfvkhZysenLeamZOWw25PMOzVh+PxhGH12/se7gVfuWEZs8MQrlNr+Iltamy5dS9xzfyblk7+jT+4hx6AkWiUgCkq27/ZzcM11HKyVIyPLzKOTEY0mjKgo+drU178JyKmI4KuuRGEw0P3e+9hXyd/ZHHstSuXY5xpqjiMwPAK/10t94alxv8+qhOUICIjqen6xNoYIjZ8elZFDqnQ+cs+kXJmI87SmfxNFXy+a86dF9zeJ/Caws24nPtFHgjuGJMmMNnn86JYkSpQebubtXx3k4GeVeF1+IhICufQnOZgi9bjsXk5+i6IjsYN0I601NtpqbShVCjIWR4/zyeGoL5FTBrFpwRhnzSKuSyabh+qHVlWlRwWSEm7E4xPZXtw64f3X5MnOvSp/O3U9jagEFfOj50/6PCeCuLg4uoODEXv7Itk2b/ra+2xolImeyhtI3vY6ZkXIEdbjLcc5UdvFIx+fZP4TW/n5xyc5XtuNUiFw/rQoXr11Lr+5bHi/l5YqKz63Hw0uAuwNGObNIzlbJgZNFRZ6rJ6vfc4wQEZipsr3il/083nFQIqmD89sKqGjN4qiMhuGeRD9t/AdGZkA9nXbKXK4MCgVXB8TOuS947VdbCxoRiHAzy9I739dkiQ++PhjAHTOKFZO8SEZWvGmSAiCkuh6eUAgYy14e+Cda8FaD2FT2Ke4GL+kIHXOAgLDJrailCSJvQ17uX799fxo+48o6ixiQdPFmNzhGILV3Hn75QRqvqZS+vToiDgwSTn6hKvZkQiq4bdVX6qmrX0LAZetIWRaMjkn/oJOcNPZ6ODLv+bicfoor3gap7MWrTaatLT/JVgXzF9W/QW9Ss/+xv385YRMBgSVipRe18is2hosu3Nxd6sRjUbeTV/NF3mNeHyi/DscreOaN05RKYYDEpneSm6sf4/r5k4uR9pz5Ihsd65SEX7ffQAoAwKIuPsiTOckMNeoJFwl4FfpyU29Db0rnFCrhPLGn9L+8st4W0Ye0OPi5CZfLS3r8Xg6+l+3btmCU92CJ0NCQNkveB0LgiAMqaoZD2H6MLIj5DSMKayMe9y7WdFzjADBjQs1f9vXyLKnt/Py7kp6PBOPFPhFqT+8f8lZ6kUzGvqMzpZZZ6FNMSGM05ulsaybj546ypZXC7F3ugkI0bL6tml875G5xGeEMn+t7L9zYksdLsfXD/ufDfTpRpqrrJzaKZfnp86JQH8GdveNvXoRc1oI+pwcpvb2ziyyFA3ZThAELuoVsm6YRFVNXZ1s+tUVJUcYciJzznwBNA7MZjOSQoGtVzfi2H/ga++zoUEmIwZFMPZON/pmWdR6qPE4V/xjD+8dqcPh8ZMcbuSRNRkcePQcXrp5LudkRI0YXa0r6k3RdJYgIGGYN5fAUB2RiYEgQfXJr5+qcdm9dDbKpc19kZFDTYdo7WklSBPEyviVgKzh+ufuShQdLrSCQKvPzwnr2dOtfB18R0YmgJd6oyLXRocO6ckgSRJPfSUbl109J46pg8qi9u85iN1iAUlAbw4iaNdH9CySJ++w0OVoS3bIG6avgY/vgKZcMIThuepNTu6T1dY5Fww3QTsdkiRxoPEAN311E3dvvZtTHafQq/TcHns32Q2rAFhxbQYa3Vliv/PvBH0IdJTDKZlsiS4fzgJ5EjWM0jE0KCgHnS4Ov7+Hjq5dRD36CAZXO9mHn0GnV9BaY+OrN97ujw5kZvwBlUq+numh6fxmyW8AeO3Ua3xV9RUAOfOXokDke1ITbSflqEjkvfeiDwuh0+Hhjf3VXP/yIX7+0Um6e7zEmxRcrCliob6ZQEUPiedNvNOnJEm0PicToeCrrxrmlBp0fiKBc6OZb1QSrBKQlAFcUnQP86rC8FZW0fanZylftYraO+/CumEDonsgNWUKyiYocCaS5KGxcaBaqevNt3CslCNpERHno9NNTHfRR0aqJkBGAFbErwBgR+12OmtKSQno4UpNPvfMDeotCfbwxAa5JPil3RUTIiWHqjpot7sx6dUsnfKfSdEss85GO0pzNYDulh6+ejGfT/90nNYaG2qtkgWXpXDD4wtJXxDdn+6YOieKMLMRj9PHiS2139i5TwahMUa0BhU+t5+yozKpnb5s8sJVv0+kqUJOd5rTg9HnZDOjQk7nNfobcfuHpkz7Snx3lrThcI//u4uiSEtvCX11lDzJfRMpmj70m59Fy2TEU1k5pu/PeJAkiYaGBiQJpJREvjR4+NnmLiS/HknwoDM2ceUsM+/ftZDtP1vBD1ekEhk4tli6T7wa0pqPYDCgy5TbXfRFRyrPQlVNn14kJNqAPlAmqJ9VfAbAmuQ1aJVaSltsPPSR7Cfzw2UpXNRfVdP9tY9/NvAdGRkHlT1utnTIorE74oYOqjtL2zhU1YlGpeAnq9P6X29pbmHLdnm1pnCH8b0VU+k5eQLn/N4UjSITXBa5XLZ4HZRsAKUWrnuXwvwqvC4nobFxJEwfWzh4tPkot268lbu23EVeWx5apZZbpt3Chss3kJC3AEmEpJnhJOecxclAGzgQHdn1NIh+nPnt4BNRRepRm0deAQmC0B8daWlZh37mTIIuvhijo4l53V+gDfSiNf9Nvj7R3ycsbGhq48KkC7l9+u0APLbvMYo7i4lbeS05YQ2IlSp8LiXqODNhN97A5b3Oh09sKOJAZQc6tYJH1mRw60UthNKJpFITHh+KIjyFicKxdy/OY8cQtFrC7757xO8XcuUUAjNCWWhQYtO1EeAJJk3zvwT/7+9kt0VRxLFnDw0P/IyyZctpevxxnCdPIklSf9SjoeEdRNGHM/8U9rIT9PTeM/Hxt074XBOmZyMoFHQ11mNtGz+8vipeJq2Hmg/jDNAjaXRoVCruXzuf7T9bydNXzyQh1EC7vdc87akd/HPX2KSkz+jswqxo1JMw45osdtbtxCt6SXDHkOiJRZc+nIy4HF72fFDKu785RGVuG4IAWctiufG3i5i7JgnVaU0OBYXA/LXyvXFye91ZC6N/HQgKob9Cwu8TCTMbh1RMTBQt1VZ8HhF9oJrQGCO6rCzSG+xo/RpEQeRo7VCvjmkxQSSFGXBPMFXT2tqKVxAQvG4KNXIVztn0FzkdMTFy5KY+OBiQnYo91dVnvL+immYO2oL52DOT5yq6Kdb48aNA55MFnj9Zq+bZa3NYkBI2IUGux+nrFx2HdJVgmDULobeZZ59upK64E4/z6+mTTvcXsXqsbK+VvayumHIFVpeXH755jB6Pn8WpYTx0fjqXRMrbrmuzfC0Cd7bwHRkZB/+qb0MCVocFkWoYYMCiOBAVuXVxUr/uwOPx8PrrbwISKncwyZdEoPxqO+5pEqIJ1OpQwmp6c9GhKXDoRfnvK15Eip9P7ma50iT7/IvHvNk3Vm3ktk23cbz1OBqFhhszb+SrK7/iwXkP0prroancgkqrZPl1aWe/VfT8u3qjI2Vw6pOBFM3sqDGP1WeA1tGxA5/PRsRPf4qg0aA+8BUzVr2L2tiJxx5O9Z5LEf3isM//aNaPWGJegsvv4v7t92OVXMw3NtBRJBOgsJ89gEKj4ao5A2r25WkRbPmpvILZU7Mdbae8CukOSxu2/9EgiSKtf5ZLrUOuvx511MhNvASlgtDrM7Ek9vDZtL9i03Ti7VawqyqemJdfI3XTRsLu/iGqmBhEq5Xud9+j+pprqbxkLaoNraiVwbjcjXR0bKfrrbfoWSqCBgIDszCZJm4drTMGEDNVrpKZSKomxZRCXEAcPslHfZw8MWdMnYZWq0WtVHDN3Hi2/Uw2T0sIlR1dn/xKJiUv7qoYtmL2+UU2nvrPp2iUIVpU4QOaGr9XJHdrLW/97wFObq9H9EskZIVx7f/OZ+UNGcOs1QcjOTucyKQgfB6RY72dZP/biE4ZqMjKWmY+o+e6oU8vMjUEQRBQaDQEZWQSZZP3vbdy75DtBUFgTW+q5qtT46dq6nr9RbzeKpySmzBdGGkhE3/WJgudTkdERAQdYWFIvdfDtmXrpPbh8YlsPNXEra8d5pJ/HueELw67pCVQp+Kc0CButmk5V5BL5gs7cye174bSLiRRwijY0bs7hzTHC4kxYIrUI/okago6xtjL+Gg6zV+kz1tkSvAUMkIy+dkHeVS2O4g16fjr92ehUipYFRqEXqGgzuXhpH3ssuX/BL4jI2PA4vXxbrOc77vrtHLez/MaKG62EahTcc/KgbKoTz78HKfLjsKvwZng4fp5l2P5/HN6Fsspmuioy1AUy2kGGnpXIef+CqZfSX1hPh31tai1OrJWnDPqedVYa/jVfrlZ3kXJF7Hhyg08PP9hIgwROG0e9n8iDwjzL0kmMPTM/BbGhDYQFskt76Udf8BT1QkCGHLGNrUKCMjAYJiCKHpoa9uCJs5M6M034coSsevkypPW4z+g8oSdbf8uGub1oFQoeWrZUyQEJtDoaOTBr35Ad4EBya+gPVBDebYcAcqIDuK1W+fx2q3zeOO2ecSHGmh3ttNVUIq2qwMkieYegZaWifkn2DZvwV1YhMJgIOyusT1fFFolhUtacWgtlCdvQKsU6Ki3s/7vJxFi4oi8/36mbNtKwmuvErR2LYJOh6eigvZn/oL2K9nboOr4n7BsXI9juXzPxMfdOumJJylbFt1V5Y5v1iQIQn9OuT5cDuEvXTHUF0Xda57WR0oSe23m//CVbDP/ws4BUrK/ooNOh4cwo4ZFKRPvlzJZ2Dy2ISkaXZo8wUqSRPmxVt55/CD7PirH3eMjzBzApT/OYe2PsgmLHV+/IAgCCy+VoyOndjeMWoL+n4R6kNAwbf7YXW1HQ5+/SFx6cP9r+lmzSG6VK/by2ob3eLloukxGdhS3jZuiqymUq1naguRxc4l5qPPwNwGz2YyoVOLq7eJr37VzQp8rb7Xz+w1FLP7DNn741nF2lrQhShCtsHJLOhz55Wr+eNNsovwKtKVyuupE6wlEafhCaTTUFfemaNrl6zK4P5YgCANVNV8jVeNx+WirlceOPm1Rv7dI6mW8sKuCLYUtaFQKXrxpTn8XeYNSwblhcip8Xa+Z538T3w4Z7bcU7zZ10uMXSTfqWBYyMIC5fX7+uEnufHv3ylSCDfIK62RuPsVlBSCBCy0/veVmHNu34/F14ZohT6yximlg7y31kESYfTMs/SkAuZs3AJC5bCVaw8htut1+Nw/uepAeXw9zoubwxNIn+htcAez7uBy3w0dYXADZ54zfcOqMMf9/YP/fELrK0Sv2IqZchip4bBfIvlRNVdVztLSuIybmSoJu/z6FU/4JQKRjMSlXXsXGF/MpPdSCWqtixfeHRnZMWhN/WfUXblj/fZob2rFUGhCA0qgIuvM2Mi9WVu2f7p66s24nyQ0GFD4vkf42WlWRHDlyhEsuGd4peTAkv5+2558HIPS221CFjF82urddniBnCIksMijZ1+OnqcLCxn+e4qK7Z6BUKTAuWoRx0SL8NhvWjRuxfPoZvt3HsK/2Y1OXI61WIIaARhNOVNT42qHTkZw9h/0fvE3tqTz8Ph9K1diP+qKwebzFWzQbWtArg4iOGblKo4+UXDHLzGe5jfxtexnVHT08tbGYl3ZXcOfyFIqb5IHxwunRqP4TKRpfrJyiSQuhudLCvo/Kaa6USZXBpGHBpSlkLIqZdPliXGYIsVODaSzr5uiGalbdmDH+h75BDHZgddq9aE9rYNfd4+HNAzW02WXdhwD9z44gAH6JsLJuBOCLpk4+Xy+nD8xiONNqvOxKg7Kecp7cUIRCIfR+HpAgSKfC6vLxy0/z+d9Lsgg1jhxVaugl+LURstX42XZdHQlms5nc3Fw6zWbMra24S0pH3bbH42P9ySY+OFrHkequ/tcjArVcPScOoeogPS3VXDH7CnRqJboYI4nTw/AX+FCjodvdTZWlitTgifly1PeKV4ObcmVX4UEdpkFO1ZzYXEv1qQ78XhHlOOLrkdBcYUGSIChcR2CojipLFXlteSgFJSHSAh7fIl+P316Wxcy44CGfvSQimHVtFta1dfOLlJizH0WfBL4jI6PAJ0q80iCz1bviIob8SG8frKWh20lUkJbbFsvK+66uLj77XGajSlc45905gwhDBLUffYxznghKCAycQUDxnoGDpKyCi58FQcDe2UH5EVkJnnPB6BPkM0eeobizmBBtCE8te2oIEakv7qTkYDMIsPKG9Ek1zpo0dEFIi+5F2PEEQar38OT8YEIfi+4lI52d+/B4OqlofBZ/kIiyBdQvVJCwQcfqH0xj878KKNjdgFqjYPFVU4Zc/ykhU/i9IprW7RUICFTEqek26qg+cgBGqYTeUbqZpHY5hL9kSjCfVkNeXh6rV69Gpxs9emT54ks8lZUoTSZCb7t13O/n9Dk50iQ7QV5w4RUEvmNjgSRxoEektqCDra8Xct4PsvonRmVgICHf+x4h3/senupqXCfuxGqqxH6xvPoyx16PQjE5q2+AyJRUdIFBuGxWmspLiMsYu115SBOo/SrcSjfGCZTGqpQKrp4Tx+U5sXye28jfdpRT1e7g6Y0l/dtcPEovmrOFvhTN0q4cHBIU7G2i/IT8zKo0Cmadl0DOeQlnLN4WBIGFl6XwyR+PU7S/iVnnJxAc+d+xy+6xeob0Mmkqt/SfiyjKFWNPbyqh0zG6viXOp+D7oha7IPHSiTqZrQChTh3Pl9kQVgu4lE5eOXAYv3dkndmnJxoparLx4Q8XEXhaI7ienh66/H6cSif1OhsCwojOw2cbfSLW2rBQzIBot+Pr6EAVNhCVq+3o4eU9lXx6ogF7bwRPIcA5GZFcOy+BlekRKJB48smPhuwTIGd1PDWnOoiyJlEfVMqxlmMTIiP2LhddzT0ISIR0l6LPmYlCO/RZjkoKwhCkocfqob60i8SsyUcST/cX6fMWmR2xkMc+qUOS4PvzE7h2XsKwz64OC0KnEKhyeih0uMgKOPNGrF8X35GRUbCpw0K9y0uoWsmVUQOrYZvLy996m+H9ZHUaeo0Sv9/Pv19/B1HyofIEoFriZ9WUFXjqG7Dv30fPL3onlrCLYKNsc06QGa55A5TyA31y20ZEvx9zRhYRCUkjntPm6s28X/I+AL9f9nuijAOhWr9XZNe7MgOevsxM9AQmlK8Lj/l61NJfUCvqUCr3AteM+xmDIZnAwCxstgKKih+hvX0boCBiSxxSazMd/3yJqT97AK/bz443i8ndWodap2L+JckDO6nex4Jdh6irCsOrhOcvkZhT6CagDuqsdcQHDa10sXlstJ8oJEUKJlhvZ+bqK9nz2UHa29s5efIk8+eP7IEgejy0//WvAITddSfKgPHD+0eaj+ARPcQYY0hPn4H7hi6kNwqYL8GhHj/lR1vR6lWsuD69P6Vg63DRXm+ns1Gi034LKtOvevemwmy+ftxjjgSFQknijBxK9u+mOvf4uGTk1NHjRKmjqQ+oxxI78ZCxSqngqjlxXJYTyxd5jfx1u0xKzMF6FiR/symafY370Pj0pDYuY7vTi3iiDQTIWBTDgrUpk+7XMhJipgSTkBVGbUEHR9ZVcd4Pxr6O3xSK9jci+iWMJg0Oi4em8m4yF8eQV9fNY5+fIq9ejgRNjQzgwl7nVEkCCan/b3WRFUrsaGMN/M/cWJBAQq4g0R42EOrS06HvZmV6Owmmuf2fA2izuVjfW6pd3Gzj3ndO8K9b5g4RJ/eVxFqQ+yJlhWURovvmewRFRUWhVCppNJmQkDmWbccOQq6+mtIWGy/srOCLvEb8vWnfhFAD186L56rZcUSbBhYijY2N+Hw+dDodoaEDFg7m9BDC4wOIsqT0k5Fr0scf6+p7UzTBSgtqnxP9IL1IHwSFQHJ2OAV7GqnKbTszMtIbMYuZGoxf9PeTkcqqTCxOL9nxwfz60mkjfjZApWRVaBBftVtY19r9HRn5NqLP5Ozm2HD0gx64l3dX0unwkBJh5Hu9QslN67fSZWlDEJV0hjj5/UWyB4Xlk0/wxon4zBJK1MTs+AD8vSuXGz8BXZ863sfJbbJZT875Az1YBqPOWtevE7l9+u3DFOrHNtXQ3dKDIUjDwssnXiXyddBzyoXCdxkm9dso9v8Jsq8CxfjmVlGRl2CzFfQSEUhMvIuoG+dQv/9eOt94g5DrrmXaEjNet5+9H5RxZF0VGp2SnNUJIIpIG3/Rb3BWsDKBppBGts9uY+2+GHYUfsXNC+8acrw99XtIbJAHnewIN4J5DvPm+fnqq684cuQI8+bNGzE82f3hh3gbG1FFRBBy/cRIwZ76XtdV8zIEQUCXHkrIlWnwUSmz9XC0x0/BnkZaqq2o1Eo6Gu14XYNNxWJIvjAabVAzluq5VBv9pC+Y0KGHITlnjkxG8o6z9LqxPUqqW9qIDY2lPqCew9aDkz6WSqngytlxXJody/6KDhLDDBNytD1T7KjeSXrDQubXX0SbT44QxGWEsPiqKUTEn93OowsvS6G2oIPSIy3MviCRsFEqxr4piKLU3xRvytxI8rbVU1/WzaOfnOS9I/LKN0Cr4ierp3LL4qRRq5c+LThOI3DeygSyTisLbtg2j/jOk3SYQR9Qxa/WDiVdkiSR+9QOGrqdqBQCu0vbeOzzU/z+ihn9z05NsRwVa9fK5/pNlvQOhlKpJCYmhvr6enwhwai7uincuJvXe5LYUjigC1ueFsH/LE9hUUrYiCm7PjIVGxuLQjFwDQVBIOfceHI/kcfV4y0TK5nv9xdplc0HB+tFBiMlJ0ImI3ntrPi+NClHXZ/X31+tEzs1uN9bRIWR6rokwowaXrxx9pimg5dEmGQy0tbNwynfbDRzLHwnYB0BebYeDlocqAS41TwQrmyzuXllr2z7+9D56aiUCirKKzl8TE6veH2B3HXb99CpdPi6uuj+6CPZcVWSmFkfiKKut5FT/EKIHMg/lx85iKOrE4MpmKkj9KHx+D08uPtB7F47syJncd+s+4a8393S06/4X3rN1GG55G8Ckk+kJ68Nu/9SJE0QtBVD4WcT+mxfiS+A0ZhGSvKPCVi1CsP8+UgeT7+fR/Y58SzoFRHu+6icgj0NcOojuveV4raoUZqCuPjx10gOiKNH72fH7DZO7h+upN9ZsJGoLh0gkb5gEQgC2dnZqNVq2traqB6hFFB0Oml/Ua50Cr/nbhT68VcMkiT1W8DPMs6j7GgLBz+vYOfhFioEAbNGQXZvp9/2OjvNlRa8Lj8KlUB4fADpC6NZfOVUUhIfA+dC2k5dztbXCynaf2Zt3BNnyiLWlqpyeqyWUberKSvFrdUT5YxCkBRUWiqos56Z+6hKqWB5WgSJYSNrnr4uJEmiMreN8pdEllZfjcZnIEABF1yXxqX355x1IgIQkRBI6qwIkOQOzf9p1BZ0YOt0oTWomNnbVdbW5uTzgzIRuXKWme0/W8Edy1JGJSI+j5/mql5/kRHs8vWzZjFVnospthYPe18QBC7tLZn39UYY3j1cx2/XDdiv11WUIyFRGypPjt9kSe/pMJvNSBLUmeXxYm+Dgy2FLQgCrJkezZf3LeXfP5jPkinho2qH+shIXNxwrd2UuVGkKNJQiAqae5pptDeOeT6SJPWLV011R0GpxNDbkmLYuaeHoNEp6bF6aK6yTvQrA9BabUX0SRiCNJgi9P3eIj2dM1EKav56/SxiTGOPXeeFm9AIAmU9bkoc/z2h9v/nychI9dV9UZHLIkOI1g5M7H/dXkaPx092fDAXTo/G4XDw3rvvgwAqVxhTLgsnIzwDv81G3R134u1swbkAEuqdhFYOElXNumHI8XI3rwNg5uoLR+xD8+yxZynsKMSkNfH08qeH6EQkSWLnOyWIPomEaaFMmTPxNu1fB67iTiSnD0VQSH9lDbueAXF8pblOF0tE+HkolQFMm/YMCoUWQRCIfPjnIAhYv/wSZ77clGrOmkRmXyDnOve8cxL354/Rli9POOH33ktQeCx/Wf0PdH5oDXVT6KvG4XX0H8vtd9NyTLanDg2wEjj3yt5z0PU3gDtyZHi3z66338bf1o46Lo7gq64a9bs4bR7qizvJ21bHu//eToO9AYWoovxFic2vFHDsqxqqT7ZzqstDldtPklZJpm7gsZt3SRJ3/WUF1/5yPqtvncas8xPImHUB56x5i/Q5M0CC7f8ukonYJBEQEiqn/CSJmlEa5wHs660+0NtEMnWynfXO+p2TPt43CbfTx8kd9bz7+CG+ejEfrT0Qp8qGOdDGuTF6UpefWanrRDF/bQoIskFVa83kJoyvi4LePjQhWSF8/82jtCnkZ2x+oJEPf7iIZ6/NITJo7Kq55koLok/CGKzFFDl8ctLn5JBdLpd3toqtQ56hPvx0dRr3nzuVmEGpjVf3VbP86R28fbCami4rXdounGo/gepApocPt0b/JiCKEnVSKOs9mbyjl485o72Sq7Kj2fLTFbxw4xxmxI2ftu4jI4P1In1QqhTMWTWFcIdMBo+1jF2l1tnowGn1oFRKmCxV6LKyUBhHJuhKlYLEGfKid7JVNY2DSnptXhtba+Ros9cyh0fXZLA4dXyPqSCVkuWhgWQadXRMwmX5bOP/02Tk89wGbn71MN09A6KvFreXz3vLnAZ3561ud/DOIdmN8ZEL5ajGO29+gNfvRunT05XRzs3zr0fs6aHuh3fjKijAs9hAuN3J1KpBdruCAtIHUjHttdXUF55CUCiYee6Fw85xW8023i56G4AnljxBtHFolUPpoWYaSrpQqhUs/376f0wN7Tgmhz8NsyIRFv4QtCZoK4Kizyf0+Rkz/sGypQcJChwYsPRZWZguvRSAlqeeQpIkWUR4eSozVpjJMXyJNdeO36VEnRBPyHXXAZBsSubX2pkgQV2Ukz/uf7p/nwcbDxJfJyv/54Q5IGFAUDe3N2xaXFyM1TowwfhtNtpffgWA8PvuRdAMVA5IorwyX/f3PF77+V5efWgvnz+Xy94Py9hZvROAWGsqepWeqOQgpi2NZdm1aVzxs1nM/c1idFlhpOmUTDXKYdMj66upGqFzp6AQWHF9OjNWyau0nW+XkN9rAz4ZJOXI/iSj+Y34fD4qG+RVns5uYGXCSgB21e2a9LG+CbTX29n5djGvP7KPPe+XyoJAtcRx8xb2zn2VOcoQDGmhk24WN1mExhpJny8/e4c+r/xGjzUY1g4n1adkD4rfFddR0GilVSsvoG5Pj2VeUuhYH+9HX6M2c1rwiGOELiOd1HYXBq8eSZA4WDM8VadRKfjpeWnsffgcXrttHklhcnqstrOHX35WwFvuHI6o5ZX1wtiFQxZN3wR8fpFPT9RzwXO7+f3udtqlAIrD5G7eSbZmfh3ZzZTIiaXU3G43bW0yEYiNHdnpeNrSWGJ7ZOHqnpKxbef7UjThik4Ukm/UFE0f+kp8K3PbJmVANpiMfFi0Dq/owe+KYs3Uudy+NHnsDw/CS1lJ7JifweKQ/2wKcjD+P0tGejw+fvNlIXvK2ln7t70UNcmT0esN7XglifkmIzlBA8r5P20pxSdKrEiLYFFqGHt27qehuQYkgQ6th4evuRc8Xurv+xHOY8dQBAaiuyyMrBK5zLF/EkxYBMYBttpXzjtl7sJhfWga7A387/7/BeCWabf023b3weXwsu9jWUw796IkTBH/GfGR3+7B1WueZJgdCfpgWNjrSrrzqQlFRwRBMWLTt4if3I+g1eI8egzb1q292wosuziYHNVndBTLqwvFdT8cQhIunnczs6rk9z6p+pTc1lwAdhz/khC7BkkQSZu3YIimJTo6moSEBERR5Pjxgcm687XXEC0WNKmpmNauBeTcbMGeBt7pXZnX5Hf0O3MGRehJyYnAMkUO4V+xcA13PbeCqx+ey6obM5i5Ko7YqSHoAzWEXZeOJjGITJVAklEFEmx5tYDawuGmR4IgsOyaqeT0huZ3v1dK7tbJ2ZMP7lMj9f4ukij1e7gUFhbik0DweghUpnBx1gWAvPKzev6zEYA++L0ipUea+eSZY7z/u8MU7GnE5/YTEmNk+XVplFyyjsMJ61jknoGAMKLr6jeBeZcko1AI1BZ29k8C3yR8fpF33y0ECWpUfrqUEtfMjeMHV8iLoeaK0VNvp6PP7Mw8yrUS1GoCMzOJtslRx31V+0bdl1IhsCo9km0/W8mKNHkS1Qp+fCixGOXowoFTEby0u4J2u3vU/ZwpXF4/bx6sYdWfdvLT9/Moa7UTqFUxS9fGalMlotGIAFi/+mrC+2xslAm5yWQiMHDkVJ/OqGZBnCx2P9o8dmSkX7zaIkd4xyMjCVmhKFUKLG1OOpuGR6VGgt8v0lQpP6MRyUG8eOw9+ZjiIp6+OntSC1PDN1l5OUGc0Rn8/e9/JykpCZ1Ox4IFCzh8+PCo237yySfMnTuX4OBgjEYjOTk5vPnmm2d8wmcLBo2Kt+9cQHyonrpOJ1f+Yz+f5jXwRqO8Sh0cFTnVYOHLvEYEAR6+MIPGxia27+rVJrhDuPiGxUSoQ2j46QM49u8Hg56ARxNJPXEEpQj+1OX0X+qMAb2Eu6eHwj1yj5rT+9B4/V4e2vUQNo+NmeEzuX/O/UiShK+zk54TJ7B88QU7fr8Op81LSIyBWecNL9v6puDMawNRQm0OQB3VG3pcePeg6MgXZ7xvdUxMfwlt6x//iOSRJ3xh15N0nlQj+RV0m1LYcjxk6ISQtJSLLR4SmwyIgsQDOx+g0d5I8xHZxCk8qBtd9hXDjjdv3jwAjh07ht/vx9fZSefrbwAQcf+PcbtEjm6o5t+/2M/Ot0vobulBo1cx+4JErnp4Dnc+t5ybfruIFbenUibK+fPzMs4ZdaUuqJWE3zINdZSBmSqIC1Aj+iW+ejG/3xtjyPaCwOKrpjDnQnnFt++j8kk5gsamT0Ol1eKx9tC8vZDO94pp/O1BGn+1n+4vKjiwS9a4qLs7iM/KIsGUQIopBZ/kY1/D6BPSNwFbp4uDn1Xwxi/2seVfhTRVWFAoBKbMieTyB2bx/cfmk7w4mL2tcqv7xY3TQQDtoJbp3yRMEXoyl8qr5oOfV3yjFtqHKjtY+/weLAXdAHRGa/jknsU8fXU26dPlsamtzo7XPX5HZa97QOQ4kl6kD/pZOaS0yNGMk+0nx92vUiHw4o1zyI4zsVQq5TxdLkq9rDVqbk7k9xuKWfj7bfzwzWPsKG7tr2Y5U9jdPv65q4JlT+/gfz87RV2nkzCjhocuSGffo+dw1RQVesGHK0l+VpzHR09Nno6xUjSDcWmvGWWbspGK6pF1VX6fSEPv2BRUsR8EAcOc2WPuV6NTEZcp/zYTTdW019rxuf1oDSqePnYQl7IKJAV/W3vnt6YT72QwaTLy/vvv88ADD/CrX/2K48ePk52dzQUXXEBr68h9C0JDQ/nlL3/JgQMHOHnyJLfddhu33XYbmzZ9/VbPXxcZ0UF8ed9Slk0Nx+n186PdpXR6/Zi1ataED+QYn9ooC7ouy45lSriOt954hz67d8UKJ6sTV9L48CPYt29HEaAi+i4/5pObUfskXBEJKC/5G9T1hvUyBkhH4Z7tch8aczzxWTMB2Xrc29TEm289TMTWPG7ZreLXGwKou/paSufOo2zxEmq+fz3H//QRlR3yOWaUf4Dz0IH/WH8Bxwn5tzYOboqnD4aFP5T/3jWx6MhoCLvjTpTh4Xhraul6731oKcS17W0sVXIkxX7+D/D5JNb9PW8gf68xsjQllqUnwzDZ1LQ527hj8x0EtsnXZEGwBVJWDDtWZmYmRqMRm81GSUkJHS+9jNjTgzhjIbmdibzx6D4OfVGJ0+YlIETLkquncMuTi1l0RSrRyaZ+D4tDTYfwil7iAuJICkoa8/spDGrCfzAdpUnLLKVEdKAan0dk3d/yaK+3D9teEAQWXJbCvN7y5oOfVXJk/fhCSl+3C9fRNlYn3MTliT/Gv7WLntw2JKcPyStSe6CUpo42BAmi3JHEZ8iTXJ8b6866neMe4+tCEiVqCztY/4+TvPnL/RzbWIPT5sVo0jB/bTI3/34xF9w5HXOvu+r2uu14RA+JmniS3LGozQEoz6Bz7Zli7poklGoFTeUW6go7z/r+W60ufvLeCa596SD+uh6MkoCgV/KPh5cyO0GerAJDdQSEaJFEiZaq8aMjTRXdiH6JgFAtQeGja0v0s2YxrVruUlztrp6Q06heo+SVW+YRq3QgGatAkEgKSuH3ly4lOz4YnyixsaCZ214/wtKntvOnzSXUdU6uS2ynw8Ozm0tY/OQ2nvyqmDabm1iTjl+vncbeh8/h3lVTCNKp+4lEZ5L8nHibm5F8E9NATJSMJJhjiBLl1OkXu7aPuE1LlQWf249OKxHgaESblobSNL5mJaW/cd7Euvj2LcaECC3rqr4EYFrwfGbH/ecWpmcTk6ZPzz77LHfeeSe33XYbAC+++CLr16/n1Vdf5ZFHHhm2/cqVK4f8//33388bb7zB3r17ueCCC87srM8igg0aXrt1Hk9vKuavPjk8Zmx04nD5MBnU7CtvZ09ZO2qlwM/OT+fj9z+nx21D4ddQH9PIn855jKbHHsO6YQO6WB+x53ehbXYiAbacCwla+xbkvSe7rUbPhJBEJK8XT309VW/9m8R2C+nBMdTffQ+eujq8dXVIHg+LADmx48LHbgY/UvWZl1EadT4AcU270Zd8Rd2Rr9Dn5BB+770Yly75xrQj3hYH3no7KAT02UMt8ll4Nxx8AVoLofhLmHbZGR1DGWAk4kc/ovlXv6L9738n2B9Jy4lAQCDo4otZ9b+X4/hbHg2l3XzxfC5XPDCbMHMAsbPPQzi6gXOPRbB+ZTt1tjqa5wksLAxh6pz5oBruO6FSqZg9ezZ79uzh8L59TPt8NzXTbqMtfC7STnmACosLYNZ5CUyZG4lylHBmXxXNsrhlE7r2qmAdET+YTusLecxx+TgUqKbd5uWL53O58sHZw8y1BEFg/iXJKFUCBz+r5PCXVYh+iflrk/uPJ0kS3kYHzsIOXEUdeHtbipsIAwGcgp2IZRnop4UieUUOfb4O7JAoRrA6fCaK/FackXpWmFfw6qlX2dOwB6/oRa04+9VZLoeX4gNNnNrVgKVtoC9GXEYI01eYSZoZPuxaS5LEGwVy1Gq1f4mcohljpf9NICBEy/QVZvK21nHoi0rip4WelWfN6xd5fV81z20txeHxIwhwgTYAerzMWRWPRj20NDNmSjBlR1poqrAQlzG2bqRPLxLXS+hGgz47m+kVFpSiErfCTVlHGenh6eOee6BaQqmSaNbLPiReWxrXzo3n+/MTKG628v6ROj490UCTxcVft5fz1+3lLJkSxrXzEjh/WhQ69chlp80WFy/vqeSdQ7U4vXIEKCXCyN0rUrksx4xGNfT+6CMSNaEhxAGIIj0nT2KcPXZUAiZORgDmxc5lXXM9x5qP0mP9/rAeR3W9XXojFB0ISOOmaPqQNDMcBGirtWHrdI3byqPPX2RrezfqTDnNfMes8f1Pvq2YFBnxeDwcO3aMRx99tP81hULB6tWrOXBgbEEPyIPJ9u3bKSkp4amnnhp1O7fbjXtQi/XB4sJvAiqlguWL4nk+twJ8IjW5rVxatZcXb5zDH3qb4d2wIJH2qjJKKmS7dysCP77+Fmx/fB7Lpx8TPttGeJodnOBQqehZ8GMCYq7CtmMXns9ew1NtwqvW4PnoPLyNjSCKZPadQMNeBq+HfQpoM4Ei3kzG9BVoEhNQxyegTojn2Ak/pdvkByf73HjmL/0hna9q6H7/fZy5udTdeSe67JlE3HsvxmUTmxgng57eqIguPWT4ilQfAgt+CLufljv6ZqwFxZnlIoOvupLON/+N2l5Az4FKelrCEDRqIn76U1QaJRfdM5Mv/pJLS5WVz/+Sy5U/m03w1NWEmd5G1RrJ4vJIjse2YjF42JPdya+NifzC24NBPdxBc86cOezds5fqhgYss+9G5TeABPGZIcw6L5G4zLEHcUmS2NsgNxibTDmjOtpI2M3TaH/1FPO8IgcC1XRbPXzxl1yufHDOiKZdcy5MQqFUsP/jco5uqMbv9jNrZhiuok5cRR34LYMcOAXQJAQhxav4/L2ncIhW7v3Vu2h0etxuNyUeOcwcYvMiaiVodNDxZiFR4VqCo010eyzktuYyL3rehL/TeGitsZK/q4GyIy34vfLKW6NTkrEohukrzIREj14SvKdhD6VdpRhUBtZUyeYr/2kyAjDngkQK9zTSWmOjKredlFkR439oDOyvaOdXnxdQ1iqPAtnxwTy6JJVjLxYiCLJw8nTEpJpkMjLIIn409DfHG+daqcLCCA8JJ8zpotXYye7y3RMiIw0NDUiCRKtOJiNl1Wb+sLGYX1yUSUZ0EL9am8UjazLYXNDCB0fr2FPWzr7yDvaVd2DSq7lilplr58WTGSN7B1W1O/jnrgo+Pl6P1y9HNqebg7h35RTOz4oe1b+mj0jUezyg1YDbg23d+nHJiNVqxWq1IghCfxfgsbB06kLWNX9GY0AF+Tvr++0H+lDXbwEvp4kMI5idjQRDkIaYVBNN5Raq8tqYuSp+1G0lUaKxTP5dawxVKNRWTBoTK+KGR3//r2BSZKS9vR2/30/UaV1Lo6KiKC4eXpveB4vFgtlsxu12o1Qq+cc//sF555036vZPPvkkjz/++GRO7Wvjpb5y3nATBYHd1HT0cMXzu9C6epgqubherWH3ix+R7HaidagISxHR3fH/6C4vRGvyYavQ01VoxO9RgCjA2+/RznuDjmAEBmrTRaUSh1qJKi4O8zKZcCjiYvll1V/Z4ysiM2I6b655E3WvQ6voF9nxdgnFvZ4Ti65IZdb5CQiCQPQvf0HYnXfQ+a9/0fXe+7jyTlJ31/+gmzmT8HvuJmDFirNCSiRR6icjhtmjNOrqi460nILidTDt0jM6lqBSEfXQz1B+fDWNB+VBNPTmm9HEyQOORqfikvuy+ezPJ+iot/P5cye48sHZLAz1sqkVoqrhguoIShLt5E/p5vOOE+Suu4anlj9FVphs6OT3iZQdaeHEllrUrlA8ug5c+gayo6cx97ocwuMm5llR0V1Bk6MJrVI76YlblxpM6LXpdL5TzAJRYn+AGluHiy+ez2Xtj7JHXB1lL4lB3+rAcqyVyKNNdBxrHrhuagXaqSHop4Why5AJoyRJKDZrEFt81BWcJHXOAk6dOoXH40HwuChr3oth2Urmp5qwH2xCanczV53J1uCDbNr7ObMvzP5aqRCfx0/5sVbydzXQWj2wsAiLC2DGCjNp86NRa8c2y5MkiZdPvgzAVbGXY8zXIuiUaOKDxvzcNwF9oIbsc+M5uqGaQ19WkpQ9unfFWGiyOPnd+iLWn5Sf6VCjhocvTOd7c+LZ/5EsTE+cET7iPdDXEK250oroF0dt/eBx+WitkUX05kHN8UaDcVYOCR25tBrhaONR7mTsxpAAdbW1WNVWnGo3ajT4nUm8tLuS+BA9Ny1KAkCrUrI2O5a12bHUdfbw4bF6PjxaR5PFxev7q3l9fzXZcSZig/VsKmimT14yPzmUe1dNYfnU8HHHMKPRSHBwMN3d3fgTElGWleE4dGjc8+8Tr0ZERKDVju/aOydKrlBrNzZwfE8Fsy9MRK2R71+309d/jwcWy9qmiUZGQK6qaSq3UJk7Nhlpq7fjcfrxIOE2y5VPF6VchEb5n0tZnm38R1QugYGB5ObmYrfb2bZtGw888AApKSnDUjh9ePTRR3nggQf6/99qtRIfP/oPc6aw/OOXeOoa6fIHMLfZxSqHnUWCD0W3BXtbB3r3QG7TvxGG+AkWgBy7UeDuGn4DCBoNyuBgVIFqNN4y1BGBaK58HE1iIp7AAF791UNIksQtz/yN8F7792ePPcsusZgAbSDPrHimn4h4PX42v3yK6vwOBAFW3pjBtCVDV0vqyEiiHn2UsDvuoONfr9L13nu4Tp6k/od3o5s+nfB77iFg1cqvRUrcld34LR4EnQp95iihYUOorB3Z/UxvdOSSM46OGI01dHdq8FjVCGo1YXcNdVbVGdVc+uMcPv3Tcbpbevj8uVwum7YSX3kxOo88OMysMXJ/RjCPal3UWGu4ccON3Dfjx2S3rOTUjkYc3fKvGKCJolPXgc/QyKof3TqhQakPfSmaedHz0KsmX9FkmBmB3+qBdZUslCT2GVR0NTl459cHmXtREjnnJiBZ3TiLOnEVduCuthAgQoBGvq4uUcITrif5khR0U4MRTgt7C4JA0szZ5G3ZQHXecVJmz+/3VtF0taFUxRMzPRzTijgCV8XjONLC4qOz2cpBdnft55Y/HCZgThQBS82oIybem8XS1sOp3Y0U7W/E7ejtB6ISmDI7kukr4ohOCZrw/Xis5Ri5bbmoFWqu9lwI2NFNCUZQ/ncae+Wsjid/Zz2djQ7KjrSQvmDkxoIjweMTeWVvJX/dVo7T60chwI0LE/nZeemYDGp8Hj/FB2WCkrVs5DLTsFgjGr0Kj9NHe72dyMSRSVlTuQVJlAgK1xEUNv69qc/JIX3nCY4mQIm9ZNztAepKS2k2yIR4oXkBmXFZ/GlLKb/6ogBziJ5zMoYuXOJDDTxwnuxZsqesjfeP1LG1qIW8eku/rf05GZHcszKVuRMsXe6D2Wymu7sbW9pUgsvK8NTW9lsEjIbJpGgAoo3RxBpjaXQ0UqMoo+TgNLTpQXx4rB5juweVBEajhM7ViSY5GVX4+F4ffUjOjmDfR+U0lllw2b3oAkZOkb6zvhQ10KTxIRnzQYTLppxZWvzbgkmRkfDwcJRK5bDW6y0tLURHj/4wKhQKpkyZAkBOTg5FRUU8+eSTo5IRrVY7qcngTNH5wXpczfJk1BenkQA/MPixdam1eLVqPBotVr2SqYEB6GwF6EK8KLUizhAFLdNiSFn4B4zR01AGByPo9fID8NHtcOoILL4ZzpfNs0588DaSJBGXOb2fiOyp38Nrp14D4DdLfkN8oEy+XA4vG/5xkqYKC0q1ggvuyCL5dK3GIKgiIoh65GHC7ridjldfo+vdd3GdOkX9PfegmzaN8HvvIeCcc86IlPQc742KZIcjqMYgGAvvgYMvQks+lKyHzLWTPhZuG+KmJ/oNziSvF3dFBYZZs4ZsZgjScNlPcvjkj8extDlZl38ROtMxfB3y4Bwe0sm8rJ/w8bRL+OXO/8eu5p08l/cs8V1fscpxPeGmcKbN0KH7w0NsOX8l9qBA8vPz+z1IJoIzSdGcjsClZvxWN+xuYJECTsUaaWl0cPCzSk6tr2aGRiByUEdPVZQB/bQwmrwi29ZXg9VG87FWVo2iH0jKmSOTkdzjNDQ00NzcjICE2tKOQju9v+RToVURuNTMRXNv5skPXqZJ00adopGEQxKOw83oMkIJXB6HJmlkIiFJEjWnOsjf2SCXK/eucANDdWQtjyVzceywHPtE8Mop2ffl8imXE3BCwAPo0iY3UZ1NaA1qZp2fIOt31lWNqScajF2lbTz+RQGV7bKeZ25iCI9flkVW7IDAsexoK+4eH4FhOhJG6VUiKARiUk3UnOqgqdwyKhnpL+mdYDpLP2sWM/71d1gMHVIHnc5OQvWjX2dJkmhobaUlQp4TlpiXcH3GFOq6evjgaD33vXOCD/5nEdPNwwWcSoXAyvRIVqZH0m5389mJBpotLq6cHce02DOLeJnNZgoKCmiOiycYwOvFU1WFNmX0FhmTJSMgR0caKxtpCqpg86dl/FXrQALO7VEzGxUdLXJk63BgAp9sKmZ6rInpZhNxIfoxx15ThJ4wcwAdDXaq89vJWDQ8bbSlsIWKwg4yUBE81YpX9DAleArTQkfuP/N/BZMiIxqNhjlz5rBt2zYuv/xyAERRZNu2bdx3331jf3gQRFEcogn5b0FhXgl6Ox+khtIZGMgV7V2k+Sz41X7uVc+nRhPKdfpC3GoFCOD2BHK1YTfJ9t2odCKiAOUpRjqnziBn1uvotKcRMp8HyuTOon0Tst/nJX/bRgCye/vQtDha+OVeuYHedenXcV6iTI3sXW6+/GsunY0OtAYVF90zs78z43hQhYcT9fOHCLv9B3S+9hqd77yLq7CQ+nvvQ5uZSfg9dxN47rkIE4xaiG4/zlOyynvUFE0fDKGw4C7Y8ye5sibjkt5e5JPA3ufoOObE7w5EERCAaLfT+oenSHzv3WEPc0CIrp+QdHZ6MIrnYkFe+a8IaKEjcCUn3m1g2uErkMIj2Zf8KXUhRXy+4FmeXP57Yp96Hbuvhyy1ikPIjqxz5syZEGGze+z9vSqWmZdN7jueBtOFyXKEJLeNBQ439QYlBU4/dq/IAS+YTUoWrIojYl4Uqt5VrgkQIgxse72Qon1NiH6Jc27OHJY2SMiagUKppLO9jW1b5HtSZe1C8PsxBqcSHDU04mHUGZkfO599Dfs4dW47adVZvboU+Z86PpDAZWb0WeEISrnhX01+B4fXVdFWaxt03FCmr4gjcfrI/UAmgqKOIvY17EMhKLgl9UY8X8iTh/a/oBcZjJmr4snbVoe1zUnx/qZh/V4Go6TZxhMbithdKqeDwwO0PLomgytnD3eO7XPbzVoWO+Y1i5nSS0Yqusk+d+TIcUPp2P4ip0M7dSpJFg+BngBsGjsHag5wccbFo27f0dGBXXTToZPHhqXmpQiCwBNXzKCx28Xe8nZue/0In927BHPw6JGZ8AAtdyz7+j21+ghFhc9LhlIJfj+WL9cRef+PR9xeFMUzIiNRmkzgSxoCK5hfJ5KiUJCaHUFmrh08IrFtcmn0ZnUsO3ZU9H/OpFcz3RzE9FgTWWYT02ODSAozDvmdU3LC6WiwU5nbNoyMVLbZeeC9XG70yVN3XfBBEGWS/p8yvPymMOk0zQMPPMAtt9zC3LlzmT9/Ps899xwOh6O/uubmm2/GbDbz5JNPArL+Y+7cuaSmpuJ2u9mwYQNvvvkmL7zwwtn9JmcAMecGvlB7eSHbQIrNz4P7exCBf+PmJG5iEJBUehDcTPeFcaFiFwG+naADm1FFQUYAgmoKGV0PIRX5cYdYUQaoUQRqUGiUULUb3FYIiAazvNIuP3IQR3cXxuAQps5fhE/08fPdP6fL3UVmaCYPznsQgK5mB188n4u9043RpGHtj3POqEGXKiyMyAcfJPT22+l89TW63n4bd1ERDT/6Mdr0dMLvuYfA81aPS0qcBe1IHhFVmA5NwgS0FIvug0P/hOZ8KNkwpKR5XFjq8W79B50l8moq8tFHafnd73Dm5WHbuJGgNWuGfcQUYeCy+2fx6bPHcdoWolCXotd0UeD/FXV/HAg3rzZdzDVZF/Jc0+8p7y7nnh13s1YU+b5KwaJbb+XYxx/T0tJCXV0dCQnjl8gdbDqIT/KRFJREQtDXK6kTFAKhV6fRbvfiLu8mIVBFck44xTYfhQUdNFg8fLG+mjmiRM55Cah60zHpC6JRKAW2vFpIycFmRJ/I6tum9esIvF4vpRWV+NJm4pAUVNXIxmnqzhYQAoifljziQLYybiX7Gvaxt+cgd91yD97WHux7G3Acb8FbZ6PznWIUIVqsySbyy6209pIQlVZJ1rJYpi83D6sKGg+SJCH2+PBb3L3/PLxQI/cqWuVfiOb1DvwSqCINqIK/+ejpWFBrlcy5MIm9H5ZxdEM16Quj+3+TPrRaXTy7pZQPjtYhSqBWCty8KIn7V08lSDc8BN9Wa6OlyopCKZC5eOQUTR9iUoOB3lTMCKkIt9PXTwzNacET+k6CUklAVhYxlgZsEXb2V+8fk4zU19fTpmtDFCRilaEkBMrPgFqp4B83zuZ7LxygpMXGba8d5qO7F4/4nc8mYmJiEAQBu8OBwhyLWFuHY99eGIWMdHR04Ha7UalUREaO30rjeG0Xf91Wxq4qH8ZUaA2swS/4+EF4GJdeMp1/79+PIMD0JlmrcuH1a4hyaTnVaKGk2YbF6e0X7/bBqFGSFWsiq5ekJMbJIu66wk68Hn+/HsXh9vHDt46hdPoJkNQISjjg245SqeTilEmMr99STJqMXHvttbS1tfHYY4/R3NxMTk4OGzdu7Be11tbWDul46HA4uOeee6ivr0ev15ORkcFbb73Ftddee/a+xRmiMECLPt/GuRKcuyiG0KvNtHc6eXdXMfhhgbYVj+AmQ+zmMsV7qBVNSECt2UBFsh5DRw4xefdgFzXYGWoRLagllAo3Cs8fEXQhKN4pRtCqsORWMT14GbHTM3Eea+elzjc43noco9LAk5mPo+wWaWrtZMO/CnDZvQRHGVj7o2yCwr+eu6oqJITInz1A6A9uo/P1N+h66y3cJSU03H8/2rQ0OVJy/vmjkpL+FM3sqIkxcEMozL8L9j4LO/8gW+BPlLlv+y1tJzRIfgHD3LkEX3kFvqYm2v/2N1r/9CwB556LQjM81B8aa+TSH+fw2TMHEITb8QN1FvmwKbMimXV+AlFJcvh3ge9d/nj0j7xf8j5fLlRQnG3iz2YDM2bM4MSJExw5cmRCZORspGgGQ1ApCL8tC2+TA3W0EUGlIBqY0WBn93ulNJZ1c+iLKooPNLPs2jQSp8th/Klzo1AoBTa/UkDZ0Vb8PpGM8wPJP5VPQUFBbyRSCQIYFJAcGU5tkQOFZtqopaEr41fyxKEnyGvLo9PVSWhkKCFXTiXo/ERs+xup2llPUa2Driq5CkSpFJi+NJY5lySjDxz++0iihOjw9pMMv3WAcPSRD5/FA74Bf4t6TQs7U/aDAFdVr8Lvlu3GDbPHnzj+E8haHkvu1lrsXW4Kdjf2Ryh6PD5e3l3FP3dX0OORy1IvmhHNzy/IICl89IqhU71RkdRZEeOmsyKTAlGoBHqsHqztTkyn6XmayrqRJDn0HxAydpnoYOhn5ZBa30RpBJzqPDXmtnU1Nf16kSUxi4eMDUE6Na/eNo8r/r6P0hY7d791jNdunT+sJPdsQqPREBUVRXNzM+7MTNS1dbjLK0bdfnCnXqVydBH14apO/rq9jD1lcgRIIUSgJhCvwkZ7YB3KGhUnNsskPzxMQOVxoI6N5dqL59E303l8IqUtNgoaLeQ3WDjVYKWoyYrD4+dwdSeHq3t9ayS4S6HD5BX5w2snmDorkulmEy/sqqC0xc7iXosCf4Qdv8LHCvMKwvUT16V8W3FGAtb77rtv1LTMzp07h/z/7373O373u9+dyWG+Ufi9Ii09HpQiLC5xITXUU31ZCp+4e7D7RRICFYR4KlkuHWG5cAClIOEWlRTkGOkK1mBrzCKoegXGoCKkHj+i9//H3lmGx3GeC/ueWdSKmS3JMpNklJkp7CRNk1I4TdOk5J5Czmmb01NIIU37NUkbaENN0qQNc83MzJLFzAzL8/0YzVqyxZqVVvLc17WWtfvOM+9odmae90ELLkJwS6FImJEcAk6CgCCoB+plTTiOFOJCU6AEtm36iJcT3wABHim8A9OZak45KjnU4sIFhOgEFgpuWl48Q5tJh2DSIZr17T91CCY9pqRAzBPDeo7h6IA+NJSo732X8HvupuaVV6j7x2vYsrIo+e73MI0fR8RDDxG4bh1ChwvT2WDDllMPyL1o+syCR+DQ81B+CjI/g0nX9r5NyTHadrxDQ74cFxP1ox8hCALh995D/b/+haO4mLrXXif83nu63DxyTCDXfzmQj16tQZJ0TF4YTdo1k68olW/Wm/keq0l8+w2evU7HRb8GbvvoNh6e+DDScYmzZ8+ybt06AgK6t0ZJksTu4vb6IoN00XRE0IkYL8vkCY8PYMPGmVw8XMHed7Ll+JinT5KSFsHi28YTFOFH6swoFn6lkU3v7+Zw8SEOvnqpA2dwcDDjksZw4b03MAkCrY2yS1GnH9NtPEGMfwyTwiZxofYCu4t3c9O4m5AkidLiZg6frKGsVk4jFgVIMYqMN4mYzlTRphdwxvq3KxuXFA1Xox1cfSvMJwYY0AWbeC/o30hILPKbx6wNK9EFGdGHmtH3UoNhqNAbdMy5Npkdr2dy9PN8Ji6I4aNz5TyxKZOKRtkVnZ4Ywk+um9xrMKa9zUnWITn2YurS3l0GeoOO6KQgynIaKL3YcIUyUtxPF42CJT2dqbs/4LNpUGgv7LHWTFFODhVB8pwXj78yQzI+xI8X757LF5/bz97sGv7nvdP87gszvOpSiI+Pp7y8nJoJE4j5zyak1lYc1dUYuggk7clFI0kS+3Nq+PO2ixzIlRUFvShwy6x4vrl8HH86vYWthVuxT66Agyme3lERUnvfrstSeo16kWnxcuzI7e1Jd06Xm5yqFs6UNHCmtIGzJY2cLW3gotXFHJue0jO1/D3vUoymXhS4KS6c6ro6skwngJEfuKow8mrGqoTOIPLhimCqYt3cfsaOtdbOjtczcencJJpFFlv3cq/ubRKRo9qrXSbOLvHHqRexGu/ghxcWYXdKpEb68/y35pBqboby00ilJ5FKL+AqK8Rd34w7YDzulY8jOSBrzx6qc/KJiE0icFISv7e+goTEdfYVrDYuoUC0crTFhQRE6gXm+uswWF24rLJy0hXNgGjR4zcjEsvMKIxjAvt0oetCQoj6zncIv/tual95ldp//APbxWxKNn4fY+pfiHjoIYKuWY+g08npvBIYU4L69xDwD4d5D8CeP8KOx2HiNT1bRyQJ6T//Q+UJ2XoRdMMN+E2XG+mJFguR3/kOZf/zP1Q/+yzBN29AH9r1TTY2I4M7q3+OGBCBccWVLh15VxJVf/wT8y5KzKq9gSdnlXGk4ghPnH2CiWMmMrFoIseOHWPp0qXdTjerLovKtkr89H7Mjpndxz/KwBEEgQnzYkieHsGhT/I4ta2YvJPVFJ6rIWa6kWohk+KSQmh/JgluHWF+CVx72zJSxiYjAMWfv0drQz3VRfkABISldtnFp2MJxwAAuilJREFUVWFZwjIu1F5gZ/FO5riWcujjPE/lR51eZNrSeGauSUQsbaZpVwn2gkZaj1Z0Kw8BxEAjumAT+iD5p/zq8P8gI4JepLylnE3v7gY3fGP5t/Dvgxl9OJi0MJZjmwpprGrjB4/v5aP2jrcJoX78aP0krp8R26drMvNgudyDJ8ZC3PiQPu07dlwwZTkNlOXUM3lh5/iCS/1o+iZLwS8tjcl59RhcBhw6B+cqz5EWk3bFOJvNRl5rKS3hLejcAhmxGV3KmxYfzDNfnsV9rxzm30eLGRNm4VurxvdrTv0hPj6eo0ePUmg2EyMIIEk0ffopYXfeecXYrpQRSZLYdbGaP2+9yNEC+W9o0AncNieRh5alkhgmX2Czo2eztXArNZEFJDLfs31I0REA/PoQBK/XiUyMCWRiTCC3zpYru7rdEseOlnHw7xeYioGmsYGcLmui0erg5zdNxdYeM5VtOUWwaWTXFunIVauMON0SMwItvD3Gyhc2pFF1oJKd72YT6RS5o8VEktOfoEAJpySSaw6gaKlsMh2X+iOSkr5OYnI9D/7jKDlVLWx4ei9/vD2d1VPWIIxfg0B7nX1bM+jNoNNja21lz1//hcNm5ZaHf8kvS5+ivryRCaET+N9rf0fmriqO/OuivI/ZUay8YwKCy41kdeG2uZBsLtxWZ/tPF5LNiavZQdvZGtxNdloOlNFyoAx9uBnLzCgsM6M8QY49oQsOJvLb3yLs7ruoffUf1L76KvacHEr/67+o/stfCH/gAdpy5Jucf2+Bq12x4FtwsN06kvW5rJB0x4VPaN5/lNZKucBZ1Pe+2+nj4A03Ufvqq9gyM6n+y1+J+Z//7lqOKGK+oec6Nc07dtB28iSC2czkB77H38LD+Nvpv/HXk38lU5dJcXwx7hNuFi9e3Mnt2BElpTcjJgOTbujiF4x+ehbcPBa/WBtHPyrGUW+k5JgNly4aY1AziVNCSYwax4WPW3FVCpz5uIEx35QwGHUkz5jp6YckiGEkTh3T44NyReIKPtyzBf/PJvN+g1zESdQLTF0Sz+x1SfgrcRuhZvymRmArbKTlYDmS3dW1ohFoQOhjU65Xzr6C0+1kTvQc0qPSB/U38ya51S2cCHIztgqSq12ER+p5cPU47lyQ3G110cuRJIkzu9oDV5deGdTaHXLcSCFl2Z3LwltbHJ7WAn3NpFHQhYQQFh1LZGsbpYFV7M7Z3aUyUlpaSrmfrHhOl2LxN3TvfloxKYr/u2kaP3n/DH/YnEVCmB83z0zo17z6iqJYlFRUoIuKwlVRQdP2HVcoI06nk/Lycs82kiSx9XwlT2276EkxNupFvjQ3kQeXpRJ3WQDurGi5mNrZxtNcM+EByrIa0RtFzPvlMvH9qS/SEVEUmDU7lpNv5WBtdvD40okkTAyl1e7C3eLk1ZocJMFNRWA+t6XcOqJri3TkqlVG9KLAf6eE899jYzDrdDROCebN/1TwTVsBjdZZFNgyKLLNIjpsCwHzPkWPg0mTf01c7BcAmJEQwoePLObh149xKL+W+189wsY1E3hkxbhLkdGmSyb+c7u24rBZCU8Yw6fOvRwqP4Sf3o/fL/09Jz4u4ejnBQBMX5HAktvG97klesiNqdiy62k9XknbmWqcNVYatxTSuKUQY3KQrJhMj0C09Bw4pgsKIvKRhwm7605q//EPal95FXtuLmWPPorgF45x4jpM42f2KKNLFOvI3j/JsSMT1ndtHXHakT7/qccqEnbX3Rgua+Ut6HRE/+iHFN57H3X//CdhX/kyxuTkfk9Jcrup+pMcFBn2ta+ij5RdQg+mPUhGbAY/3PVDylrK+CToE4J3BPPDFT9EFK58gCouGrXiRXqdtyRRVlbGyZMnOX36NK2trWACU3AkQS3j0Dn9CK6bRlhTBDPXj2d8ipWPnzlF8YU6Pnn6JNd+cwbJabM8yohoGNOjCb8su56LH9m4KVMO/hNEZCVkfVK3MQimMUGYxgy+EFmdtY53Lr4DwP3T7x+0PG9Q1WTjj1uyePNQIZIb7taZiHCJ/GHGWJYvTe2XrPKcBmpLW9AbRCbN73vNkphUOci7vqKVtia7J1an9GI9SBASbcE/uP+KsmVmOmNqjlEaCEe76VBbXFzsiRdZGDmvV5lfnZ9EUW0rz+3K5YdvnyImyI8FqV2nLg+GyMhIDAYDdrsdpkyGigqs589dMa68vBy3243FYuFAcRtP/+MMZ0vlgmVmg8hXMpJ4cOlYooK6/q5PDJ2IRW+hydFE+DI35RchaYwOwdaGLiJiQPcmBVEUSJkRwfl9ZeSdqCZxUhj+Jj2Z7X1rqv2Lcehso8ZFAwPs2jta+NXBX3HrBzfyhyN/4OX3f8975h/y1ZBfc1v49wkS83BjoKz2GnI//RX+9r8SE31rp+0jA028/kAGdy2Qu0Q+uTmLb7x2lGZb5+ZMkiRxYtOnABiWTeS5U88B8JN5P6XgI5tHEcm4cSxLvth3RQTkDAzzhFDCbp9I7E/mE3rbBLmLqQD2/Ebq38um9FcHqXn9PG3napA6BAd2hS4wkMhvfpNxW7cQuXEjYkAIUlsNthNvkHvtOqqffQ5Xf8vzL/wWGCxQdgKyummQeOTv1B0px95kQBcaSviDX+9ymP/ChfgvWwpOJ5V/+EP/5tFO42efYcvMRAwIIPy++zp9lh6Vzts3vk2aOQ1JkHi96HUe3PwgVa2dO2k22Bo4WSV3BF6c4F1lpLGxkT179vCXv/yF559/noMHD9La2oq/vz/zF8zn7u/ewv2/X0n6mjGIokD+qWr++fODlGTWcd1DMzCYdZRk1fPxUyeJnTDdI1fsJl6kPLeBD/98gnefOEZJZj2S6OZs9F7qbjnCsi9N7Fcw5EB5/fzrtDnbmBw2mYVxC72+v/7QZnfx9LaLLP/9dt44WIhbgrXToll7u1w6PXN3Ka2N9l6kdEaxioyfG42pl4VDR8z+BsLiZItEWc4l60h/U3ovxy89nUlFsnM4qzmryzG5uRepMsvXxdLpfau0/KP1k7h2egwOl8SD/zhCdmVT7xv1E1EUiWtfyDTPkC067voGXK2dG/QVFcsxHiV2Px56/ThnSxuxGHV8Y1kqe360kp9eP6VbRQRAL+o9FrsSSzZf/eUCZlpkpccyZ86g42LGpsuLpLyTVZ4mqEo/mpLAbMaHjmdy2OTuNh9xXLXKiCRJ7CvdR2FTIS+ffZlP/N7n9jEB/Dg8lmfNM4iZ/xsSFv8ZY2AlLlsQR94X+Pfjhz39ABQMOpGf3zSN331hBkadyKZzFdz8zF7y2osaARSdPUVtSRGOQAMvtL2HhMTNybei35LEub1lclXVr0xkzrXJg/oCiyYd/rOjibx/OjE/nkfwNcnooy3gkmg7XU3Nq+co+/VB6j7Ixl7U1GOXX137gzrgut9gmvFl9FGxuGprqfrTn8heuYrKPzyJs7pv3SXxj4C57avbnb+By/fbVodr82+pPiMHbUZ86xF0PQSORv/gB6DT0bR5C63tlUT7iuR0Uv3npwAIv+9edCEhV4wJMgbx5zV/ZlbVLHRuHQfKDnDrh7eyq3iXZ8z+sv24JBepwanEB/S9PkFfsdvtnDx5kldffZUnn3ySLVu2UFVVhU6nY+rUqXz5y19m48aNrF+/ntjYWEx+BhbdOo7bfzKP+ImhuJxuDn+Sz/bXzjP3uhSMfnrKchrY8nI+KTNXIugTCIqc0KmLa0V+Ix89dZJ3fneUonO1iKLAlEWxTHxIz+6x/2JH/eYh6Qzd4mjhjQtvALJVxFfqJ7jdEu8eK2blH3bwxCa5od2MhGDe+vp8nvvaHOYvSSAqKRCnzcWx/xT0WW5bk53s9my1acv6/12KbbeOdOxTU5Ip/7+vKb2XY0lPZ3p2a3sfrkbKmss6fS5JEieqTuASXQRZdUxJ6ptLQhQFnvxiOrPGhNBodXL3S4epalK/5pTiqimNulQgsnmbbBF0uty8d7yYV7fIbsf8NhOBJj3fWjmOvT9ayY+vmUREQN+sSbOiZFfNscpjBIX7YTsq348G6qLpSMLkUPQmHc11Nk+Kdll7vFZZUA43pd7kM9eGGly1bhpBEPgw45fs+fRhtrnq2WXxo0av45MgHQSd5ANMTDPnc+NdLcSXjOHU56VUFzXz3h+OkzorkoW3jOuUbvvFOYmMjwrgG68d5WJlMzc+vYc/3zGTFZOiOLHpE9xIHF5kpcZawyT/KaQdvo687Gp0epG1900ddLOty9EHmwhclkjA0gQcZS20Hquk9WQl7iYHLfvLaNlfhj7C71J8SReBqdbMOiSbiHnGGmJe/RFN//mM6hdewJ6dQ80LL1D76quE3HoLYffe5+kZ0y0Lvw2H/walx+VCcBM6dGze9QQ1x5y4bH4Yx6YQetttPYoyjRtHyG1foP7Nt6j47e9I/tdbfS7e1vD++9gLCtCFhhL6tSsD2hTCwsJYG7uW8PxwziafpdRWysNbH+ark7/K92Z/jz3F6qb0Ktjtdnbv3s3BgwdlM3M7Y8aMIS0tjSlTpuDn130sUFicPzd9N53so5XsfTubxmor+97JJnZcMDUlze01LGZiCkwnYXIUgiBQWdDIoY/zKDgtZ3wJosCk+THMviaZ4Eg/rM4UzCfNlLeUk1mXyaSwSaoe8+X8O/PfNNmbSA5KZtWYVV7dV1/Zn1PDrz49x5kS2SoYH+LHD9dP5IYZlwqTCYJAxo1j+eipk5zZWUL66sQ+WZHO7y/D7ZSIHBPYbSXVnogdF8LZ3aWUtseNtDXbqSkZWLyIgjE1lfg2JyH2YOpNDewv2M8tU2/xfF5XV0ehQbbmzG2N6tdD0WzQ8cKdc7jlr/soqGnl/lcO8+bXF+Bn7Ft8TV/wNM2rqmJCSAiu+noaPv+c/0TP4Jkd2XLvMWMDiLAkfSKvXr+QYL/+10BR4kaOVRzD7XDQerx/zfF6Qm/QkTQ1jJxjVeQeryIg1ExduWzdqQoqGBW1RTpy1Soj2Fvxf/OrrGutJl0KodRxOwGR+UixBzjtEGh0ixxtcXH06J/Qi0+zcPUSZheux3rKTM6xKvJP1ZC2OpHZ65MwmuU/48wxoXz0rcV887VjHCmo495XDvPlqcGEHTrA6dQGssQGQlyRXHfmEcrLmzCa5e6zA71h9AVBEDDGBWCMCyD4mhRs2XW0HK/EerYGZ3UbjZsLaNxcgDElCP+Z0fjNiEBsPx5PU7z0KESzkeCbbiLohhto3r6d6uefx3ryFHVv/JO6t/5F8PXXEX7//ZjGdxMlHxAJc++DfU/JsSPj18qxI7W5OLa9QG2mnPYY9V8/QDD0flOIfOQRGj/8COuZMzR+8gnBN/Rect5ts1H1zF8ACH/w6+gCug+4A5g7dy4XL15kadFShGUC/8z6J6+df43D5YepapPN00sS1EnplSSJzMxMPvvsMxoa5IdKaGgoaWlpzJgxg7Cwvpc+FwSB8XOiSZoWztHP8jmxpYiy7AZEnYDOIHq65QaF+/HJX06Rf6q6fTu5gNrsa5M7FSsz683Mj5vPjqId7Cja4VVlxOay8cq5VwC4d9q96ET1HlADIbuymd98dp4t5+VrIdCk55srxnHPoq6DUxOnhMkZLtkNHPk0n+Vf6flvJbklzu6WG7UNxCoCckYNQHVhEw6by5PtFBrrP6DS+wCCKBI4fTpxDYXUR12pjHSKFwnpuStuV4QHmHj5nnnc8pe9nCxu4NtvHufZr87utiNvX3C63JQ3Wimtt5JXL5+bsvIKsoPjSKmvp2DPYX4YIFdGjbaIBLvl1PdvXjcXywAUEYDpEdMxiAaq2qrIObkTqbUVMSio+/tgP0lJi5SVkZPVRCbJluMaSynzkmePitoiHbl6lRGjhZr0b3N638d813Yf4/3LuHPKPkSDg7uMEzCOfZRdZUfZVriN/MZ8dlVvZ5dlO2EzYllb8jVCquM59nkBF/aVMX/DWCbNj0UQBaICzbzxwHx+/tFZXj9YSPbuzYwJbeX4hAaC2yK55sz3aXE6aBUltkdL7NqdRdQJM9FBJqKD5J9RQWaig8xEBphULRAk6ATME8MwTwzDbXPSdrqG1uMV2HIbsOc1Ys9rpO7DHPymhOE3LYK2c/JKuWOBKUEUCVy1ioCVK2k9eIia55+nZd8+Gj74kIYPPiRg1Soivv4AfmlXRt+z8Dtw6G9Qegyyt8D4NbD5MSpP+CG5BSzz5hGwYnmfjkUfEUH4179O1Z/+ROUf/0jgmjWI5p5XofVvvYWzrAx9TAyhX/pSr/sYN26cpwvoTeabWLRyET/d+1My6+SKrha9xWOmHQy1tbV89tlnXLwoZ1MFBwezfv16Jk2aNCgzrNGsZ8HN45i0IJZdb2ZRfKEOXJInfvjwJ3mArISMnxfN3GtTrigLr7AicYVHGflG2jcGPKfe+CD7A6rbqom2RHP92Ou9tp/eqGm28actF3njUCEut4ROFPhKxhi+s2o84T2Y8AVBYP5Nqbz3h2Oc31vGzLVJV9S46UjRhVoaq9ow+ukZP2cA2WrIfX8CQk0019moyG/0uGgSBuiiUfCbmU5qTgnnouBs3dlOn50tOEujsREkWDJ5/YDkp0T488Kdc/jy3w6y+VwFv/zkHI/dMLXb8a12JyV1bZTUt7/q2ijt8P/yRqun2y9I3G7S4yc42RmaQkrBOcKsjURaDHx9+TgWRTv51z8PEhoaisXSvyrBHTHrzUyLmMbxyuMcPP0ZswHL7Nl9ttT2RvJ0uY1CXVkLZ/fISmtZYA63jqLAVYWrVxkBfrnLzXvO72AW7Xx17t8RDQ5s1WG0lGQQkH2exWFjWB/1X9QlWTlmO8femkOc4QxvjvsdSeHTWFiwARoj2fbqBQ5tyWb1HdOJnxCKUS/yq5unsyQ1lCN/fomPZlUT0ZLAdee/hZ/TTJ3o5t/+dhoaJGho6XGO4f7GduXERHRgZ2UlKtDkWZ0JAiiPLflhI3TxvtBpjJASCCmBCE12OF8LZ2oQaqy0naqmrX21TKQf1RYd1Ld55uS53ifNQPfk0/ifP4ftlRdx7txO89atNG/dim72HIx33oNubgaXZuBP8PS7CDr+LLYtv6Lepido72c0FsguKumhb1Ncd2k/vSHddBvCP/+Js7SMvGf/jvHOzoXQOj7HpdZWWv76LAC6u++jtNWF0NbzvgRgwrR0Du3Zwd79B7n5S3fyzLLX+N2x/+VE9WHmRS+mvMGBJDlwS1L7S7ZySCD/7pZ/ShJXjHE4neScPkrumSO4XS4EUWTMpHTGTJ1NuWCg+HwlLrcbp1vC5ZZwutp/uqXO73f6vIv33W5ciSJGfQBhF1vR29ye81gfoacswchhWvjHJ2dwt2/jkiQkSfk/2CUTBMLZmrOs+tMH4ArGLSF/7m4fK0m42o+3u7/nFe91PEe4sMf+BfRQXbKABY/vvGKMIsegEzHpRYx6+adJr8PY4feOP406HSaDiFEndvipw6S7fLws42hBHX/Znk1TeyD66snRPHrtJFIj+9aOIW58CGOmhFF4rpbDH+ex+p7uG5id2Sm7OibOj8FgGpgVSBDkpnkXj1RSll0/6OBVBb/0dKZtfoeP0qDEUYLVacWslxX+A6X7wAyJNQaiZ/SeSdMdc5LD+MNtaXzrn8d5aW8+IX5GJkQHUFLfRnEHZaO0vo26Vkev8gw6gbgQP+KC/TA0RUBTOePWzUc68QkiEltWWAheMpZdu+T4r/70o+mOWVGzOF55nGPVJ2VlRIV4EQWTxUD8xBCKztdRdFYuvNYQXjZqaot05KpVRtrsDjY5kwCBG1I/JcDYRl1OIIXbIpHcR7rcZg4wK3IyZYkucsOq+PeM3zKlYjGzi9dBqR/vP3kce1I1szcksnDiXMY0ZfPHSQWE2lK5JvMB9C4jEYkB3PrAVG6X3FQ02qhotFLRZKVS+X+jlYpGG5VNVhwuiZoWOzUtds6XdTkl1ZmAyDoMrMFAGCKPV9XyyW+29b5hyLUkrJzDbRe3sbLoGBw9QtvRI2SFJPDWhFXsj52KJIhEkMZukxG/iuPwr7upPC77yLckzuYPH5QD5f2a74qElfyw4p/U/+0F7i0Ip8HUdd+c2zO3cnddHaX+4Xz9XBCuC9v7JN+Egy+aBKory7npdx9RLQUAN6OzzOSjzDg+2tI3OZcTL9aToS8kSJSD90pdQRy0jaHhmA6OnRiQzL5gMMNc9ARKAkdMTmqcEuT3bVtLciI6vyIKrUdx1Hdd4Gow6INO4Kevwe30p6liFkjD20xzWnwQ/33tZBam9t8cnnHTWArP1ZJ5qJxZ65I8GS8daa6zkt8epzOthyZ7fSF2XAgXj1SSe6KK2lJ5gRM3WMtIWhrjixowO81Y9VZOlp8kIyEDu91OlkvuSjunJghxEJYFgBvS4iiua+O3n1/gj1u6ztxRCDTpiQ/1Iz7Ej/hQP+JCLv0/PsSPyACTJ4Zn1y4727aVExoIOn9/3C0ttHz2GcFLFlPcnkmjijISPYu/n/k7p43tbm0V4kU6MjY9kqLzlxInZkwfh0Hn3R4/w8FVq4w4m1r4QsweTriiWDVmNw7rVBYt/y1paXU01dTQXFdDc001TbXVNNfU0FRbjcvhQKxqJb4K4jEzTx9NcdQp9sSdIc66kolV8zEWRHD8z428FvNTioP3YRYnser819BJeuInhnLtN6Zj9NMTA4yP7r7hnNstUd/m8CgolR0Ul4pGG5XtSovT7UaSLlkrlFW5/H882Q+S5x/5R8f3Jc/7EgUSPIeDFyQHkZJAhShh7CHpquOitSo0hr/M+zL/mnYNN2XtYG3eASbUF/PTQ69QHBjFu5NWsmvMbN6U1nCP8AmWUiu1VWHYRT1vzrgWs6H/ps0DKbPJzt3NuLpi7srazPOzvnDFGH97K7dly0rDm9PWYzAZ0PeSFOL5G2KiQApnrFDNFEMVB9xBgAi2cehFEHUCogBiuwlKFC79LnT6v/zTLFmZ6MwlyiVbnmyCkTzzOGoNUcSKInHt2wgC6EURvSigEwX0OgFdx987/Wx/Xyf/rhfF9vHdjGt/LRYFdMoc2/+vEwVEUX5PJwie90URNpeu4eOiF5k7pZxvT5uPKAjoRNp/Cu3HLv+/K+9Sd4k4ErJl5b/2vUBhM3x50pe59bpV3Y53SxIOl4Td6cbmdGF3utv/7/a8Z3O6sbvc2Bwdf7o8v18+vuPvfkYd9y1OYUN6/IA7DUclBTE2PZLcE1Uc+iiX9Q9Ov2LMuT2lSG6JuPEhXSor/SG2vZt3dZEcuBoeH4BfwOCKYekCAgiLTyCytYWiICu7c3eTkZBBcWkxFWa52NkSP3VSS7+xbCz1rXY+OllKdLCZuBA/EhSFI7hd2Qj161ejPU/xs5ISZo8bh/XkSVqPHkWSpEs9aUJCcFRUIlnbcFutSFYr7jYrbmsbktXW/tPa6bNLv7fhbrMS4WxGmAflIRL1EX6YJ6ubbps8I5Kd/5SVtAZzFRtm9KGtxgjkqlVGBJOdBQmfszTMRmlNEl+59f1uK22C/PBua2qkubaGpppqmmurZaWltpqm2hrqWgrIM2dikZYSZkslrWwNE6rmY3b6IyCSOiuSNfdMRdfHB64oCoT5GwnzNzI5dvBFpIaeL+OsraX21Vepe/0NEpoq+fbhN9lYvJPwL38BV9E2Kk/KyljsA/ex93tfHvCeWm6MpPDOu7gm/yAP//m/MaV2LjhV+eQfqXFYMU2YwPMv/Xe//bnFxcX87W9/Y7yhjme/v2xAPman08n+/fvZtWs/DpdDji2YP5/ly5djMg1v99m+khB9HR8XvUhW4zHSxljw0w+ueWNHdhbtpLA5B4vewiNz7iLYNBK/852Zd2MKuSeryDleRVVhE5Edul27XW7OtccATOtDH5reCIvzx+inx94mu5YGmtJ7OZb0dJKrDlMUBCcqTgCwN2cvDp0Dk0NH+jh1ArgFQeDRayfz6LXqPciVWiN1dXUY5mdgPXkSR0EBp2fOYmxKCoIk0fzWv8geZLq6ADxYLdDgD7aIUKqeevqKMRISDpcDh7vDq0+/23G4ncCdQCLB1kIiXimhkm7qNQ2S0Dtuv6LY5FBx1Soj/v6RNE38DhdPvcTDX3ivR0UE5IvFEhSMJSiYqOSxXY6RJAlbawvn9uZxeFMZfs3yzWfq0jiW3jFxwKuskYo+LIyo736X8Pvvp/7NN6l5+RWcZWVU/OEpKo1RSHYHurAwwh94YFD78Z83j4BVq2jeupXK3z9B4rN/9XzmrKqi9h//ACDyO98eUGBZfHw8sbGxlJWVcfz4cRYtWtSv7XNzc/n000+pbq/LkpSUxLXXXuvpdD1SGB8ynjj/OEpbSjlQeoAVY1aoIleSJF44/QIAt0+6nWBTsCpyh5vwuAAmzI0m61AFBz7I5YZvXQrqzj9VQ0uDHb9Ag6e41WAQRYGYscEUnpXdPoONF1HwmzmTiR8eZHcqXGy9KDePK9sPwLgKMwEbughU9xH8/PwIDw+npqaG5rlz4bnnATBYrUw5f17Vfa08pSg0VdRceL7X8SJgan/1herwj8lOvYUp57dQs6NwgLPsncCVKzRlZKgRBIHbpj+Ic+p96EV1/gyCIGD2D2DW2umkrZjK+X2liHqRyQv71ihrtKILCCD8/vsJ/drXaHj3XWr+/iKOdp9t5Le/1WuKbV+I+q/v07xzJ807dtBy4AD+8+XGVdXPv4DU1oZ5xgwCVq4ckGxBEJg7dy4ffvghhw8fZsGCBb0qryBXTt20aRNnzsht2P39/Vm7di0zZni3a6m3EASB5YnLeePCG+ws3qmaMnKk4ggnq05iFI3cOaX72i8jkbnXp5B9pJLCszWUZdd73ClndstugskL4/psLe2N2HHtyohAnxvt9YZfehrTn2xCXCbSKrRS2FjI+bbzYISZ+QLmCRNU2Y+3iI+Pp6amhnKnk/THf03L/gMU11RTVl1NdEQkKWPHqpL5UtRczI7C3mPrBET0oh6DzoBBMGDQGdCLOgyiAYNoQC8aMIj69p/t7+n0+At6MvTHCJu0vMdeo4NFF6Fuvav+cNUqIwpqKSKXozOITFvmnUZQIxXRZCL0S18i5LbbaPzPf3DV1xPSS4GzvmJKSSH0jjuoe+01Kn77O1Le/jfO8nLq33wTgKjvfXdQCsC0adPYtGkT9fX15OTkML6HOgIul4uDBw+yY8cO7Ha7R5lZsWJFjwXLRgLLEpfxxoU32FG0A7fk7rJnT3/5++m/A7Bh3IZRVzshJMrCpEWxnNtdyoEPctmwcSYNVW0UnasFAaYuUW8VmjQ1nEMf5hI7LgSzvzoBjsbkZGJdEGoNocavlvdOvUe1QbbwLbPH9akm0HASHx/PqVOnKCkpYflXvkLIzTez6aWXKCgo4KabbiJm5gD6bXVBlCRRV7iFZnszFoMFf4M//gZ/LHpLp9+NonFELkSGgqteGdEYegS9nuDr1K8eGPHwN2n44ANs58/T8OFHtB45jORwYJk/H/8FCwYl22g0kp6ezoEDBzh8+HC3ykhBQQGffPIJlZVyZH1CQgLXXXcdsbGxXY4facyNnou/wZ8aaw1nq88yPfLKwMz+cLbmLHtL96ITdNw97W51JuljzL02mcz95ZRerKf4fB1F5+UUzTFTwjtVcR4skWMC+eL/zL3USVkFBEEgYMYM4usLqPGr5c3cN0GA0FZ/kscPvsaOt+kYxCq1p6uXlpZ2+kwNBEFgTdIa1eRdjVy1vWk0Rh/60FAivvEgAJVPPEHD+x8AEPXd76gif+7cuQBkZWVRV9e5R1FzczPvvfceL730EpWVlfj5+XHjjTdy7733jhpFBMCgM7AoTo6Z2V40sLTmjihWkfUp60kMTBy0PF8kINTsCVLd/34O5/fJefrTlqrvm49ICBx0Fs3l+KWnM65MXs23IKcNj6/ww2/6NFX34w1iYmIQRZHW1lbq6uqoqqrC4XBgNBqJiBhdVriRjqaMaIwqQr/6VQzx8bhqasDlImDFCvzS01WRHR4eTmp7ps6RI3ItGrfbzaFDh3jqqac4eVLu4jt79my+9a1vMWvWrD7Flow0licuB2Bn8c5ByclryGNLwRYA7pt2Xy+jRzaz1iehN+moKmzC2uIgINRE0vSR8TD0mzmT6bmdCwSm5UqYpw/OKjYU6PV6YmJiANk64knpjYsbldfmSEY7GxqjCtFkIur7Gz2/R6pkFVFQrCPHjx8nPz+f559/nk8//RSbzUZsbCz3338/N9xww6BKTPs6S+KXIAoiWXVZlDaXDljOi2deREJieeJyxoeq08vDV7EEGUlbcSmGbMriuBGTXec3fRopZU1YHPJ3WufWMa/QhTE5eXgn1kcSEuS/e0dlRE0XjYY6aDEjGqOOwGuuIbKoGH14GOaJE1WVPX78eIKCgmhsbOTll18GwGw2s2rVKmbPnn1VrLZCzCHMjJrJ0Yqj7CjawZcn979GTHlLOR/nfAzA/dPvV3mGvkn6mjGc21uK0+5myuLhSZ8cCKLFQuiYRKJaWsgPaSW6JZyY5DGq9V/xNh3jRhwOR6f3NHwHTRnRGHUIgkDEg1/3imydTsecOXPYtk1O40tPT2f16tUEBPStb8loYXnC8kEpI6+cfQWn5GRuzFzSIn23VoWamP0NfPG/5+F2ufEPHhmF7hQs6TPJyD1N3dQW5udGYBkB8SIKiuJRVlaGy+Xq9J6G76ApIxoa/WThwoUYjUbi4+NJTBydQZe9sTxxOX84+gcOVxym2d5MgLHvylittZa3s94Grh6riEJA6MhSQhT8Zqaz6A9bES1LmHfiEOb1vh8vohAWFobJZMJmk3sdBQQEEBQ08iv8jjZGhp1NQ8OH0Ov1zJ8//6pVRACSg5NJDkrG6Xayt3Rvv7Z9/fzrWF1WpoRPYUHs4FKuNYYGv5kziSmv4Ob33ie+tBS/ERC8qiCKYidLSHx8vFbrwwfRlBENDY0B4cmqKep7Vk2zvZl/XvgnIFtFtIfCyMAQH4+uPRVWFxGBvj1DZaTQURlRAlo1fAtNGdHQ0BgQyxKWAbCrZBdOt7NP2/wr61802ZtICU5h1ZhV3pyehooIgoBfuhzb4zd9+ohTIi+3jGj4HpoyoqGhMSDSo9IJNgXTYGvgZNXJXsfbXDb+cU5uWnjvtHtVKSWvMXQE33QTAEHXq1892dsorhlRFD3dfDV8Cy2AVUNDY0DoRT1L4pfwce7H7Cjawezo2T2O/yD7A6rbqonxj+G6lJH3QLvaCVqzhsDz50acVQQgMDCQL37xi4iiiNlsHu7paHSBtjTR0NAYMErcyI6iHT2Oc7qdvHjmRQDunno3Bp1vN1jT6JqRqIgoTJ48mYkq1x3SUA9NGdHQ0Bgwi+IWoRf15Dfmk9+Q3+24z/M/p6S5hDBzGLeMv2XoJqihoTEiGJAy8swzz5CcnIzZbCYjI4NDhw51O/aFF15gyZIlhIaGEhoayurVq3scr6GhMXIIMAYwN1oukd9drxq35PY0xPvq5K/ip1evU62GhsbooN/KyFtvvcXGjRt57LHHOHbsGGlpaaxbt87TMv1yduzYwZe+9CW2b9/O/v37SUxMZO3atZ4eARoaGiObZYlyVk13XXx3Fu0kuz4bf4M/t0+6fSinpqGhMUIQJEmS+rNBRkYGc+fO5emnnwbkrqWJiYl861vf4sc//nGv27tcLkJDQ3n66ae58847uxxjs9k81fIAGhsbSUxMpKGhQaucp6HhY5Q0l7D+nfXoBB07vriDEHOI5zNJkvjqp1/lVPUp7p12L9+b/b3hm6iGhsaQ09jYSHBwcK/P735ZRux2O0ePHmX16tWXBIgiq1evZv/+/X2S0draisPhICwsrNsxjz/+OMHBwZ7X1VzpUkPD14kPiGd86HhckovdJbs7fXa4/DCnqk9h0pn42pSvDdMMNTQ0fJ1+KSPV1dW4XC6io6M7vR8dHU15eXmfZPzoRz8iLi6uk0JzOY8++igNDQ2eV1FRUX+mqaGhMcQsT1gOXBk38rfTfwNgw7gNRPhFDPW0NDQ0RghDmk3zm9/8hjfffJP33nuvx1xvk8lEUFBQp5eGhobvoqT47i3Zi8Mlt2k/W32W/WX70Qk67pl2zzDOTkNDw9fplzISERGBTqejoqKi0/sVFRXE9NKr4IknnuA3v/kNmzZtYsaMGf2fqYaGhs8yLWIa4eZwmh3NHKk4Alyyilybci3xAVoJbg0Nje7plzJiNBqZPXs2W7du9bzndrvZunUrCxZ0333zd7/7Hb/4xS/4/PPPmTNnzsBnq6Gh4ZOIgujJqtlZvJPchly2Fsr3iXun3TucU9PQ0BgB9Lsc/MaNG7nrrruYM2cO8+bN409/+hMtLS3cc49shr3zzjuJj4/n8ccfB+C3v/0tP/vZz3jjjTdITk72xJYEBAQQEBCg4qFoaGgMJ8sSlvHuxXfZUbSDJnsTEhIrElcwLnTccE9NQ0PDx+m3MnL77bdTVVXFz372M8rLy0lPT+fzzz/3BLUWFhYiipcMLn/961+x2+184Qtf6CTnscce43//938HN3sNDQ2fYX7sfEw6EyXNJZQ2lwJw//T7h3lWGhoaI4F+1xkZDvqap6yhoTG8PLz1YXYV7wIgIyaDv6372zDPSENDYzjxSp0RDQ0NjZ5QsmoA7pt+3/BNRENDY0ShKSMaGhqqsWrMKiL9IlkSv4T5sfOHezoaGhojhH7HjGhoaGh0R5g5jK23bUVCGtHt5jU0NIYWTRnR0NBQFUEQENAUEQ0Njb6juWk0NDQ0NDQ0hhVNGdHQ0NDQ0NAYVjRlRENDQ0NDQ2NY0ZQRDQ0NDQ0NjWFlRASwKnXZGhsbh3kmGhoaGhoaGn1FeW73Vl91RCgjTU1NACQmJg7zTDQ0NDQ0NDT6S1NTE8HBwd1+PiLKwbvdbkpLSwkMDFS1dkFjYyOJiYkUFRVdFWXmr6bj1Y519HI1Ha92rKOXq+V4JUmiqamJuLi4Tn3rLmdEWEZEUSQhIcFr8oOCgkb1l+Fyrqbj1Y519HI1Ha92rKOXq+F4e7KIKGgBrBoaGhoaGhrDiqaMaGhoaGhoaAwrV7UyYjKZeOyxxzCZTMM9lSHhajpe7VhHL1fT8WrHOnq52o63N0ZEAKuGhoaGhobG6OWqtoxoaGhoaGhoDD+aMqKhoaGhoaExrGjKiIaGhoaGhsawoikjGhoaGhoaGsPKqFdGnnnmGZKTkzGbzWRkZHDo0KEex//73/9m0qRJmM1mpk+fzqeffjpEMx0cjz/+OHPnziUwMJCoqCg2bNhAZmZmj9u8/PLLCILQ6WU2m4doxgPnf//3f6+Y96RJk3rcZqSe1+Tk5CuOVRAEHn744S7Hj7RzumvXLm644Qbi4uIQBIH333+/0+eSJPGzn/2M2NhY/Pz8WL16NRcvXuxVbn+v+6Ggp2N1OBz86Ec/Yvr06fj7+xMXF8edd95JaWlpjzIHci0MBb2d17vvvvuKea9fv75Xub54XqH34+3qGhYEgd///vfdyvTVc+stRrUy8tZbb7Fx40Yee+wxjh07RlpaGuvWraOysrLL8fv27eNLX/oS9913H8ePH2fDhg1s2LCBM2fODPHM+8/OnTt5+OGHOXDgAJs3b8bhcLB27VpaWlp63C4oKIiysjLPq6CgYIhmPDimTp3aad579uzpduxIPq+HDx/udJybN28G4Lbbbut2G185p8nJyVx//fU9jmlpaSEkJISysrIuP//d737Hn//8Z5599lkOHjyIv78/69atw2q1diuzv9f9UNHS0kJaWhrPPPPMFZ+1trZy7NgxfvrTn3Ls2DHeffddMjMzufHGG3uV259rYajo6VgV1q9f32ne//znP3uU6avnFXo/3o7HWVZWxosvvoggCNx66609yvXFc+s1pFHMvHnzpIcfftjzu8vlkuLi4qTHH3+8y/Ff/OIXpeuuu67TexkZGdKDDz7o1Xl6g8rKSgmQdu7c2e2Yl156SQoODh66SanEY489JqWlpfV5/Gg6r9/5znek1NRUye12d/m5L53TpKSkK/7uXbF9+3YJkADpvffe87zvdrulmJgY6fe//73nvfr6eslkMkn//Oc/pV/96ledxiv097ofDi4/1q44dOiQBEgFBQXdjunvtTAcdHWsd911l3TTTTf1S85IOK+S1Ldze9NNN0krV67sccxIOLdqMmotI3a7naNHj7J69WrPe6Iosnr1avbv39/lNvv37+80HmDdunXdjvdlGhoaAAgLC+txXHNzM0lJSSQmJnLTTTdx9uzZoZjeoLl48SJxcXGMHTuWr3zlKxQWFnY7drScV7vdzmuvvca9997bY8PIkXZOly5dSltb2xXv5+XlUV5e3uncBQcHk5GRwf79+/n1r399hTl8INe9r9LQ0IAgCISEhPQ4rj/Xgi+xY8cOoqKimDhxIg899BA1NTXdjh1N57WiooJPPvmE++67r9exI/XcDoRRq4xUV1fjcrmIjo7u9H50dDTl5eVdblNeXt6v8b6K2+3mu9/9LosWLWLatGndjps4cSIvvvgiH3zwAa+99hput5uFCxdSXFw8hLPtPxkZGbz88st8/vnn/PWvfyUvL48lS5bQ1NTU5fjRcl7ff/996uvrufvuu7sdMxLPqSiKXca1KOenP+duINd9R3pzaw4VVquVH/3oR3zpS1/qsYlaf68FX2H9+vW8+uqrbN26ld/+9rfs3LmTa665BpfL1eX4wZ5XX+KVV14hMDCQW265pcdxI/XcDpjhNs14i5KSEgmQ9u3b1+n9H/zgB9K8efO63MZgMEhvvPFGp/eeeeYZKSoqymvz9Abf+MY3pKSkJKmoqKhf29ntdik1NVX6yU9+4qWZeYe6ujopKChI+tvf/tbl56PlvK5du1a6/vrrex2Xn58vPfTQQ9KECRMks9ksiaIoTZ48WcrLy7tibF1dnfTd735XSkpKkoxGoxQfHy997Wtfk6qqqjxj2trapMcee0waP368ZDKZpJiYGOnmm2+WsrOze5yH4qbZvXu3NHfuXMlkMkkpKSnSK6+80mlcV26arKwsadmyZRIgmUwmKT4+Xrr99tul+vp66bbbbvOM7/i66667PNf9Sy+9JK1fv14KDAyU/P39pTFjxkhTpkzptN+XXnpJAqQdO3ZIDz30kBQZGSmFhIRI27ZtkwDp3XffveKYXn/99S7vK/2FHkz5drtduuGGG6SZM2dKDQ0N/ZLb27UwHPR0rAo5OTkSIG3ZsqXLzwdyPx8uejveiRMnSo888ki/5friuVUT/VArP0NFREQEOp2OioqKTu9XVFQQExPT5TYxMTH9Gu+LPPLII3z88cfs2rWLhISEfm1rMBiYOXMm2dnZXpqddwgJCWHChAndzns0nNeCggK2bNnCu+++2+vYw4cPs2/fPu644w4SEhJ48sknycnJYfny5Zw7dw6LxQLI7pwlS5Zw/vx57r33XmbNmkV1dTUffvghxcXFRERE4HK5uP7669m6dSt33HEH3/nOd2hqamLz5s2cOXOG1NTUHueSnZ3NF77wBe677z7uuusuXnzxRe6++25mz57N1KlTu9zGbrezbt06WltbAfjRj36ETqfj448/pr6+noqKCtauXcvOnTuZN28eX//61wFITU0lIiICURR56KGHCA0N5Yc//CEGg4Ff/vKXFBcXc/DgQTIyMjrt75vf/CaRkZH87Gc/o6WlheXLl5OYmMjrr7/OzTff3Gns66+/TmpqKgsWLOj1PAwEh8PBF7/4RQoKCti2bVu/W8v3di34KmPHjiUiIoLs7GxWrVp1xecDuZ/7Irt37yYzM5O33nqr39uO1HPbZ4ZbG/Im8+bN66SBulwuKT4+vscA1stXngsWLBgRgY5ut1t6+OGHpbi4OCkrK2tAMpxOpzRx4kTpe9/7nsqz8y5NTU1SaGio9P/+3//r8vORfF4VHnvsMSkmJkZyOBy9jm1tbfX8Xzmnd9xxhwRIr776quezn/3sZ91aAJQA2RdffFECpCeffLLbMd2RlJQkAdKuXbs871VWVkomk0n6/ve/73nvcsvI8ePHJUD617/+JcXExEhPPPGEZ2xDQ4MngNXf31+66667rthvaGioJIqilJOTI0mSfN3HxMRIJpNJWrp0qWecYhlZvHix5HQ6O8l49NFHJZPJJNXX13eau16vlx577LEej7sv0MXq2W63Sxs2bJCmTp0qVVZWDkhub9fCcNDVsV5OUVGRJAiC9MEHH3Q7pr/38+Gip+O96667pNmzZw9Iri+eWzUZ1crIm2++KZlMJunll1+Wzp07J33961+XQkJCpPLyckmSJOlrX/ua9OMf/9gzfu/evZJer5eeeOIJ6fz589Jjjz0mGQwG6fTp08N1CH3moYcekoKDg6UdO3ZIZWVlnlfHB9Plx/vzn/9c+s9//iPl5ORIR48ele644w7JbDZLZ8+eHY5D6DPf//73pR07dkh5eXnS3r17pdWrV0sRERGeG/hoOq+SJN90x4wZI/3oRz+64rPezukXv/hFyWQySXv27JFCQkKk7373u56xU6dO7TVa/7rrrpMiIiL6pARdTlJS0hWuEUmSpBkzZkg333yzJEnyDfaFF17wKCNPPvmk9PHHH0uAdP/990v/93//J4WEhEgffPCBdOrUKemmm26SUlJSpLa2No8ysnLlSumpp56SJElWvkwmkySK4hXX/Z133imJouhxfSjKyOVuI0mSpPPnz0tAJ5P4U089JQHSxYsX+/23UI71+PHjHmXrySeflI4fPy4VFBRIdrtduvHGG6WEhATpxIkTna5hm83mkdHxWCWp92thuOjpWJuamqT/+q//kvbv3y/l5eVJW7ZskWbNmiWNHz9eslqtHhmXH2tv9/PhpKfjVWhoaJAsFov017/+tUsZI+XceotRrYxIknwDGTNmjGQ0GqV58+ZJBw4c8Hy2bNmyK1ZW//rXv6QJEyZIRqNRmjp1qvTJJ58M8YwHhnIzv/z10ksvecZcfrzf/e53PX+b6Oho6dprr5WOHTs29JPvJ7fffrsUGxvriXG4/fbbO8UvjKbzKkmS9J///EcCpMzMzCs+6+qcJiQkSKIoSqIoXvF9uOeeezxjzWaz9JWvfKXHfU+aNElatGjRgOadlJQkrV+/vss5L1++XJKkzlaRjq8pU6ZIgOTn5yeNHTtWCgwMlIxGo7Rq1SrP30FRRpKSkjzWirKyMgmQ1q9ff8V1/6c//UkCpDNnzkiSdEkZ6Wi56cjcuXOlFStWeH6fP3++NH/+/AH9LXo61rvuukvKy8vr9hrevn17p79pR8tMb9fCcNHTsba2tkpr166VIiMjJYPBICUlJUkPPPDAFUrF5ccqST3fz4eTno5X4bnnnpP8/Pw6Wds6MlLOrbcY9cqIhsbVxn333SeJoiht3LhR+ve//y1t2rRJ2rx5sxQeHt7p5jgUykhXdUaWLVsmLVu2zPO7ciPv+NCVJEk6deqU9Itf/EJasmSJJIqiFB8f3ykouys3jaKM/PSnP71iv90pI4cPH+5y/k899ZQkiqJUVFQkZWdnS4D09NNP9/HoNTQ0+sOoDWDV0Lhaefvtt7nrrrv4wx/+4HnParVSX1/faVxqamqvVWhTU1M5ePAgDocDg8Hgjel2y/Tp05k+fTo/+clP2LdvH4sWLeLZZ5/ll7/8JUCXtVYiIyOxWCxdtkK4cOECoiiSmJjYp/3fcccdbNy4kX/+85+0tbVhMBi4/fbbB3dQGhoaXTJq64xoaFyt6HQ6JEnq9N5TTz11RQ2HW2+9lZMnT/Lee+9dIUPZ/tZbb6W6upqnn3662zFq09jYiNPp7PTe9OnTEUURm83mec/f3/8KBUun07F27Vo++OAD8vPzPe9XVFTwxhtvsHjx4j5nqERERHDNNdfw2muv8frrr7N+/XoiIiIGfFwaGhrdo1lGNDRGGddffz3/+Mc/CA4OZsqUKezfv58tW7YQHh7eadwPfvAD3n77bW677TbuvfdeZs+eTW1tLR9++CHPPvssaWlp3Hnnnbz66qts3LiRQ4cOsWTJElpaWtiyZQvf/OY3uemmm1Sf/7Zt23jkkUe47bbbmDBhAk6nk3/84x/odLpOvTxmz57Nli1bePLJJ4mLiyMlJYWMjAx++ctfsnnzZhYvXsw3v/lN9Ho9zz33HDabjd/97nf9msudd97JF77wBQB+8YtfqHqcGhoal9CUEQ2NUcb/+3//D51Ox+uvv47VamXRokVs2bKFdevWdRoXEBDA7t27eeyxx3jvvfd45ZVXiIqKYtWqVZ4aNTqdjk8//ZRf/epXvPHGG7zzzjuEh4ezePFipk+f7pX5Kw3QPvroI0pKSrBYLKSlpfHZZ58xf/58z7gnn3ySr3/96/zkJz+hra2Nu+66i4yMDKZOncru3bt59NFHefzxx3G73WRkZPDaa69dUWOkN2644QZCQ0Nxu919alqnoaExMATJW7ZWDQ0NjRGO0+kkLi6OG264gb///e/DPR0NjVGLFjOioaGh0Q3vv/8+VVVV3HnnncM9FQ2NUY1mGdHQ0NC4jIMHD3Lq1Cl+8YtfEBERwbFjx4Z7ShoaoxrNMqKhoaFxGX/961956KGHiIqK4tVXXx3u6WhojHo0y4iGhoaGhobGsKJZRjQ0NDQ0NDSGlRGR2ut2uyktLSUwMLDLqosaGhoaGhoavockSTQ1NREXF4codm//GBHKSGlpaZ9LOGtoaGhoaGj4FkVFRZ76RV0xIpSRwMBAQD6YvpZy1tDQ0NDQ0BheGhsbSUxM9DzHu2NEKCOKayYoKEhTRjQ0NDQ0NEYYvYVYaAGsGhoaGhoaGsOKpoxoaGhoaGhoDCuaMqKhoaGhoaExrIyImBGNrrE5XRhEEVHU0p1HE5Ik4XBJGPUjc63gcDkQBRGdqBvuqfgcbpcbCdDpRua5bbY2E2AO8Ipst1vC4XZj0nvne2Orq8OeddFr98sWdxttQWavlZ8w682EmEO9IltBHxmJaDJ5dR/d7ntY9qoxaLIqmrjx6T3cOiuBX93snVbuGsPDc7ty+c1nF/jXgwuYlxI23NPpF9Vt1dz64a1MDp/Ms6ufHe7p+BSSW+Lt3x7F1urg9p/Mw2geWbff53Y+x9P5T/NAwgN8e9W3VZf/6Lun+ehUKR8+sphxUeoqPNbaWs6uWo2lrU1VuUNJC1Dj5X0kv/lP/NLTvbyXrhmZ6rkGbx8txupw8/bRYlrtzuGejoZKSJLEq/vyAdh6oWJ4JzMANhdsptZay96SvRQ3FQ/3dHyKivxGqgqbaKy2UnSudrin02/ey3sPgA8KP1BddpPVwbvHi2m1u3jvuPrfm6y//BVLWxsSIHnBcuHQgdUgv2xeeCmyHUYRwc/Pay96KErmbUaWaq4ByA+sTWfLAbA53ey+WM26qTHDPCsNNThb2khpgxWAnMqWYZ5N/9leuP3S/4u287UpXxvG2fgWeSerOvy/mtRZUcM4m/5RXFtMCSUAVIqV5FTkkBqdqpr8nVlVOFxym7TN5yr4wbpJqskGaNy7l3Age/w4DN/8Jtdcc41qsiVJYv276yltLuW/3nZxy/f/QuDy5arJB8itz+WmD27CIBrYdfsuAozecZUNJ5plZASSXdlMfk2r5/dNZ0feClqjazadu3Quc6uah3Em/afR3sjh8sOe37cVbhvG2fgeuSeqPf/PP12Ny+Uextn0j3eOvwMdDArvnHhHVfkd72FZFc3kVauniDutVvxLSwEoiY/nwoULqNkfNqsui9LmUkxuHWl5Es1bt6omWyElOIXkoGQcbgd7SveoLt8X0JSREYjywIoKlAONtl6owDmCbmwa3aNYvAAKaluxO0fOed1dvBun5CTCLwKAY5XHqLPWDfOsfIO68hbqK1oRdQImfz22VidlF+uHe1p9ZmfJTgD8XH4A7C7frZpsu9PN9guVwKV72uZz5T1t0i9yXnkFs82G3WCgNi6OhoYGysvVk68o3RmB0zA5oWnbdiSXSzX5IBcMWzFmRaf9jTY0ZWQEoigj31o1nhCLgfpWB0cKtJv+SKeotpUL5U2IApgNIi63RGFta+8b+gjbi2QXzc3jbmZi6ETckptdxbuGeVa+Qd5J2SqSMCmUlLTITu/5Og2tDeS6cgF4cPyDABRIBVQ3qjP/g3k1NNmcRASYeGi57PrZfE49a2/1fzYB0BQTw9jx4wHIzMxUTb7yvV89bQNiYCCumhraTp5STb7CysSVAOwp3oPD5VBd/nCjKSMjjIpGKyeL6hEEWDc1mpWTZL+z5qoZ+ShK5ryUMCZEy30cckaIq8busrO7WF4tr0hcMepXcf0l94QcL5KSFknKDNlylHuySlV3gbd4/8T7uEQXAa4A7ll0D8GuYCRBkl03KqDcu1ZPjvLEvh0pqKO62TZo2S6XC1NBAQCWeXOZNEmORblw4cKgZQOUNpdyvvY8oiCyLHklAcuWAdC0dYsq8jsyPWI64eZwmhxNHK443PsGIwxNGRlhKCuGmYkhRAWaWTtFvng3ny8fETc2je5RTNNrpsQwNsIfGDnKyKHyQ7Q6W4nyi2JqxFTPKm5f6T7anCM3nVINWhpsVOQ3ApAyI4LEKWHoDSLNtTaqi33//G7Nl2MgZgbORBRFZgfPBmBH0Y5By5YkyXNPWzs1mrgQP6bHByNJsO185aDll3z6Kf4tLbhEkQkPfoMJEyYgCALl5eXU19cPWr5iFUmPTCfMHEbgKvl737xlq+r3Y52oY3nicnm/HQLFRwuaMjLCUFbPa9qVkKUTIjDpRYpq27hQ3jScU9MYBHUtdg7lyemea6dEkxopR8uPlIwaxQKyPHE5oiAyKWwSsf6xWF1WDpQeGObZDS/5p6pBgqjkIPxDTBiMOhKnyPVj8k5U9bL18GJz2DhnOwfA+nHrAbhu4nUAZDoyabMNTtE8XdJAeaMVi1HHwlTZYrRmSjQAm1SIGyn+178AaIiMIGBMIv7+/iQmJgLqWEcUpWDlGFkJ8V+yBMFgwF5QgD03d9DyL0fZz/ai7aNu8akpIyOIJquD/Tmyn3btVPmCtRj1LBkvX8Rq+lk1hpZtFypxSzApJpDEMAup7UWfRoJlxC25Patk5WYpCAIrEmVXjbJ6vFpRYkPGpkd43vPEjZzy7biRzWc3YxNtGN1G1k1bB8DKySsxu8w4RAefnPpkcPLb71nLJkRiNsiVV5V72+6L1YOuoSRm5wBgmDrN857iqhls3EiDrYEjFUeAS/EcuoAALPPnA9C0VX0XZUZsBn56PypaKzhXe051+cOJpoyMIHZkyrn4YyP9PStnwOOqUWMloTE8KOdubbvPXDm/uVXNPr8COlN9hqq2KgIMAcyLmed5X1FMdhbvxOVWN7tgpGC3Oim6IFu8UmZEet5PnhGOIEB1UTON1b7rxvr04qcATDFNwWSQM130Oj3TLXLV589zPh+UfCVeRFFAACZGB5IY5ofN6WZX1sCVtarDRwiukwP7U+671/O+oozk5+fT2jrwAPFdxbtwSS7GhYwjMSjR837gqlWAd+JGTDoTi+MXA6MvHktTRkYQHt/qlM4FzlZOjkIQ4ExJI6X1vntj0+gaq8PluemubTdRJ4VbEARotDqpbrYP5/R6RbkpLo5fjEFn8Lw/K3oWgcZAaq21nKw6OVzTG1YKz9bidkoER/kRGmvxvO8XYCR2XAjgu9YRt9vNiaYTAKxOWt3pszUpawA43Xoap2tg1ouCmhYyK5rQiQIrJl4qACcIwqVYuEFYe/NeegmAhtBQImfP9rwfFhZGVFQUkiRx8eLFActXLH6K0q0QsFK2CFpPnsJROfi4l8tRLI6aMgI888wzJCcnYzabycjI4NChQ92OXb58OYIgXPG67rrrBjzpq5GOufgdVxEAEQEm5iTJDZQ0V83IY8/FatocLuKCzUyNCwLAbNCRGCo/vHzdVdPdTdkgGliWIGcXjLYbZ19Rqq6OTYu8ooFaSlpEpzG+xsHcgzTpmtC5dWyYuaHTZzek3YDeradV18quzIGlbyv3qoyUMEIsxk6fKUr5YGooOc6cAUAaN+6KzwabVWNz2dhTIhcfU1w0CoaoKMxpMwBo3qa+i3JpwlJ0go7s+myKGotUlz9c9FsZeeutt9i4cSOPPfYYx44dIy0tjXXr1lHZjQb47rvvUlZW5nmdOXMGnU7HbbfdNujJX00cyJVz8SMDTaQnhFzxuZpBXxpDS0cXTccHVmqk72fU5Dfkk9uQi17Ue8zHHfGs4oq2+by7SW1cLjcFZ+TWZori0RElbqT0YgPWFt+rG/HBWbkHTYouhWBLcKfPAswBjNfLNTs+vvDxgOQrLhrl3tWR2UmhhLbXUDqc3/8aSs2FhYRUyUpe/Be/eMXnEydOBCA7OxuHo/9/+4NlB2lzthFliWJK+JQrPg9cJVuSmrxQjTXYFMyc6DmAfF2NFvqtjDz55JM88MAD3HPPPUyZMoVnn30Wi8XCiy++2OX4sLAwYmJiPK/NmzdjsVg0ZaSfKKuI1ZOju2yBrWTXHMytpaHV925sGl3jcktsbU9hvPymfCluxHczahSryLyYeQQaA6/4fFH8IoyikaKmInLqc4Z6esNK6cV6bK1O/AINRI8NvuLz4Eg/wuP9kdwSBad9z1VzqFa2eC+LW9bl54qieaT+SL9l1zTbOFIgx9J0pYzodSKrJsvvD8Tae/HZZxEliWZ/fxKvv9IKHxcXR2BgIA6Hg7y8vH7LVyx9KxJXXGHxAjwpvq0HDuBqVn8xodTxGU3B4f1SRux2O0ePHmX16kv+Q1EUWb16Nfv37++TjL///e/ccccd+Pv7dzvGZrPR2NjY6XU10ykXv4sLFyAlwp/xUQE43RLbM9X3U2p4h2OFddS02Aky65mXEtbps5GQUdPxptwV/gZ/MmIz5LGjaBXXF/Lae9Ekz4jocgEBl6wjuT5WjTWrLIsqsQokuCX9li7H3DLzFgRJoE5Xx8nC/sUEbW3PHpsSG0RCqKXLMR2tvf21qrUclouC2ZKTulQWBEEYsKumq+yxyzGOHYsxORnJ4aBlt3ql8xWU6+145fFR03KhX8pIdXU1LpeL6OjOD8To6Og+1fo/dOgQZ86c4f777+9x3OOPP05wcLDnpeSFX60oufj+Rh0LUsO7HafEkmhxIyMH5VytnBSFQdf5cvT1wmfVbdWewFSlGFNXeGojjMJCTd0hSVKneJHuUNw3hedqcdp9J+Po3ZPvAhBHHGMixnQ5Jjo4mkRBvje/f/r9fsnvWOisO5aOj8RsECmu618NJUdjI4Hl7f271q3vdlzHFF+3u+9xKaeqTlFjrSHAEMDc6LldjhEEgYB264g3UnzjAuKYFDYJt+RmZ/FO1eUPB0OaTfP3v/+d6dOnM2/evB7HPfroozQ0NHheRUWjJ0hnICi+1WUTL+Xid4USgb4jsxKb03dubBpdI0mSpzGektLbEcUyUlzXhtXhe+dzZ9FOJCSmhU8jxv/K+SssT1yOgMCZmjNUtFwdinJ1UTPNdTb0RpGESaHdjoscE0hAqAmnzUXxBd9Z4e6pkIMzF0Yu7HHc4mg5Tmhf1b4+y26zu9h9UVbULs8M7IifUcficbIi1592F5nPP4/R4cBqMjH2zq91Oy4pKQmTyURLSwvFxcV9lq9Y+JYkLOmUPXY5StxI886dSAOIS+kNJXB2tASH90sZiYiIQKfTUVHR+YtRUVFBTEz3XyqAlpYW3nzzTe67775e92MymQgKCur0uprpLqX3cqbHBxMdZKLF7mJfTs1QTE1jEGRXNpNf04pRJ7J0wpWr53B/I8F+BiQJ8mt8L25EuSkr/uvuiPCLYEaknF2gRgnxkUBuu1VkzNRw9MbuFxCCIHh61fhKVk1lQyWFUiEAG6Zv6HHsLTNkF04ppRRWF/ZJ/u6LVVgdbuJD/Jgce2WcUUc81t7zfQ/Mr98pZ/e0xMWhN5u7HafX6xk/gMZ5nqqriV27aBT80magCw/H3dRE62H1e8koFsf9pftHRcuFfikjRqOR2bNns7VDhLDb7Wbr1q0sWLCgx23//e9/Y7PZ+OpXvzqwmV6l5Fd3nYvfFaIoXPKzao3zfB6ltP+iceEEmPRXfC4IwqWMGh8rC9/qaPWUee/tpgyXbpxXS9yIEi/SVRbN5aSkX6rG6nYPf8bRO8ffQRIkQl2hpI1J63HsxLiJRLojQYB3T7zbJ/mbOrhouorn6MiqSVGI7TWUSvpQQ8nlcmFpt6QHLb4yu+tyFFfN+fPn+xSXktuQS35jfrfZYx0RdDoC22uONG1RP6tmQugE4vzjsLqs7C/tW8ymL9NvN83GjRt54YUXeOWVVzh//jwPPfQQLS0t3HPPPQDceeedPProo1ds9/e//50NGzYQHt59zIPGlShWkfljwwi2dG8SVFCyaracr/CJG5tG9ygumjU9WLzGRvpmEOve0r3Y3XYSAxNJDUntdbwScHeo/BBN9tHdQ6mxuo2akmYEUSB5Wu/KSNyEEIx+etqaHFTkNgzBDHtme7G88p8TMqdP4+eGynETO0t7j11wutxsPd99Su/lhAeYmJMkB3ZvPtu7dST/9Tfws1px6nRMeOgbvY4fN24coihSW1tLdXXvQcSKSyQjNoMAY0AvoyFAqca6Tf3UdkEQLin5o8BV029l5Pbbb+eJJ57gZz/7Genp6Zw4cYLPP//cE9RaWFhIWVlZp20yMzPZs2dPn1w0Gp3pq4tGYcHYcAJNeqqabJworvfizDQGQ3mDlZPFDQgCrJ7SvcUr1UeVkY6m6t5WtwApwSmkBKfgdDs9xaJGK0ovmrjxwZgDel9A6HQiSdPCO207XLTaWrnokKuSXj/p+j5tc9PUmwDIc+XR0NqzMnW0oI66VgfBfgbmJYf1OFbhkqumd2tv+cdyzZPG6GjMYb3LN5vNjB07FuhbVo2nwF8frIEA/gsWIFgsOMvLsZ5Vv5eMouTvLN6J0z24Pj7DzYACWB955BEKCgqw2WwcPHiQjIwMz2c7duzg5Zdf7jR+4sSJSJLEmjVrBjXZq42Oufir+7CKADDqRZZN7H/Ql8bQotxYZyaGEBXYvV/bFwufOdwOTwR/b/EiHRmtZawvJ7e9E2/HXjS9obhzck9WDWtxuI9OfoRTdGJxWVg6cWmftpmfOp8AVwAu0cX7x9/vcaziolk1KQq9rm+PH8WCcqAPNZQM7TVDTLNm9kk2XCqA1psyUtVaxamqU0DP2WMdEU0mAtrdRd7oVTMrehZBxiDqbfWcqDyhuvyhROtN48MoufjT4oOID/Hr83ZKZsZmrRqrz6JYvHpy0cCljJrcqhafqWB6vOI4jfZGQk2hpEem93k7xaS8u2Q3dpdv99sZKNZmB2XZ9UDf4kUUkqaGI+oFGirbqCsfePO2wbIpdxMA0y3T0euujGPqClEUmRkoP/y3FHT/wO1UL6mHlN7LSQr3Z2J0IK5eaiiVbtlCYFMTbkFg/Ne/3mf5ijJSUlJCU1P3LsQdxTsAmB4xnShLz/F7HVEKoDV7IcVXL+o9LRdGegE0TRnxYTzlkif3zUWjsHxiJAadQE5Vi0+tqDVkGq0O9ue0N8br5aY8JsyCXhRotbsob7QOxfR6RQlCXZa4DJ3YfabI5UyPmE6EXwQtjhYOl6ufXeAL5J+uRpIgPCGAoIi+LyCMfnoSJsopwMOVVeN0OTndehqAdanr+rXt+nFyPY9ztnPYHLYux2RWNFFY24pRL7JkfN+tRtC3dheFb7wBQEN4OMETJvRZdlBQEPHx8fIce8iqUSx63RU6646AZctAp8OWlYXdC2UqOsaN+MqCZSBoyoiP0mZ3sSe7PRe/H6sIgCCzgfljZR+0VgDN99iZWYXDJTE20t8TE9IdBp3ImPD2hnk+kFEjSdKlm3If/eYKoiB6zNsjfRXXHUrMx9h+WEUUlGqswxU3sv38dtp0bRjcBq6f0bd4EYV109ZhdBuxi3Y2nd3U5ZjN7YurJeMi8O8ie6wnlHvgzsyqbmvuSJlZAIjtGTL9obdqrC2OFg6WHQS6rzbcHbqQECxz5GBgb/SqWRi3EJPORHFzMdn12arLHyo0ZcRH2dWei58Q6sekmJ5z8btCcdVs6kMEusbQsqmfQcm+FMSaWZdJWUsZfno/FsT1nM7fFYoCs71wO25pYN1YfRWn3UXhOaUxXv9W/vI2sgJTkddIS33X1gVv8knmJwBMNEzEz9R3qw6AyWBiikluGPfZxc+6HLNpAC4ahenxwcQEmWmxu9jfRQ2luvPnCaqV4+tSeih01h2KMpKXl4fNduXffk/JHhxuB0lBSYwNHttv+YHtWTXNXkjxtRgszI+dD4zseCxNGfFROmbR9CVb4XLWtDeZOl5UT2WTb5j3NcDudLPjQteN8brjUsO84VdGlJvdgtgFmPXdB952R0ZsBha9hcq2Ss7VqJ9dMJwUXajDaXcTEGYiIrH3tM/L8Q82EZ0iF3jMOzX01pGjDUeBvgdnXs7qJLni6ImmE1eUVy+tb+N0iZw9tnJS/5URQehQQ6kLa2/2c88jShKNwUFEL+1b4G1HIiIiCAsLw+VykZ19pXVBseR11xivNzyN844dw1mnfqXd0VDHR1NGfJD+5uJ3RUywmbSEYCQJT1dYjeHnQG4NTTYnEQEmZiaG9GmbSxk1w++m8aQ29tNvrmDUGT3FokbyKq4r8pQsmrTIAT2w5G2Hpxrrsfxj1OvqESSBW2feOiAZG2ZuQOfW0aRr4kDOgU6fbWm/n80eE0pkoGlA8pV74eZzV9ZQsp88AYBzbP+tFtBz4zyH28GuIrmq60C/94b4eEyTJ4PbTfP2HQOS0RNLE5YiIHCu5hzlLSPTGq4pIz7IkfZc/BCLgbnJ3fe16I1L1VhH5pdzNKIE4K2ZEt1tJ9fL8ZXCZyXNJVyovYAoiCxN6P/qU0FJBx5NyojbLZF/euDxIgqKe6f4Qh32tqGrG6E0uksSkogIGtj8gy3BpOhSAPjg7AedPvME4w9wcQUwv72GUnWzjeNF9Z732yorCaqUlbe4DRsGLF9RRrKysnC5LsWlHCk/QpOjiTBzGDMiZgxYvuKq8UbcSIRfBOlR6cDIjcfSlBEfZLMnFz+6z7n4XaHEjezNqaHZNrIL4owG3G6JLedkK9XaftyUFctIWYN1WM+jUuhsVtQsQs0DV5KXxC9BL+jJacihoLFArekNK+W5DbQ1OTBZ9MSODxmwnNAYCyHRFtwuiYKzQ9df6kC1bMlYErNkUHKWxclppofrLmVLNbQ5OJArH0tXDSH7ilEvsmKSnFLbMTA/66/Pone5aPXzY8wXvjBg+QkJCfj7+2Oz2cjPz/e8rzzclycu71f22OUorpqWvXtxt6nfS0YJrB2p3bE1ZcTHkCSp0+p5MIyPCiAp3ILd6WZXlm804bqaOV3SQHmjFX+jjgWpfW+LEGIxEhFgBCBvGF01Hf3mgyHYFMzsmNmyzBF647wcxUWTND0c3SAWEJ0b5w1N3Eh+VT5lglw1+9b0gbloFG5JvwUkqBKryCyV02R3ZFbidEuMiwogJcJ/UPK7SvFt2i93DG4bk4hON3BlQRRFJrSnBCuuGkmS+l11tTtMkyZhiItDslpp2df3Lsd9RXEhHS4/TKO9UXX53kZTRnyMzIomimrbMOlFlk4YuLkX5Bvb2g5+Vo3hRTkHyyZGYjb076apuGpyq4fHVdNga+BohRzg2J+qq93hyaoZoSbljkiSRK4npbf/WTSXozTOKzhTg8vp/Yyjd068AwJEuaNIje69z1BPjIkYQxxxALx7Sm6cdyl7bHCLK7hUQym3qoXsymacra0ElMqKVPjKVYOWr7hqMjMzkSSJ87XnKW8px0/vR0ZsRi9b94wgCJd61XihAFpSUBKpwak4JSd7ikdeywVNGfExFN/qkvERWIz9y8XvCsUsuvV8BQ7X6EqlHGkoq7m+pvR25FL33uFRRnYV78IluZgQOoHEwMRBy1NWcccrj1PTNnTuCG9QW9ZCY1UbOr1I4pS+9VvpieiUIPyCjNjbnJRm1Q9+gr2wu2w3ABnhg3vYKiyMXAjAnoo92JwuT/bYYFw0CoFmAwtS5UXa5nMVZL/0Mia7HbvBwPgH7h+0/LFjx2IwGGhsbKSsrMwT17QobtGAsscux5Piu307kqvreimDwROPNQKzajRlxMfob2O83pg1JpRwfyONVieH82pVkanRf/KrW8iqaEYnCqyY2PdS0gqXao0Mj5tGuSkP1kWjEOMfw+SwyUhI7CrepYrM4UJxpyRMDsVoHvwCQhQFUqYrjfO8616ta64jzy33c9kwdYMqMjdMl+UUSUV8djqLFruLqEATM+KDVZF/ydpbTs3mzQA0xcait1gGLdtgMDBu3DhAdtV4XJMqWAMBLHNmIwYH46qro+34cVVkdkSxOO4p2TPiWi5oyogP0SkXf3L/H1hdoRMFVrXL6io/X2NoUJTM+WPDCLb03sn1coaz8JnVaWVv6V5g4KmNXTFa2p97UnpnDM6t2hHFVZN3qtqrJb7fP/E+bsFNkCuIOSlzVJGZNiaNUFcokiDx6jG5i25/ssd6Q4kbOV5Yh7FQLq8eMF8dqw5cctUcyjxEVl0WOkHH0viBZ491RNDrCVwuB/k2eaEA2tSIqUT6RdLiaOFQ+SHV5XsTTRnxIZRc/DlJoUQEDCwXvyuUZmybz1WM6N4FIxlPY7zJA/ObK8pIXnULLvfQnsODZQdpc7Z5rBlqoVhZ9pftp9UxfM3hBkNznY3KgiYQIFlFZSRhUih6k47mOhtVhd03bxssSmO7mYEzEUX1HgdzQmTF5mLbMWDwwfgdiQ4yk5YYwpjGcgJaW3CJIhMeekg1+ePHj0cQBE63yX16ZkfPJsQcopp8T9zINvV7yYiCOGK7Y2vKiA+hRi5+VywZH4GfQUdJfRtnS0delPVIp7rZxpEC2UW2ZoB+8/hQP4x6EZvTTWm9+mmBPaH4nwdafbI7JoROID4gHpvLxv7S/arJHUryT8lWkZiUIPyD1VtA6A06ktrjT7yVVWN1WLlgl7NGrp1wraqyr58k97aRLFn4m939yh7rC2unRLOg7CwADZGRWGJjVZNtsVhISkqi1FIKqOeaVAhYtAjBaMRRWIjt4kVVZcMll9KOoh0jquWCpoz4CB1z8XtrK99fzAYdS8bLqzbNVTP0bDtfiVuCafFBxIf0r+eHgk4USAmXg1izh9BV43K72FG0A1D/piwIwqVV3AgMuAM8WTQD6UXTG0o11twT3okb+fz059hFOya3iTVT16gqe+nEpeicAQg6O+PjizDpB55y2xWyMnJG/mX6wAuRdUf8uHiqzfK5VSteREH098d/oRzk2+yFAmjzYubhb/Cnqq2KM9VnVJfvLTRlxEdQcvHHq5CL3xVKJLuW4jv0bPK4aAanZKZGDX1GzanqU9Raawk0BDInRp2Ygo4ocSM7i3fidI+swny2NiclmXKfkZRBVF3tjqTpEQiiQG1pCw1V6ruxPsuWG9pNNU/FoO9/HFNP6HV6hNapALj0R1SVDRCUfYoJ9cW4EahYc5vq8qsCq0CAYHswIUKI6vID2gugeSPF16gzsiReLl43klLnNWXER1BcNAPpaNkXVk2KQhTgfFkjRbUj0z8/Emm1O9l9UV7ZDvbcDkdGjVKUbGniUgyiug8sgJlRMwkxhdBga+B4pfrZBd6k8EwNbpdEaIyF0Bj1FxBmfwNx7dVc1XbVuN1uTjafBGBtylpVZYPc1LGxXlZGyqUzOF3qKpr5r74KwPmwJHa19b8pYW8crDkIQFxLHFlZWarLD1yxAgQB65kzOMrVb9cxEuNGNGXEB7A5XezIVMqEq+uiUQj1NzI3WfZBa9aRoWP3xWpsTjcJoX5MigkclKyh7t4rSVKneBFvoBf1nj43I+nGCZfSbr3holG41DhPXWVk78W9tOha0Ll13Jh2o6qyQb7HuFrGgsuEVdfG9vPqrtBd584DsD92KtsuVKpaQ6nN2ca+UrlCalxrHJmZmarJVtBHROCXng7IgaxqsyRhCXpRT25DLvkN+arL9waaMuID7MupocXuIjrIxHSVcvG7QnHVdCylrOFdPBavKTGDDv4cO8Tde/Ma8ihoLMAgGjyddr2B4qrZXrR9xGR7uZxuCs7IMV7ecNEoKLLLsutpa1avbsSH5z4EYJx+HIF+g1OSu0J2TeqJluTy6h9nfqya7KacHIKrZeXsXNIMGq1ODqlYQ+lA6QGsLitR5iiC7cFkZ2djt6tfsyNwdXsBNC+k+AYaA5kbPRcYOa6aASkjzzzzDMnJyZjNZjIyMjh0qOd85vr6eh5++GFiY2MxmUxMmDCBTz/9dEATHo140j5VzMXvCqVY0OH8OupaRlZBnJGI0+Vm2wX1MqSUkvDVzTYaWh2DltcbilUkIzYDf4P6bgiFBbELMOlMlDSXkFWnvkncG5Rk1WG3urAEGYlODvLafoLC/YhIDECSIP+UepVqD9fLjeyWxS9TTaZCVZONY4VyLM36MXLswrGGY6rJz3rueURJojkggBkL0wF1rb3Kw3t18mpCgkNwOp3k5uaqJl8hYGV747xDh3A1qp/lONLq+PRbGXnrrbfYuHEjjz32GMeOHSMtLY1169ZRWVnZ5Xi73c6aNWvIz8/n7bffJjMzkxdeeIH4+PhBT3404HZLHZQR77hoFBLDLEyKCcTllth2oevzpaEeRwrqqGt1EGIxMDd54F1uFQJMemKC5JLUOUPQo0a5ialZ6KwrLAYLC+IWyPscIVk1eSfklXlymhxk6k0UN5Ba1VjPFp+lRqwBCb4wc+Bdbrtj6/kKJAlmJARzd8ZtCJJAva6eo3lHVZFvPSrLsScnX2qcd7ZcFatax+yxlWNWegqgKY3z1MSUkoIxNRWcTpp37VZd/vLE5QCcrDpJddvQNF0cDP1WRp588kkeeOAB7rnnHqZMmcKzzz6LxWLhxRdf7HL8iy++SG1tLe+//z6LFi0iOTmZZcuWkZaWNujJjwZOFNdT1WQj0KRnwVh1c/G7Ym0XXS81vIPiolk5KQr9IDq5dkTJqMn1squmsrWS09Vy0aflCcu9ui/o0DhvBHTxldySRzFQozFebyiumqJztTjsg+9n8t7p9wBIIIHYUPXqcyhs6lDgLyIogiQhCYD3z7w/aNm2+noCK2T5Udddx+L2GkqlDVZVaiidqDpBna2OIGMQs6JnMXHiRACysrJwu9Wv2RHoaZy3RXXZMf4xTA2fioTEzqKdqstXm37dIe12O0ePHmX16tWXBIgiq1evZv/+rosWffjhhyxYsICHH36Y6Ohopk2bxq9//WtcPTQJstlsNDY2dnqNVjp2cjXqvR/Co8SN7MqqxupQv1GThowkSWw+P/DGeN0xVGXhldXhjMgZRFq8/8BdlrgMURA5X3uesuYyr+9vMFQWNtHSYMdg0pEwcfAWr96ISAggMMyM0+Gm6NzgYyP2VcjBmQujFg5a1uW02JzsyZZX4cq9ZkmM7Ko5WH1w0PIvPvccBqcTq9nM2K9+BbNB5+lurkYNJU/2WIKcPZaUlITZbKa1tZWioqJBy7+cwPYU35Zdu3F7IS6lYzyWr9Ovp191dTUul4vo6M7+7+joaMq7SU/Kzc3l7bffxuVy8emnn/LTn/6UP/zhD/zyl7/sdj+PP/44wcHBnldi4uC7hPoqm862P7BU6GjZF6bGBREXbKbN4WLPRd833Y1ULpQ3UVTbhkkvem6WajA2YmhqjXg7i+ZywsxhpEemd9q3r6L0ohkzNRydwfsLCEEQOmTVDM5VU1ZXRjHFANwy45ZBz+1ydmVVYXe6GRNmYUK0rDjfmn6rvG+hjPyq/EHJr293Z7QkxKMzyKnmirKv3EsHSsfsMeUhrtPpmDBBDsL1hqvGPH06+shI3C0ttB4cvLJ2OZ6WC6W+33LB61eS2+0mKiqK559/ntmzZ3P77bfzP//zPzz77LPdbvPoo4/S0NDgeXlDI/UFcqqayalqwaATWD7R+6tPkG9sazxdL7UUX2+h/G2XjI/AYhx8J1eF1CjvW0aa7c0cLJNvjN6OF+nISFnF5Z1Sqq56L4vmcpTGefmnanAPIo31nePvIAkS4e5wpiZMVWt6Hi51HY/2ZI+lRqcS5Y4CAd458c6AZbscDvxLSgAIWbLE8/7KSVHoRKF9ATDwB25OfQ5FTUUYRSOL4hZ53u8YN6J2tpcgip5A1iYvVGMdFzKOxMBE7G67J13ZV+mXMhIREYFOp6OiovNDrKKigpiYrlf2sbGxTJgwAZ3uUjngyZMnU15e3m26lMlkIigoqNNrNHKpk2s4QWb1C0p1h2KF2XK+Ysibrl0tKDE5ateNUdw0BTWtqtZW6Mie0j043U6Sg5IZGzzWK/voCmUVd6T8CA22hiHbb3+or2yltrQFURRImub9GC+FuHHBmCx6rC0OynMH/rfZWSLHDswNmavW1Dw4XG62tgfGX27pzQiXu+ruLht4oGbuP/6B2WrFodcz/sEHPe/LNZRkd9lgXDWKVWR+3HwsBovn/dTUVHQ6HXV1dd0magwGT4rv1m1IKseldGq54ONZNf1SRoxGI7Nnz2ZrBw3O7XazdetWFixY0OU2ixYtIjs7u1PwT1ZWFrGxsRiNxgFOe3TgWUUMkYtGYV5KGEFmPTUtdo63p+BpqEdpfRtnShoRBFg5OUpV2TFBZixGHU635LVKuspNS+2eHL0xJmgM40LG4ZJc7C5RP7tADZTiY3ETQjD7D90CQtSJJE9v71UzwAJoTW1NXHTKjdmun3y9anNTOJxfS0ObgzB/I7OTOsfSbJi6AYA8dx61zQOLe6n8VC5f3xgdjSkkpNNnaz2dyQfuqlHiRS53TZpMJsaOlZVybxRAs2RkIPr746yqwnpG/V4yHVsuONzeLwkwUPrtptm4cSMvvPACr7zyCufPn+ehhx6ipaWFe+65B4A777yTRx991DP+oYceora2lu985ztkZWXxySef8Otf/5qHH35YvaMYgXTMxR9oW/mBYtCJrJwkPyS1xnnqoyiZc5JCiQhQr5MrgCgKnt5F3ih+5nA52F0sKwJKhstQ4uuruKGoutodKentcSMnqgbkLvjw5Ie4RBf+Ln+WTFjS+wb9RMkeW9XuNunInJQ5BLmCcAtu3jv+3oDkG/PzAfCbPfuKzxTX86G82gHVUKpoqeBMzRkEBE9KbEe8meIrGo34L5XPR5MXCqClR6YTagql0d7I8QrfbbnQb2Xk9ttv54knnuBnP/sZ6enpnDhxgs8//9wT1FpYWEhZ2aVo+MTERP7zn/9w+PBhZsyYwbe//W2+853v8OMf/1i9oxiBKLn4aQnBxASbh3z/azoEfY2UqpcjhY5F7LyBNzNqDlccptnRTLg5nBmR6ndD7Q1lFbe3ZC82l23I998TrY12ynNkF8lQxosoJE4OQ6cXaay2Ulvaf0V0c95mANL80xBFdcMFJUnq8XsviiIzA2cCA1M0iz/7jIDmZtyCwIQHv37F54lhFibHBuGWGFANpY7ZYxF+V55bJcW3tLSUhgb1XYiBK9tTfLepr4zoRB3LEuXidr4cHD6gb+QjjzxCQUEBNpuNgwcPkpGR4flsx44dvPzyy53GL1iwgAMHDmC1WsnJyeG///u/O8WQXI1s8vIDqzeWTYzEqBPJr2klewi7wI52GlodHMiVK2V6q4idRxnxwnlTHhTLE5cjCkPfLWJK+BSiLFG0Ols9QbS+Qv7paiQJIscEEhg29AsIo1lP4mTZ/dHfrBqH08EZq+wCWD9uvepzO1fWSEl9G2aDyJLxXVuNrp1wLQAX7BewOqz9kl/05lsANEREEJia2uWYNYOooXR5Fs3lBAQEeLI6veGqCVi2FPR67Nk52PLyVJffsY6Pry4+td40w0BXufhDTYBJz8JxcgCe5qpRj+2ZlTjdEhOiAzzuFLXxFD6rVtdNI0mSJ5NlKLNoOiIKos+6apR4keGwiigo7qHcE/2LG9l6bis20YbRbeSaGdeoPi/FRbNkfCR+xq4XmmumrsHkNmEX7Xx26rN+yRfaO+eKU6d0O0Yp6NjfGkpN9iYOlcstTXpyTSrWEW+4anRBQfjPmwdAsxca582Pm49ZZ6a0pZTMOvWVKTXQlJFhQMnFTwq3MD5K/fbXfcWTn68pI6rhbRcNXLKMZFc2q7rKOVdzjsrWSvz0fmTEZvS+gZdQHgg7inbglryTMdRfHDYXReflwMvhiBdRSJ4RAQJUFTbRVNt368InWZ8AMNE4EbNBfatOx5Te7jDoDUw1y+nEn+d83mfZtSdPElQnx9eNvfvubsdNjQsiPsSv3zWU9pTI2WMpwSkkByd3O06JG8nPz6etra3P8vtKwColxVd9ZcRP78fCOLnIna9WOdaUkWFgUxe5+MPB6ilRCAKcLKqnorF/ZlONK7E5XezIbE9t9GKfoZQIfwQBGtoc1KrY8FAxVS+OX4xJp27gbX+YGzOXAEMANdYaTlWdGrZ5dKToXC0uh5ugCDPh8d5rGtgbliAjsWPlzt75p/r2wHW73RxrlBvVrRqzSvU5FdW2cq6sEVGAVb0E469NWQvAyeaTfS6vnv23vyEADSEhRM2f3+24jjWU+uOq8fRg6iVgOyIigoiICNxuN9nZ2X2W31cC2+uNtB0/jrNa/YKUSnacr8aNaMrIEONwuT0BVt5ujNcbUYFm0hNDAK0Amhrsy6mhxe4iOsjE9Phgr+3HbNARH+IHqJtR40npHaKqq91h0BlYEi9nF/hKATRPFs2MyGFdQIDcnA/6HjdyJO8IjbpGREnk5pk3qz6fLefbs8eSwwjz77lcw41pN6Jz62jRtbD34t4+yXecknskucf2XvNGUUa2nq/sUw0lu8vuSSPvSyq7N7NqDLGxmKdOBUmieccO1eUvS5BbLlyovUBpc6nq8geLpowMMYfzus/FHw40V416KH7zNVOiEb3cyVXtjJqixiKy67PRCTqWJixVReZg8KX2526Xm7zT7fEi6cMXL6KgNOcryazH1tp73Yj3z74PQIqYQlhAmOrzUb73PbloFAL9AhmnHwfAh+c+7HV8a0kJwVWy0hX3hVt7Hd+xhtKxPtRQOlx+mBZHCxF+EUyPmN7reEUZuXjxIk6ns9fx/UUpgOaNFN9Qcygzo+SMJl9R8juiKSNDjPLQXz35ylz84UBZSezPqabJ6rsFcXwdt1vyrBCHwuKlKCO5Kikjiul2TvQcgk3es+r0lcXxi9GLevIb88ltyB3WuZTlNGBrcWL2NxCbOvx/m5BoC6ExFtxuiYKzNb2OP1QjB2cujlms+lzqW+0cypdjafrqmlwWL6eZHq4/3OvYrOeeQ+d202KxkHjTTb2ON+hEj6uoL9Ze5aHc1+yxuLg4AgICsNvt5LfXPVGTgPYU35Z9+3C3qF9HSHFF+YKSfzmaMjKEdM7FH14XjcK4qADGRvrjcEnsyBxcE66rmRPF9VQ12Qg06Vkw1vtlwsdGqlv4bLiqrnZHgDGAjBg5iHa4A+7y2jNXkqeHI+p845ap9KrJ6yWrJqcihwqxAiT4wswvqD6PbRdkd8ikmEDGhFt634D2eUhQI9Zwtvhsj2ObD8jp3bYxY/pcDsITN9JLDSW35PZ8t/pa4E8URa9m1ZgmjMeQmIhkt9O8t29urP6gXN9HK476XMsF37iyrhKUXHw/g44l44ff3KugNc4bPMrfbtnESIx6719Warppaq21nKg6AQx/vEhHlLkMp0lZkiTyTrXHi6QPXxbN5SjpxQVna3A5ug8EVRrTxUgxJEcmqz6PgWSPxYbGkkACAO+d6r4aq7O1lcD2Aprha1b3Wf7SCfI12FsNpXM156hsq8Sit/Qre0xx1WRmZvY5CLevCILgCWRt9kJWTWJgIuNDx+OSXOwq3qW6/MGgKSNDyKVc/AjMBt8p+qaYV7dfqMTu9I1UypGG0r58qOrGKLVGimpbsTn7XlOhK3YW7cQtuZkcNpm4gDg1pqcKSlnuU1WnqGodHqtdTUkLjdVWdAaRxMnqx1sMlOikICzBRhxWF8VZ3cdG7CnfA8D8iO6zUAaK1eFiZ5Z8XvqbPbYwSk4z3VfZfSfZiy/8DaPDgc1oZFx7u5G+EGDSsyi19xpKijVwcfxijLq+90lLSUnBaDTS1NREaan6gaCeuJEdO5C8EJfiKYDmY3EjmjIyhGwapsZ4vTEzMYSIABNNNqeneqhG38mpaianqgWDTmD5xKFZPUcGmAg063FLcgffwaDclHzFRaMQ7R/N9IjpSEjsKN4xLHNQMlYSJ4dhMPnOAkIQBU+9k7wTXStq1U3V5Ev5ANw8Xf0smr3Z1bTaXcQGm5kW37/O6rfMuAWAIoooqyvrckxNe0PW5rg49Ja+uYAUlHusskjoCk9Kbz8L/On1esaPHw94x1XjN3MmutBQ3A0NtB45qrp85TrfU7LHp1ouaMrIEFFU28r59lx8pUmdryCKAmumyHPSXDX9R/mbzR8bTpB5aDq5CoLAWBXKwrc529hfuh8YnsZ4veFx1QxT3IgvVF3tDmVOeaeqkbpIY33v+HtIgkSwK5hZybNU339HF01/052nJkwl3B0OArxz/J0rPne5XPgVFQEQ2E1H+J5YNbm9hlJxA+UNV9ZQKmgsIKchB72gZ0lC/5sGKnEj3igNL+j1BCxfDninV82UsClEW6Jpc7b5VMsFTRkZIpQLd24fcvGHg0stuCt8tneBrzLULhqFVE8Q68CVkX2l+7C6rMQHxDMhdIJaU1MNZdV6oOwALQ71swt6oqnWSlVhE4IAKTN8TxlJmBCKwayjtcFORUHjFZ8rK//ZwVd2uR0srg7ZYwMt8Dc3ZC4AO0p2XPFZ4b//jaWtDadOx4SHvtFv2VGBZmYqNZTOX7nAUpTbOTFzCDL2z6oDMH78eERRpKqqipoa9a3JiqumectW1e/HgiD4ZMsFTRkZIoaiTPhgWJAajsWoo7zRyukS34qy9mUqm6wcL6oHYE0v1SfV5lIQ68Af0spNeUXiimEv5tUVY4PHMiZwDA63g70l6mcX9IRiFYlJDcYv0PcWEDqDSNJUOTZCmatCm62NTIe8ar9u4nWq7/tEUR3VzXYCzXoyxg4slub6ydcDkO3MpqmtqdNnZR98AEBjVCR+UQOzJK/psMC6HI9rcoAB235+fiQnJwPecdX4L1yIYDbjKC3F5gXri6Lkby/ajss9uJgztdCUkSFgILn4Q43ZoPPEOyiBthq9s/V8JZIEaQnBxAQPbSfXwWbUON1OdhbvBIavMV5vCIJwqQDaEJex9lRdHcZeNL2hFGG7PG7kk1Of4BAdmF1mVk5W/9wq94iVk6IwDDDdecmEJfi7/HGJLj482bkAmi5Hri1jTEsf8BzXTr1UQ6mxQw2lmrYajlceBwb3vfdmNVbRzw//RYsA7xRAmxMzh0BDILXWWk5Xn1Zd/kDQlJEhYCC5+MOBluLbf4bT4jVO6d5b1TIgU+6JyhPU2+oJNgV7KjP6IsrqdVfxLhzuoSnMZ21xUJpVD/hmvIhC0tRwRFGgrryV+opLgcz/yf0PANP8pqHX6VXdpyRJnmD8wXzvRVEkzT8NgM15mz3vV+zaRVBjI25BYNyDXx+w/NTISzWUdnaoobSreBcSEpPDJhPjP/DFoRI3UlRURHOzOsUHO6Kk+HojbsQgGjyxMr7iqtGUkSGgP+WSh5OVE6PRiQKZFU0U1Aytf34k0mJzsidbNo8PR4bUmDB/dKJAs81JZVP/o+IVS8OyhGXoRXUfWGqSFplGmDmMJnsTRyvUzy7oioIzNbjdEmFx/oRE+e4CwmQxED8xBIDcdkuO2+3mVIvcYHDt2LWq7zOnqpm86haMOpFlEwZnNVo/bj0AZ6xncDhlRTP/1X8A0BgWRujkyYOS31W7i4Fm0VxOcHAwsbGxAGRlZQ1KVlcErFgOoojt3HkcJSWqy+9ocfSFOEFNGfEyVoeLXRfbc/F9LKX3coItBjJSZP+vZh3pnV1ZVdidbpLDLYyPChjy/Rv1ImPC5AdlfzNqJEnqFC/iy+hEHcsS5BLiQ5VV48tZNJejuJHy2+e8M3MnrbpW9G49N6TdoPr+lAf7gtRwAgeZPXbNjGswuo3YRBtbzm0BwKW4PSYOPqBacdXsaK+h1OpoZX9Ze/aYCq5Jb7pq9GFhWGbJWVBN29T/3i+OX4xBNFDQWEBeQ57q8vuLpox4GSUXPy7YzNS4/kdtDzVrPaWUNWWkNzYNIrVRLQaaUXOx/iLFzcWYdCYWxi30xtRUZShXcU6Hi8L2ni++HC+ikNye6VOW20Bro52Pzn8EwHj9eALM6ivJHkvv1MFbes0GMxONsrvj06xPacjKIrg9OyXpK18dtPz0hBAiAy/VUNpfuh+by0Z8QDzjQ8YPWr6ijOTk5GCzqV+zI2BVewG0req7avwN/p7Ks0Mdj9UVmjLiZTp2cvXFbIXLWdNuvTlSUEtNs+8UxPE1HC43W5XUxmG0eA00o0YxVS+IXYDF4LtuCIX5sfPx0/tR3lLO+drzXt1X8YU6HDYX/iEmosYEenVfahAYZiYqKRAkyD9VzZH6I4B3LF4VjVZOqJw9tmqM/MA91niMi889hyhJNAUFErdq8JYLURRY3T7PTefKPQ/dlWNWqnI/joqKIjQ0FJfLRU5OzqDlXU5g+9+g9fBhXPX1qssf7jo+HRmQMvLMM8+QnJyM2WwmIyODQ4cOdTv25ZdfRhCETi+zeWizDoYLl1ti6wXfaozXG/EhfkyNC8ItwdYLlcM9HZ/lcF4tjVYn4f5GZo0JHbZ5jB2gZcRXq652h1lv9lhwvF3GOu9Uu4tmRgSCD3TW7guKO+nEgRzqdHUIksAtM29RfT9KbZH0xBCigtS5j98882ZESaRR10jtKVmRciSnqCIbLll7N58rY2eRnD2mlqImCIJXC6AZx4zBNH48uFw071K/l4zydzhVPXwtFxT6rYy89dZbbNy4kccee4xjx46RlpbGunXrqKzs/sEVFBREWVmZ51VQUDCoSY8UjhcOPhd/OPAEfWmumm5RXDSrJkehG8YHlmIZye2HZaS8pZxzNecQEDyxGCMBj6vGi9H/klvyxF4oabMjAcWdVJtrQ+8ykigkEh2sfsC8mi4ahbCAMFLEFAxOieiy9touN96omvwFqeH4G3VUOy/QYG8gxBSiavaY4qrJysrC5VK/ZkeA0qvGCym+kZZIZkTMAIa/V02/Q+iffPJJHnjgAe5pb1z07LPP8sknn/Diiy/y4x//uMttBEEgJsa3LAMOu53iyjwkSfKa++TzQ/lE6itZnBxBcdlFr+zDG6RFtBCpr+RcbhVZeRYMPtTUzyeQJA6dPUmk3sbc6DDyitVfEfUVk91OpL4SezNk5Z3FYOj9kv6k6DMAJgVPpLGmmkZ6bkPvKySJcYiCSFZdFvsv7iLGT/2HbV2xndZGO3qTgMO/irzikfG3kSQJS4iO1npIrJ/EtJQxqn8vW+xu9mXLq+cpYW2qyk8LmUHQ4YsYnW5a/cyYlsxUVf6cRDMHms4BMCssnaJSFV0qohtDgIFmawuHju0lJlbd76UzbQL1wQE0nDiGI/c0GNUtwJcePJ1T1af45OJH3JyyAYPK8vuKIPUjGsxut2OxWHj77bfZsGGD5/277rqL+vp6PmivmteRl19+mfvvv5/4+HjcbjezZs3i17/+NVOnTu12PzabrVMwUGNjI4mJiTQ0NBAUpE4QaG7RBbb+5E1c+mnEFf0Rg7P7zpe+iFs0UxX9FZx63w+K1eg/oquNyMq30Hvhe+kQJFwCRDhFQp3qKuJuRC7G30Gr0TuBn3YR3IC3bFEuXRBOYyT+jUeILn/ZS3vxDjURN9MQtgrRUYe/vdZLfyMBGwZcepUXKJKE0WnF4IK6AD3loSr3eJJAJ1lxCxDrEAhwjQz321BgFyUKjBICMCG+ja9991uqym9sbCQ4OLjX53e/LCPV1dW4XC6ioztrftHR0d2mNk2cOJEXX3yRGTNm0NDQwBNPPMHChQs5e/YsCQkJXW7z+OOP8/Of/7w/U+s3giAgSnHYDWGYXdNJLN3p1f2pTVF8Bi2BvluoSmPwSHUVJBe+68U9uFWXWBs+hfJQ9dvVDzVjC44SWTP8tRf6Q1jTUY6ErcJtCKXJMHxxTAPF2f5TBOKubLWjKuqXKBvZxLav/fPtm3se6EW8XulowYIFLOjQdXHhwoVMnjyZ5557jl/84hddbvPoo4+yceNGz++KZURNEqJScIS8DfZxZI/PoGBSoaryFUQBBEH9pCWbM0PW9jmFTq9+jrjkdiG1WUEQcAeonFHgBr1TQgJcevVXKKLTgeBwIIk66IPbYqAIAgheWH+6pUic7gUUJ86mKuUkvXkRbU4XTpeEUS9g0PVtxRrgMhLq8lNhtp0pR67qGCDlEYj62QUSEvWOelwiCBY/UPHakiQ3rXYX0Ma52VYEQd3GgaLdjmhrQxJ1SCaTqrIV9NJrhLiiMErqf++Nko0k6TwSenLNC5BUjpWyS04qAp00j01SVS5ATMVZQuznsTgjqDbPU10+gNNtx+1WX8FXEBwOBC+ltZcaG9Ahcs3sa70ivy/06xsbERGBTqejoqJzYGNFRUWfY0IMBgMzZ84kOzu72zEmkwmTly5WzzyMRr700+/x2k8PgJjM1373AWb/oWn/PlisLQ5e/MEekCRWBM4iZs0Ggtcmq7oPyenk4qLFuBoaSPrHq1jmzlVNdt17F2k5WI7/vBhCbxl8rn9HJEkiZ916HIWFxP/pTwStX6eq/KHAbnXy4n/tweUMYcOjbxIe33OtiOd35fDbTy9w/YxYnv6y+q3i+4rbLfHSD/dAs4NV37uZhEneCdrOvWkDtsxMYn/zOCEd3MWD5a87cvjT5xdYOiGSV+9V/4FVeO+9tOzbT9QPfkD4ffeqLt/bSG437v+bgI4qJiz5MqZVXxzuKfUZxy/mYBAuYpvza0w3PzTc09Hogn4tK4xGI7Nnz2ZrhwIsbrebrVu3drJ+9ITL5eL06dOeMrrDSXCkhbA4fyS3RMEZ9dtAe4uC09VIbonQMBP+OoG2s+rPXdDrCVi+HFA3iltyS7Sdk5sGmts7jqqJPTsbR2EhgtGI/+LFqssfCoxmPYmTZTO70qytJ9To3qsG5TkNWJsdmCx6YseHeG0/ge2FoJpVLgS16Vw54J22Da7GRloOHQYu1Y4YaQiiiCNCnrt05uNhnk3fcRZcxOC6iCSJ6BfdPNzT0eiGfts4N27cyAsvvMArr7zC+fPneeihh2hpafFk19x55508+uijnvH/93//x6ZNm8jNzeXYsWN89atfpaCggPvvv1+9oxgEY9PlQLu+3PR9BaVU9djZUSCCs6IVZ02b6vsJWKU0alKv6qWjpBl3kx3BqMOcGqKKzI40bZXTPi0L5qML8Fdd/lChpGpe3hq+KxRlJK+6Gbd7+OIclGsoaXo4ugF2cu0Lyveyec9e3FarKjIrOxbz8oIy0rxzFzidGMelYmxvPT8SEWfI5eUNdTuRnM5eRvsGrn1y3JXDOA1dVNwwz0ajO/p9x7j99tt54okn+NnPfkZ6ejonTpzg888/9wS1FhYWUlZW5hlfV1fHAw88wOTJk7n22mtpbGxk3759TJkyRb2jGARKsaCCs7U4HerniKuN0+GioN2yMHZONKaUYADazqlvHQlYvBjBZMJRVIQtS53UZMWKY54YiqBX/4GllE1WVs8jleQZESBAZUETzXU9P3ATQv0w6ASsDjelDeorpX1BkiRyFSXZyyXUzVOmoI+NRWpro2XfflVkbjlfiSRBWmII0SoV8+rIpe/latVlDyWG+Wtx44+OehxHdwz3dPqEkP85AO7kkeeyvZoY0NPgkUceoaCgAJvNxsGDB8nIyPB8tmPHDl5++WXP73/84x89Y8vLy/nkk0+YOdN3skAixwTiH2LCaXNRfMH303uLL9ThtLkICDUROSYQ8xTZ1eENZUS0WPBvd781q9TGWpmn3xT1XTSOigqsp0+DIBC4YmRUFu0OS5CRmHZFszfriF4nkhyuVGIdHldNbVkLjVVt6PQiiVO8W+BPEATV26tv9qKLxm2309JePXOkumgUBKMJR5Ds/nQf/3CYZ9M77toqDNYTAOgX3Dq8k9Hokau+N40gCB7rSF9M4sNN3gnZFJ4yIwJBEDwPdXt+I64Wh+r7C1Sx+p+jug1nZSuIAuaJ6qceNm+TXTR+aWnoI32/wVlvKBVA+xU30s/uvWqRd0K+dhImh2I0ez1Jz/O9bN62HWmQVS+bbU72ZstKsjeUkdYDB3C3tqKPisI8bZrq8oecSdcBoK/YguTF7BE1sO95H0Fw4xBT0I+dPNzT0eiBq14ZgUtm5bxTcmCor+J2S5f6ZrTPWR9qxhDrDxJYz9eqvs+A5ctBELCePYujg/ttIFjbrSKmscGIFvUzl5R4kYARvvpUUL6XJZn12Fp7VjRTowbWo0YtFIXJ2y4aBcucOYhBQbhqa2k7eXJQsnZlVWF3uUkOtzAuSv0ut57v5coVCOLIv+UaFt+IJOnRSyU4s04N93R6RMj6FABX7Mh2j10NjPwrQwXiJoRgNOtoa7RTke/lajuDoCKvkbYmB0Y/PXETQjzv+031nqtGHxGBX7tbrWnb4HqCKPEi3nDRuJqaaDl4EBj5fnmFkGgLoTEW3G6Jgl4ypgbSo0YtmuusVBY0gXCpnb23EQwGApbJfXUGa7XbdLbdRTM1RvXWEJLb7XEljZbvpRgUisNvDgCug94syjc4pLZWDE37ANDN2TC8k9HoFU0ZAXR6kaTp8k0094TvZtUoLpqkaeHoOgR/KnEjtot1uO3qB+GqkUrparZjL5QVPbMXlJHmXbvA4cA4diymsep1/BxuUpRsrxM9uxDHetJ7h94yorg3Y1KCsQQNXV8L5XvZtHXLgLO9HC4329q7U3vDRWM9dQpXVTViQAD+Gd4ptjUcuFOvAUBXtGmYZ9I99v2fIQpWXESgT1s43NPR6AVNGWnH1+NG5GyF9niRtM6rT0OsP7oQE5LDje1iver7VoLuWg4dxtU4MMuR9XwtSGCID0Afon5Bu+Z2U/hIDxC8nEvZXjW4HN3758dGym6ayiYbjVb1Y4d64pLrcGi73PovXoxgMOAoKMSeM7Bqr4fyamm0Ogn3NzJzjPpxTB4XzdIlCMPUgMwbGBbdIv90nsdV6qNd2M98BIAjYnS4x0Y72hlqJ2lqOKJOoL6ilbry4S0e1RV15a00VLYh6gWSLisWJgiCV101xuRkjONSwemU6yUMAG+6aCS7XbaMMPJTei8nOikIS7ARh9VFcVb32V5BZgNRgbKSN5SuGlubk5JMeV5KzZ6hQhfgj2WhnO01UFeN4qJZPTkancrlzeFSSm/AKPte6uLG4NDL5Rkce3zPVSO5XOhrdwAgzrhxeCej0Sc0ZaQdo5+ehElK1Uvfs44oAYIJE0Mx+l2ZraC4Pqzna5Bc6gfhBq5sN4kPIJXSbXNhzZYfWN5w0bQcOoy7uRldZATmGTNUlz+cCKJAyoy+We0uxY0Mnaum8EwNbpdEaIyFkGjLkO1X4dL3sv/xTJIksfmc3NrCG4XObLl52HNzwWAgYOlS1eUPN67EtQCIuZ8P80yuxHFsFzrqcEsWDBlrh3s6Gn1AU0Y6oGSo+GLciPIgSukmW8GUHIzgp8fd6sReoH4QrpJK2bJzF267vV/b2i7WgVNCF2bGEKP+A6tp6xZ5jitWjkpzbEqHKsE9ZXsprpqhjBu55DocnlTqwJUr5GyvU6dwVFT2a9uzpY2UNljxM+hYPF59F5NSm8d/3jx0gSo3m/QBdPPbXTVtR3A3qJ/JNxjcx94HwBG0GMGkfhE7DfUZfXfuQaCsQCvyGmlpsA3zbC7R0mCjIk9WMFK6yVYQdAJ+7Y3JvOGqMU+bhj4yEndrK63tWSt9pWOhM29kKzRv2w6MvngRhYQJoRjMOlob7HLWSjdcqjUyNG4al8Pt6emk1EQZavSRkfi1W8Oat/fPOrKp3SqydEIEZkPfuh33h9GWan45holpOIUEBMGJY69vFUDTV7RbcNtromj4Ppoy0gH/EBNRyUEA5J/yHVeNYhWJTgnCv4fgz45xI2r1klEQRPFSr5p++Ocll4T1grxq8vNCZU7r2bM4KyoQLRYs8+erLt8X0BlET5xQbg8F0FKjhjajpiSrDofVhSXYSHRS0JDssysCBliYz5PSO6VvHcf7g7OqirYTJwA81WJHI86Y9nTl858M70Q64Mg8id5dhCTpMSzW4kVGCpoychlj05UUX19SRrrOorkc04RQ0Iu4aq04K1pVn4dSJ6Fp29Y+V1605TfgbnUiWvQYk4JVn5PyAPJfuhTRpH6Wjq/gqcbagwsxtd1Nk1/TgtPl/cqYSi+alBkRCF4I/uwryvey5eBBXE3dW446UlTbyoXyJnSiwMpJUarPqWn7dpAkzNOnY4hRX9nxFcRZGwAwNO5BsqnTtHCwuA6+B4DDbw5isHdbE2ioh6aMXEbKDNn3XZxZi906/F0p7W1OituzFXrzy4tGHeZxIcCl7BU1sWTMQ/T3x1VVLfeA6QNK1VXzpDAEnfoPrGZPQanRu/qE9mwvUaCuvJX6bhTNuGA/zAYRh0uiuM67DfMkt0T+MMeLKJjGpmBMSQGHg5bdu/u0jeKimZscSqi/+im3ozXV/HIMs5biIhRRaMVx0DdqjugK/wOAe+z6YZ6JRn/QlJHLCI21EBzlh9spUXh2+IOyCs7W4HZKnmqcveHNFF/RaCRgmZwV0BeTuCRJl+JFpqqfRWMvKMB2MRv0+lGZrdARk8VA/MQQoHtXjSgKpEQMjaumsqCJlgY7BpOOBC/0Geov/e2h5E0XjbulhZb9cjfh0ZZqfjmCToczbDkA7lPDHzfiKi1E7zgPgGHxLcM8G43+8P/bO/PgKM4z/3/7mkszuhCSELrFKQ6BMSiAbU4bO46NnWRDXN44YR3vlteuSoqkyuvaikn2KJKN11W/dbnslMsYx65KnF2fG2ftgIzAiNMIcQohhJAE6EDXSDOjmenpfn9/9HTrYEaao+eS3k/VVKGZt99+m/ft6Wfe53m+DzVGJqAUzhvNXkg0rWO3wkMI/jQtygYYQLzpgG9Q/yBcaxiplGKnE9KAB+BZGOfHTlDKsvpucBn6u4CSDXVdXp8kxbciThk16r1RvGQWOCHxXyNWf1yG4/BhkCmyvQacXpy6rvzQiEVKr+NIHYjXC6G4GIZ583TvP+lY+i0AgNB7MOGF88S6D8EwBCK/GFxBSULHQgmPxH+LJCHlqurlhT5IcfC9B0OSxmYrhLYVztkMMBQrwYTuRv13R6wb7gMEAd6WFnhaWydtq7lo5meCNcQiW2F61fyYCrXuS+c1O1xDgR+48cqoUeNFyhOURTMRc1UVuJwcyA4HnCdPTdq25nIPZAIsnpOOouwYpppv2aJ79lgyYlj7TcjEBA698J09mtCxqJonqgYKJXWgxkgA8sozYLYJ8Lh8uBUDefVQuXVlEN4RH8w2AXlloWcrqCqnsXDVcDYb0lavBgA4ptgdiaWLxtfXh5EzZwD4tSZmALZsE2YX2wACXD8feHdEzai51hu7nZHBbhcGOp1gWQYlS/Wf20hgWBa2Tco6cEwhzLf/kuKiicWuCBFFTaV4useLqDBmC0SrooQrnf44YeOQhwYguBRDlFvzeMLGQYkMaowEgGUZ7VfoVAXKYomaOVG2PAdsGNkKJv/D39NihzyifxBuKKmUvgE3xFtOgPG7jnTGUVsLyDJMlZUQCgp07z9ZKZ8iq6Y8R3XTxG5nRHUdFizIhNEixOw84aLFjdR8GTS13S1KOHxFGX8sCuO5Tp+GbLeDy8rSql3PBMhCRc+Du3UgYWMQj3wKhvHBx8wFv7AqYeOgRAY1RoJQPiZuRG/NjlAghIwpQBZetoKQYwafawZkAneT/kG4qm7CSEMDfL2BjTXVRWMoSQdn1T9bYboLSgVDXQsdjQMBs71UFdZ+pxf9zvCUckOl9ZxiCMW7Fs1UWL7xDTAWC3zd3XBfuBiwzZHmXoyIEuZmmrGkQH9tFG1dbtoEhtPfNZmsGNZvByEsBLkVvmuNiRnE5b8AAHx5W6alEvN0h85YEAoXZYE3sHAMeNDbEf+y7Lfbh+EY8IA3clrNnHAwVyq/oGPhqhHy82FauhQgRNFTCMBY1VW9kV0uOOvqAAC2rTMjXkQluyAN6TkmSD4ZHY13GpoWA4+5mWYAsalR4xryorPFDmA0hiVZYI1GWO+9F8Bo3MZE/jrGRaO7GjAho/EiW6d3Fs1E2Fm5EE0rAAC+Yx/E/fzE64EwdEQZy8rtcT8/JXqoMRIE3sChWFW9TECtGnUrvKQyG3wEwZ9qnIb78gCIT/8gXPXL1hHAVSO7RHhalQdWLIwRR10diMcDobAQxgULdO8/mWEYZrRWTRAXYixr1Fw/3wsQYHaxDbbs5Kv5oa3LmjvXpSQT1DQq9Wti4aLxNDbCd6sTjNmMtHXrdO8/2SGliq4He/2LuJ9bPLEfLByQkAlh1ca4n58SPREZI6+99hpKS0thMplQXV2NkydPhnTcH//4RzAMg8ceeyyS08YdVfE0EVV8Q1VdDYYw1wrWZgDxSvC0DOo4MgU1ldJ57Bhk5/j4hJGmAUAG+DwL+Byz7uceKyg1E7IVJqJme10/3ws5QLbXaPVe/eNGRgs2JteuiIr1vvsAjoOn+Sq8bW3jPqtvH0Cf04t0E4/VZfrHMakumrT168Caks9QizXcOn/hPO8FSD234npu+ayicSJmbQDD31nVnJL8hG2MvP/++9i1axd2796N+vp6VFVVYdu2bejpmbxi5vXr1/Hzn/8c9/q3UVOB0qWKzHXfTQeGemOraDkW++0R9N10gmEZlCyL7EufYRmtFkwsXDXG+fMhFBeDeL1wHKkb95k7hi4a4vPB4XcNWae5oFQw8sszYLL6s72u2u/4PFZaI6JH0lxDyRYvosJlZMCyRsn2Uo0DFVXobMviPAic/pvCMy3VfCJ8yXyI3HwwjAxf3UdxOy+RZQi9ylwzfs0TSuoR9h35yiuv4JlnnsHOnTtRWVmJN954AxaLBXv37g16jCRJePLJJ/GrX/0K5eXlUQ04npisAgrmKWJa8dwdUXdFCuZnwJQWebbCaIpv/6Sl5yOBYRgtkHVsKiURZS1oNhYpva76ekh2u/LQuesu3ftPBViOReky5f82kDCfpjWi885Ix6V+SKKM9BwTsgvSdO1bT2yaMN+YdUmIJgEfi5Re742b8Fy+DLAsrBs36N5/qiDN9RtizZ/H7Zy+8yfA4TZkYoRh7Tfjdl6KvoRljHi9Xpw+fRpbxwQNsiyLrVu34phf/jgQ//Iv/4Lc3Fw8/fTTIZ3H4/FgaGho3CtRqNkL8YwbGd0Kj+7Xp7EiE4yRgzzshfdGaAXEwkFLpaw9BCKKAAB3yyCIVwaXboAw16r7OdVYAOumTTN6O1ZTCW7ovSPbS9Uaae93watjvNC1MbVoktk9pup7jNSfga9fMYybexxo63PBwLO4b4H+uzqqQW5ZtQp8VuLl8RMFt1rR9xCcJyA79f/OCYT0tb8wnnUtGIv+3zmU+BCWMdLb2wtJkpCXN/6XRV5eHrq6ugIec+TIEbz11lt48803Qz7Pnj17kJGRob2KiorCGaauqL7xzquDGHHEJlVyLCMOLzqvDo47d6QwPAuTv26I+5L+Kb7mlSvBZWVBttvhOl3vP49fdbVyVoyyFWZmSu9EiiqzwQsshvvd6Ls53h2TazPCauQhyQTt/frsjsiSrAmtJYvqajCEggIYKxcDsgzHwVoAwH7/rsj6ilmwGvU3Yum6VOCXrIYPeWAZD8S6z+JyTu7mfuUf8x+Ky/kosSGm2TTDw8P4wQ9+gDfffBM5OaF/gb344ouw2+3aq6OjI4ajnJz0HDNmFVpBCNB2Xv/Yi4lcP9cHQoCcIivSZ0Uf/DnqqtHfzcRwHKx+1cvhmhoQmcQ0pddz5QrEGzfAGI2wrl+ve/+phGDgUOSPCbo2IauGYRgto+aqTrLwnVft8Dh9MKUJyC9P/jpAaoE6NY5DK4y3RP/CeNLgIFxffz3uvDMVhmUh5foNskv/G/Pz+VqbIMjXQAgL/h6quprKhGWM5OTkgOM4dHd3j3u/u7sb+fl33uQtLS24fv06HnnkEfA8D57n8fvf/x6ffvopeJ5HS0tLwPMYjUakp6ePeyUSNXshHq4aLYtGJw0H08JsgGXg6xmBeDtw6floULfEHTU18LQPQXaIYIwcjDF4YKkPlrR168Ba9K8pkmqMZntNFjeiTxCr6josXT4LbAyCP/VGNQqcR4+is3sAZ2/YwTDAlsW5up/LcegQIEkwLlgAQwJ3cZMFpupRAAA/eFhz38YK37EPAQCisQpcjv6xQJT4Eda3isFgwKpVq1AzJodflmXU1NRg7dq1d7RftGgRzp8/j4aGBu316KOPYtOmTWhoaEio+yUcNNXLS/0QvVLMziN6JXT43SmhFsabCtbMw1ihGAaxcNWkrVsHxmSCeOsWnEeaASjy7wyv/wNL1TSZaYJSwShdlgOGAXo7HBjqG5/tpWdGDSFkXLxIKmBcuBDC3Lkgbje+/h8lmHJlUSZybfqn3A7TdTkOYc39kGEFhyGIXwcWRdQL9royt7Jf44SSuoT9xNi1axfefPNNvPPOO2hsbMSzzz4Lp9OJnTt3AgCeeuopvPjiiwAAk8mEpUuXjntlZmbCZrNh6dKlMBj0lwmPBTlFVlizjfCJMm4EUL3Ui45L/fCJMmzZJuQU6heIFcvCeazZjLR7FJeJ+/LAuPPpiXjrFtyXLinZCptmRmG8qTDbDJgzLxPAndleembU9N10YLjPDV5gNddQssMwjGYcuA4q8RyxcNHIbjccRxTlz5maaj4RRhAgZtwHAJAbPo7ZeaTebgiecwAA3q9xQkldwjZGduzYgZdffhkvvfQSVqxYgYaGBnz++edaUGt7ezs6Ozt1H2giYRhmNHshhim+o7VocnQN/jT5jQNv+xCkYf2DcG2bt4C15oP4TADHaEGzejL8pfILy7xyJfjs1HggxoNgwnzlmvCZI+raSmrfRZXZECJQA04UVn+Kb+mVerCyFJOUXuexYyAjI+DnzIGpslL3/lOWSkXvg+/5EkTWXwEaAHxHPgTDyBC5CvClM0uJeToS0V76888/j7a2Nng8Hpw4cQLV1dXaZ7W1tdi3b1/QY/ft24ePP/44ktMmlHGqlzprdgCALBNcV40RnQWl+AwjhEIrQAB3DHZ2rJs2gi9YAQAwzDWBNcUiW8Ff84P++hyHaozcah6E2znqny+ZZQHLAMNuH247PFGdQ42VSlbV1WBYVt0FyWpDuteF++UubbdITzShs80zUw04GML6R0CIATzphK+xPjYnaf4/AIBUcH9s+qfEleSPREsS5szPhNHCY2RYRNe1O1Uvo6WrxQ63Q4TRwmtCa3piXhw7Vw2flQVDheKqId4buvcv2e1wnVKzFWZ26uREMmZbkF2QBiITtF0YnVuTwKEoWwnybYkio2a4343eDgcYRolRSSUYnkdzxQoAwLeGr+reP5EkLXWYrsvxsNZ0iBZFCVc6qb8aK3E5IDiOAwC4u2kWzXSAGiMhwnEsSlTVyxhk1agBgqXLcmKSraAVzrs6ANmjbxCuNOQFY1SyFNxn/6pr3wDgOHwY8PlgnD8PhpIS3ftPdcq1wnnj16UeGTVqpk5+RQbMttSI8VLx+mT8r3U+AKC86XTU7qqJjJw9C6mvD6zNBsvq1br2PR0g8xTdD+6G/t8J3qN/Act44EMu+GVrdO+fEn+oMRIG5aoa69k7VS+jgRAS8wJkfJ4FXLYJ8BF4mgd07XuksQ8AA6m/Fa6ThyENDuravyYotZm6aAKhrpm2S/3wiaOGpppRE03BPHVdJmstmsk4fq0PdVkV8HIC2K5b8Fxp1rV/1UVj3bABjBB52YbpCr/+cRDCQJCuwNdxTd/OLygaJtLszWBY+hibDtBZDIOiymxwPIuh2yPo79Sv7kf/LSeGbo+A42OXrcAwzGhWzUV9XTWq6irx3QAkSdFd0AnZ44Hz8GEANHUyGLOLbUjLNMLnkXDj8qihWR7lzojbKeLmlUEAqRcvAgB/vdQFD29E9/zlAEbjjvSAEILhA/44JrouA8LlF0I0LAUASEc/0K1f4vOBH1S+Y1RNE0rqQ42RMDCYeBQuVjJFWhv0y6pRt8KLFmfBEIPgTxXVVTNyuR8kQOn5SJA9Prj98vXmJcoDS9Vd0APX8eOQXS7weXkwLVmiW7/TCYZhtADrsa6aaN00bRf6QGSC7II0ZMxOLZE5WSY4cEmpJJ5+v2IsOHRcl96WFoht7WAEAWn3pE4l8ngjl2wDADDX9CucJ54+CA52yLBCWDMzKyRPR6gxEiaqMmog1ctI0asw3lQYStLBpvEgIz54rutTfNDdNABIBHyOGbYH1gEAHHV1kN1uXfofddFsotuxk6Clnp8bzfZS3TQ3B0fgFsOPE1LXeCq6aM7ftKNryI00A4fl330YYBi4L12CqJPsgLouLWu/Ac6avBWMEw33DUX/Q3CfgTygz46sXP8JAEBMvxeMwahLn5TEQ7/dw6R0eQ7AAD1tw3AMRJcyCQCOATd62oYBxt93DGFYBqZF/kBWnVw1o4XxsmFeugR8fj6IywXnJFWcQ4XIMob9glW2LfQX0GQULMiEwaxke3W3KoZmdpoBmRYBhACtveG5FX2ihLaLfjXgFHTRqIXxNi7MhSUvF+a77gIwakREi5bSS9flpAjzlkBkS8AwEsQj0WfVEFkG3+Pf4fJrmVCmB9QYCZO0DCPyy5RaOdfPRb87ou6K5JdlwJIe+2yFsWqs0QbhEknGyBjVVYZhYNvsr1XzZfRf+u5z5yDd7gVrtSJtDc1WmAyOZ1Gy1J/t5d/RYBgG5TmRycLfuDwAn0dCWqYRs4tt+g42Dvz1klIYTxU6G12X0btqxO4euM8pyp/WTRuj7m+6I+X7Dbamv0Tdl6+pATy5BUIECOsfibo/SvJAjZEIKBuTVRMtWmG8OJVlN87PBCOwkAY9EKMMwvW02kHcPrBpAgzFioGmBvMNf3kQRIouhVjLVrjvPjApUjogkQRSY9XiRsLUGhmb3ZVqYl7Xe5240u0AzzLYtFBJOVd1QJwnT0Eais5F6fDv1pmrqiDk6l94b7rB3f0YAEAYPgriHpm88RRIJ5TdFdGyGqwt+atHU0KHGiMRoH7p32wagGfEF3E/HpeIm02DAEbThmMNa+BgnK8E4bqjFEBTs3JMi7PBsMoDy7J6NVibDVJfH0bOnouqfy1ehApKhUTJkllgOQaD3S4MdCnGR0Vu+EGsRCZaaYJ4rUs9UV001eXZyLAoKbeG0lIY5lUAPh8chw5H1f/ouqRZNKHAV62HhGywzAjEY9EFsqqaJXIFLYw33aDGSARk5achK98CWSJovxD5A73tYh9kmSAr34LMvPhlK+iR4ksI0aoAq1k6gFIky7phA4DoUik911rhvXYNEARY77sv4n5mEgYzj8JFiqGpSrhHklHTfX0II0NeGMw8ChZk6j7OWKO6aB6oHF8YT43vGK6J3FUjORxwHleUP2lKb2gwHAffLKW4JbnwacT9SDevQ/BdVrRL7qGF8aYb1BiJkFFXTeRxI/HKopmIaXE2wABipxO+gciyXsRbTkh2DxiBhclfOVZF3RJ3HKiJOC5F9e2nrVkDzpZ6MQuJYmJBx7HCZ6HWVFJdhyVLZ4HjU+srotfhwek2JY5p64TCeJqr5vBhyN7ICkY6v/oKEEUYSkthLC+PbrAzCGapEt/B99VG7L4V6xStEp9QCS6/SLexUZKD1PqmSSI01csLfZDE8DU7JFHWaonEK15EhUsTYChVYjwirVWjHmdakAVGGF/JNe3ee8EIArxtbcruRgSoWiX012d4qKnn3a1DcNo9KMq2gGcZjIgSuoZCMzyvNcRWDTiWfNnYA5kAS+emY26medxnpqVLwefmQna54PLvboQLXZeRIax9EDIxg0M/xDNHIuqDvfYFAEAu3qbn0ChJAjVGIiSvNB2WdANEt4SbV8KXV79xZQCiW4Ilw4C8kvQYjHByzJXKgybSFF/1OFPlrDs+46xWWNZ+A0BkAmi+27cxcvYsAMC6mcaLhENaphF5/myv1rO9EDgWJbP8BfNCcNUMdDkx2O0CyzEoWXLn3CY7f/XHi0x00QAAw7Ja/FEk65J4vZq6MI0XCQ/GZIaYrhTTlOs/Dvt4ebAfwshpAAC7lrpopiPUGIkQhmVQGiB7IVQ0F83yHC34M56Y/bLznut2yC5xitbj8fW7IXY5ARYwLQosX2/brGbVhP+lP3zwIEAITMuWQcjLm/oAyjgmZtWMZtRMbYyoxxQuyoLBHDs14Fjg8vrwVbPiYrq/MvC60dblwS9B5PB2NJ2nTkF2OMDl5MBcVRXdYGciC78JAOC7wo8lE+s+BcP44GOLIcxfpvfIKEkANUaioFzzz98GCdEfD/izFbSU3sRkK/CzzBDyLYCsyMOHg+qiMZZmgEsLXCDMulkJWHOfPQexuyes/kcFpeivz0hQ40ZuNPXD6/ZpGTXXQhA+UwNf4x3HpAdfNffC45NRlG3GovzAcUZp1WvAWq2QbvdqWiGh4lDX5SaqBhwJwj2PgxAevNwOsfl8eAdf/jMAwJdPReamK/SOioLChVkQjBycdi962odDPq6nbRguuxeCiUPhgqwYjnByVBdLuCm+I5O4aFSE3FyYqpQCZY6DB0PuW3I44Trmz1agKb0RkZVvQUauGbKPoP1if8jCZ067B93+MgFlMVYDjgV/vai4aO5fnB9UG4UxGGC9T6klE44aKyGEpppHCZuZDdG0EgAgHQ9djZV43BCG6pQ+7toek7FREg81RqKAE1gU+/3qYwuUTYWagVOyZBY4IXFToKb4uq8MgIQYhCs5RXiv28cdH4xIUimdR46AeL0QSophmDcv5OMooyiF8/zZXg23R7VGphA+u36uFyBAXlk60jJTq+aHT5JRc9kfL7JkcteeGu8Rzrp0X7gIX3c3GIsFaWvXRj7QGY5cruiDsO1fhHyMePwLsIwLErIhrKRFCacr1BiJEs0/fy70uJGx6paJRJhrBZdhAPHKcLcMhnSM+3I/QABhThr4bNOkbdWdDdfx45AcoelcqDEmts1bUk75M5kYm+1VlqUEsHYNueHwBBfpS5Z1GQlftw1g0CUi0yLg7pLJdxut990HCAK8167Bc601pP7VdWm95x6wxtQy1JIJfv13AACC9yKkrhshHSOfU7RJfNkbwHDcFK0pqQo1RqKkZOkssCyD/ltKFsJUDHa7MNDpBMsyWi2RRMEwzKirJsSsGi2ld4pdEQAwlJfDUFoKIoqKPsMUEFGEo1bJVqCpk9GRV54Bs02Ad8QHxw0ncqzKA/RaEFeN1+1Dx2W1MF7qxYuoLpoti/LAc5N/rXE2G9LWrAEQeq0aB03p1QW+sAwivxAMQ+Crm9pVQyQJQl+t8seyR2M7OEpCicgYee2111BaWgqTyYTq6mqcPHkyaNsPP/wQd999NzIzM5GWloYVK1bg3XffjXjAyYYpTdBUKkPJqlFdNAULMmG0BA7+jCeaGmtj35RBuESU4LkyWhhvKhiGCSuV0vX115CHhsBlZ8O8YsWU7SnBYVlGqwLd2nAb5WPEzwLRfrEfso8gI9eMrPz4qQHrASEE+xvHF8abinDWpbe9HZ7mZoDjqBqwDkhz7wcAMFenLpznO3sUHHohEzMMax+K9dAoCSRsY+T999/Hrl27sHv3btTX16Oqqgrbtm1DT0/gjIns7Gz88z//M44dO4Zz585h586d2LlzJ774InSfYbKjqV6GUMX3ut9gKU9QFs1EjGUZYEwcZIcIb8fkQbju5kEQUQaXaYRQkBZS/2rciOPwYZApVC+1AMFNG+l2rA5o2V7nelExRRCrmt1VXjU75dxjl7uG0dE/AiPP4r4FobmY1Cq+I2fPwnd78vtWXZeW1avBZWZGNVYKwFUrOiGC6xTkYfukbaXTnwAARNs6MCbzpG0pqU3Yxsgrr7yCZ555Bjt37kRlZSXeeOMNWCwW7N27N2D7jRs34vHHH8fixYtRUVGBn/zkJ1i+fDmOHAmuwufxeDA0NDTulcyoPvbOFjtcQ8EfuK4hLzqvKTdfaZJkKzA8q2mFTFWrRnXRmCtnhfzAMlctB5eTA3l4GM5Tp4K2U7IV1JRemr6nB4WLssAbOTgGPCjjlF24QMaIJI1RA07BeBG1MN6982fDYghNG0XIz4dp2TKAEEXXZhLUGks01Vwf+EUr4WMKwDAixLr/nbQt17lf+Ydfo4QyfQnLGPF6vTh9+jS2bh19WLAsi61bt+LYsWNTHk8IQU1NDZqamnDfJNude/bsQUZGhvYqKkruOgS2bBNmF9sAAlw/H9xVc/28kq0wu9gG2xTBn/HEPCbFN1gtGSITuBuVmIJQ4kVUGI6DbdNGAIBjklRKT2MjfJ2dYMxmpK2j2Qp6wBs4FPvF7TIGlMDVQBk1t5oH4XH5YLYJyCtPvbLso4XxwhPI02ooTbIuff39GKk/o7T3a+dQooNhWfhy/enRjX8O2s539RIE+ToI4SDc83icRkdJFGEZI729vZAkCXkTVDHz8vLQ1dUV9Di73Q6r1QqDwYCHH34Yr776Ku6///6g7V988UXY7Xbt1dHREc4wE8JE1ctAqOm/5XGuRTMVpgVZAMfA1zsC3+2RgG287UOQnSIYMw9jWXjy9Voq5ZdfBjV2VN+99Z71YE3JY6ilOuX+delpU4yQ1j4npAmxQa0No2rAbALUgKPh1uAILtwcAssAWxbnhnWsutPhPHYMsjNwLI3jYC0gyzBWLoYwd260w6X4YVcqeiGC/SsQrydgG9/xDwEAomkl2KzUK01ACY+4ZNPYbDY0NDTg1KlT+Pd//3fs2rULtbW1QdsbjUakp6ePeyU7atxIR2M/RM+dVSm9bh86GgfGtU0WWBMPY0UmgOCF8zQXzaJsMFNkK0wkbe1aMBYLfF1dcF+8FLDN8Jf+eJHNdCtcT0qWKeUGhrtcyGFYeH0ybg6MGpyEjFEDTrJ1GQqqi2ZVSRZmWcNLuTXMmwehuFipOXOkLmAbdV3a6LrUFeHuzZCQARYOiKcCBxGzbUpcISl7MJ5DoySIsJ4qOTk54DgO3d3d497v7u5Gfv6dham0k7As5s2bhxUrVuBnP/sZvvvd72LPnj2RjThJmTU3Dek5JkiijI5Ld8qrdzT2Q/LJSM8xITvE4M94Yl4SPMWXEBKS6mowWKMR1nvuATDqfx+L98YNeC5fBlgW1o0bwu6fEhxTmoCC+YrrZY2gBACOjRvp7XDAMeABb+RQuChxasCRMuqiCf79EwyGYbTdkUDrUh4ZgbNOMVJoSq++MDwPX6biqicNn97xudR9E4L3AgCA82uTUKY3YRkjBoMBq1atQs0Y5UJZllFTU4O1YagSyrIMjyfw1lyqwjAMypaP1qqZyKigVHJmK5gXK7EF3o5hSBOCcH09Lkh9boBnFJdOBEzmn3f4f31aVq0Cn5V6D8RkR12XpR5l3Y01RtRU8+LKbPCG1MpgsrtEnLimGP6hpvRORFuXhw6DiOMLRjqPHgVxuyEUFMC4cGF0g6XcSeW3AADc7TuLFvrqPgLDyBC5BeCLyhMxOkqcCdtNs2vXLrz55pt455130NjYiGeffRZOpxM7d+4EADz11FN48cUXtfZ79uzB/v37ce3aNTQ2NuI///M/8e677+Jv//Zv9buKJKHMHwvSer4XsjR6c8mSrEhtI/niRVS4dCMMRUpxsZHG8bsjmtDZvCywxsgeWNYNGwCOg+fKFXjb28d9NkwFpWKKGs9ksUswy+ONETVepDwFs2gONvXAJxMsyLOiNCey3UbzypXgsrIg2+1wnT497jMtjmkrVQOOBcL6hyETI3h0w3dhglbV1f8DAEiFwWMLKdOLsI2RHTt24OWXX8ZLL72EFStWoKGhAZ9//rkW1Nre3o7Ozk6tvdPpxD/+4z9iyZIlWL9+PT744AO89957+PGPf6zfVSQJcyoyYEoT4HH60Hl1NH/+1lU7PC4fTFYB+UmcrWDyu2ompviOumiyI+6by8yEZfVqAOMLlPkGBuD6+msAo4GuFH1JzzEjp8gKBkC5yKHFL3w21DuCvpsOMCyDkmWpZ4yo8SKRuGhUGI7TKkyPFUAjPp9W4JGmmscGNs0GMa0aACCdGlVjlR1DMDgV44Rb8+2EjI0SfyIKYH3++efR1tYGj8eDEydOoLq6WvustrYW+/bt0/7+t3/7NzQ3N2NkZAT9/f04evQoduzYEfXAkxGWY1G6zF84b0xWjeq2KV02C2yYwZ/xRE3x9bQMQnYrqaCS3QPxhgNgAPPi6CLaVaEpxxg3n+PQISVbYeFCGAoLo+qfEhy1Cu98H6dJwqtrtGC+YkSnEh6fhNomRWgxUheNihY38mWNlu01cuYMpMFBcBkZsKy6K7rBUoIzX9EP4W6NxuyIR/8MhvHCx+SDX0z/72cKyftkTFHK/Mqq187eBiFEyVZoGI0XSWb42WbwOWZAInD7Zd9Vl42hOB2czRBV/1rhvPp6+AaU/h2a0BndFYkl6rosFVkMDnsx6PLiWkPqZtEcbemD0yshP92EZXOj221MW7cOjNkM361OeBobAYxx0WzcCIYPTUiNEj78PY+DEBaCdBW+61eUNy8q2iO+3C1gWPqIminQmdaZosXZ4AQWw31u9N10ou+mA8P9bvACi6Io3BzxYGzhPDVOZMSfGWTWYezC3LkwLl4MyDIcB2shu91aSqVaK4QSG3IKrbBlmyCAQYmPxeU2OzqvDgJITdVVtTDe1srcqLVRWJMJaevXAVBciISQ0VRzui5jCjc7H6JxGQDAd+xDEFEEb1eKarJVtDDeTIIaIzojGDkU+TNTWs/exjX/rkhRZTaEFMhW0FJ8L/dDcorwtAwCiCylNxCjqZQ1cB49BjIyAn7OHJgqK3XpnxIYhmE0o2O+yOHKmR4QAuQUWZE+K7VqfsgywYHG6ONFxqLGhQzX1MBzpRliRweYMSnplNghlyg6ImzrFxBP1YDDECSkQ1hNd0tnEtQYiQFj1VhHBaVS49enocgG1iqAuCUMfX4dkAj42WYIs/Wp5Kq6apx1dRj67DPlvc2babZCHFDXYIXIof+KEmBdliQ1ksKh4cYgbg97YDPy+Ea5PkaydeMGgGXhuXwZ/e/+HoAi1sdaUquCcSrCr/UXzvM0gJxQ/u99GfeCEVIrjokSHdQYiQFly3PAMMDt9mH0djjAMEBpimQrMCyjBao6TymCUupuiR4YFy2CUFAA4naPGiM0pTcuzJmfCRhYWAgDocsNYDSWJJVQXTQbF+XCwOvzFcZnZcGyahUAwP4/HwCg6zJe8OWLILLlYBgZRrvynYAl30rsoChxhxojMcBsMyC/YjSoLr8iA+Yogz/jycQUXr1cNIDiLhibwsump8Ny99269U8JDsexyKoYLa1gyzYhp9CawBFFxn6/6mq0WTQTGRcfwjCwbtyoa/+U4EgFo98JhBggrKPGyEyDhonHiLKq2ZrWSHmK/fo0zcsEY2BBvDJYmwBDoU3X/m1btmDg3XcBKGJodDs2fixYlYsTjYMAAE+eEX84mfxFKMfi8Ihoue2EwDHYuFDf+8q2ZQt6fv0bAIoYGp+TGruZ0wHu7seBG28CALxpa2C0Jn89Moq+UGMkRpRV5eDoB1e1f6cSjMDBtCALIxf6YF48C4zOlVwtd68Cl5EByW7XYkgo8WH5qjzUvdcEHgzebe9Be2fwatvJzDfKZyHdpK8RaygqgnHhQniamui6jDP88rWQPs4Bh15g3kOJHg4lAVBjJEZk5lqw4YkFAMMgQ6fgz3iS8VAZWKsB6ZuLde+b4XnM+c2vMXL2LGxbqbplPDGYBeRuLcDFK/1YNNeGRSkYOGzgWTy7sSImfef/cjeGP/8CWU88EZP+KYFhWBbSlv8H8dIBGB+efurclKlhiCo5mMQMDQ0hIyMDdrsd6el0+45CoVAolFQg1Oc3DWClUCgUCoWSUKgxQqFQKBQKJaFQY4RCoVAoFEpCocYIhUKhUCiUhJIS2TRqjO3Q0FCCR0KhUCgUCiVU1Of2VLkyKWGMDA8PAwCKiooSPBIKhUKhUCjhMjw8jIyMjKCfp0RqryzLuHXrFmw2m64F1YaGhlBUVISOjo4ZkTI8k66XXuv0ZSZdL73W6ctMuV5CCIaHh1FQUACWDR4ZkhI7IyzLorCwMGb9p6enT+vFMJGZdL30WqcvM+l66bVOX2bC9U62I6JCA1gpFAqFQqEkFGqMUCgUCoVCSSgz2hgxGo3YvXs3jEZjoocSF2bS9dJrnb7MpOul1zp9mWnXOxUpEcBKoVAoFApl+jKjd0YoFAqFQqEkHmqMUCgUCoVCSSjUGKFQKBQKhZJQqDFCoVAoFAoloVBjhEKhUCgUSkKZ9sbIa6+9htLSUphMJlRXV+PkyZOTtv/v//5vLFq0CCaTCcuWLcNf/vKXOI00Ovbs2YPVq1fDZrMhNzcXjz32GJqamiY9Zt++fWAYZtzLZDLFacSR88tf/vKOcS9atGjSY1J1XktLS++4VoZh8NxzzwVsn2pzevjwYTzyyCMoKCgAwzD4+OOPx31OCMFLL72EOXPmwGw2Y+vWrWhubp6y33Dv+3gw2bWKoogXXngBy5YtQ1paGgoKCvDUU0/h1q1bk/YZyb0QD6aa1x/96Ed3jPvBBx+cst9knFdg6usNdA8zDIPf/va3QftM1rmNFdPaGHn//fexa9cu7N69G/X19aiqqsK2bdvQ09MTsP3Ro0fxxBNP4Omnn8aZM2fw2GOP4bHHHsOFCxfiPPLwOXToEJ577jkcP34c+/fvhyiKeOCBB+B0Oic9Lj09HZ2dndqrra0tTiOOjiVLlowb95EjR4K2TeV5PXXq1Ljr3L9/PwDgb/7mb4Iek0pz6nQ6UVVVhddeey3g5//xH/+B//qv/8Ibb7yBEydOIC0tDdu2bYPb7Q7aZ7j3fbyY7FpdLhfq6+vxi1/8AvX19fjwww/R1NSERx99dMp+w7kX4sVU8woADz744Lhx/+EPf5i0z2SdV2Dq6x17nZ2dndi7dy8YhsF3vvOdSftNxrmNGWQas2bNGvLcc89pf0uSRAoKCsiePXsCtv/e975HHn744XHvVVdXk3/4h3+I6ThjQU9PDwFADh06FLTN22+/TTIyMuI3KJ3YvXs3qaqqCrn9dJrXn/zkJ6SiooLIshzw81SdU0IIAUA++ugj7W9Zlkl+fj757W9/q703ODhIjEYj+cMf/hC0n3Dv+0Qw8VoDcfLkSQKAtLW1BW0T7r2QCAJd6w9/+EOyffv2sPpJhXklJLS53b59O9m8efOkbVJhbvVk2u6MeL1enD59Glu3btXeY1kWW7duxbFjxwIec+zYsXHtAWDbtm1B2yczdrsdAJCdnT1pO4fDgZKSEhQVFWH79u24ePFiPIYXNc3NzSgoKEB5eTmefPJJtLe3B207XebV6/Xivffew9/93d9NWr06Ved0Iq2trejq6ho3dxkZGaiurg46d5Hc98mK3W4HwzDIzMyctF0490IyUVtbi9zcXCxcuBDPPvss+vr6gradTvPa3d2Nzz77DE8//fSUbVN1biNh2hojvb29kCQJeXl5497Py8tDV1dXwGO6urrCap+syLKMn/70p1i/fj2WLl0atN3ChQuxd+9efPLJJ3jvvfcgyzLWrVuHGzduxHG04VNdXY19+/bh888/x+uvv47W1lbce++9GB4eDth+uszrxx9/jMHBQfzoRz8K2iZV5zQQ6vyEM3eR3PfJiNvtxgsvvIAnnnhi0oqu4d4LycKDDz6I3//+96ipqcFvfvMbHDp0CA899BAkSQrYfrrMKwC88847sNls+Pa3vz1pu1Sd20jhEz0Aiv4899xzuHDhwpT+xbVr12Lt2rXa3+vWrcPixYvxu9/9Dv/6r/8a62FGzEMPPaT9e/ny5aiurkZJSQn+9Kc/hfRrI1V566238NBDD6GgoCBom1SdU8oooijie9/7HggheP311ydtm6r3wve//33t38uWLcPy5ctRUVGB2tpabNmyJYEjiz179+7Fk08+OWVgearObaRM252RnJwccByH7u7uce93d3cjPz8/4DH5+flhtU9Gnn/+efz5z3/GwYMHUVhYGNaxgiBg5cqVuHr1aoxGFxsyMzOxYMGCoOOeDvPa1taGAwcO4Mc//nFYx6XqnALQ5iecuYvkvk8mVEOkra0N+/fvn3RXJBBT3QvJSnl5OXJycoKOO9XnVeWrr75CU1NT2PcxkLpzGyrT1hgxGAxYtWoVampqtPdkWUZNTc24X45jWbt27bj2ALB///6g7ZMJQgief/55fPTRR/jyyy9RVlYWdh+SJOH8+fOYM2dODEYYOxwOB1paWoKOO5XnVeXtt99Gbm4uHn744bCOS9U5BYCysjLk5+ePm7uhoSGcOHEi6NxFct8nC6oh0tzcjAMHDmDWrFlh9zHVvZCs3LhxA319fUHHncrzOpa33noLq1atQlVVVdjHpurchkyiI2hjyR//+EdiNBrJvn37yKVLl8jf//3fk8zMTNLV1UUIIeQHP/gB+ad/+ietfV1dHeF5nrz88suksbGR7N69mwiCQM6fP5+oSwiZZ599lmRkZJDa2lrS2dmpvVwul9Zm4vX+6le/Il988QVpaWkhp0+fJt///veJyWQiFy9eTMQlhMzPfvYzUltbS1pbW0ldXR3ZunUrycnJIT09PYSQ6TWvhChZA8XFxeSFF16447NUn9Ph4WFy5swZcubMGQKAvPLKK+TMmTNaBsmvf/1rkpmZST755BNy7tw5sn37dlJWVkZGRka0PjZv3kxeffVV7e+p7vtEMdm1er1e8uijj5LCwkLS0NAw7h72eDxaHxOvdap7IVFMdq3Dw8Pk5z//OTl27BhpbW0lBw4cIHfddReZP38+cbvdWh+pMq+ETL2OCSHEbrcTi8VCXn/99YB9pMrcxoppbYwQQsirr75KiouLicFgIGvWrCHHjx/XPtuwYQP54Q9/OK79n/70J7JgwQJiMBjIkiVLyGeffRbnEUcGgICvt99+W2sz8Xp/+tOfav83eXl55Jvf/Capr6+P/+DDZMeOHWTOnDnEYDCQuXPnkh07dpCrV69qn0+neSWEkC+++IIAIE1NTXd8lupzevDgwYDrVr0mWZbJL37xC5KXl0eMRiPZsmXLHf8PJSUlZPfu3ePem+y+TxSTXWtra2vQe/jgwYNaHxOvdap7IVFMdq0ul4s88MADZPbs2UQQBFJSUkKeeeaZO4yKVJlXQqZex4QQ8rvf/Y6YzWYyODgYsI9UmdtYwRBCSEy3XigUCoVCoVAmYdrGjFAoFAqFQkkNqDFCoVAoFAoloVBjhEKhUCgUSkKhxgiFQqFQKJSEQo0RCoVCoVAoCYUaIxQKhUKhUBIKNUYoFAqFQqEkFGqMUCgUCoVCSSjUGKFQKBQKhZJQqDFCoVAoFAoloVBjhEKhUCgUSkL5/60my0bI6cnxAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"all_loss, all_acc = pso_xor.all_history()\n",
|
|
"# print(np.shape(all_))\n",
|
|
"# print(all_[0][0][1])\n",
|
|
"# loss_ = [[]*len(all_[0])]*len(all_)\n",
|
|
"# acc_ = [[]*len(all_[0])]*len(all_)\n",
|
|
"# for al_index in range(len(all_)):\n",
|
|
" # for i in all_[al_index]:\n",
|
|
" # loss_[al_index].append((i[0]))\n",
|
|
" # acc_[al_index] = (i[1])\n",
|
|
" # acc_.append(i[1])\n",
|
|
" # print(particle)\n",
|
|
" # loss_.append(particle[0])\n",
|
|
"\n",
|
|
"# print(np.shape(all_loss))\n",
|
|
"plt.subplot(2,1,1)\n",
|
|
"for layer in all_loss:\n",
|
|
" plt.plot(layer)\n",
|
|
"plt.title('loss history')\n",
|
|
"\n",
|
|
"plt.subplot(2,1,2)\n",
|
|
"for layer in all_acc:\n",
|
|
" plt.plot(layer)\n",
|
|
"plt.title('acc history')\n",
|
|
"# plt.plot(all_loss)\n",
|
|
"\n",
|
|
"# plt.plot(all_acc)\n",
|
|
"\n",
|
|
" # plt.plot(all_[i])\n",
|
|
" # for layer in all_[i]:\n",
|
|
" # print(layer[0])\n",
|
|
" # plt.plot(layer[1])\n",
|
|
" # for j in range(len(all_[i])):\n",
|
|
" \n",
|
|
" # print(all_[i][j][0])\n",
|
|
" # plt.plot(all_[i][j][1])\n",
|
|
" # plt.plot(all_[i])\n",
|
|
" # print(f\"epoch {i} > {all_[i]}\")\n",
|
|
"# print(np.shape(all_))\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"1/1 [==============================] - 0s 12ms/step\n",
|
|
"[[0.51426786]\n",
|
|
" [0.49928975]\n",
|
|
" [0.49840933]\n",
|
|
" [0.48371843]]\n",
|
|
"[[0]\n",
|
|
" [1]\n",
|
|
" [1]\n",
|
|
" [0]]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"x_test = np.array([[0, 1], [0, 0], [1, 1], [1, 0]])\n",
|
|
"y_pred = model.predict(x_test)\n",
|
|
"print(y_pred)\n",
|
|
"print(y_test)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"predicted_result = model.predict(x_test)\n",
|
|
"predicted_labels = np.argmax(predicted_result, axis=1)\n",
|
|
"not_correct = []\n",
|
|
"for i in range(len(y_test)):\n",
|
|
" if predicted_labels[i] != y_test[i]:\n",
|
|
" not_correct.append(i)\n",
|
|
" # print(f\"추론 > {predicted_labels[i]} | 정답 > {y_test[i]}\")\n",
|
|
" \n",
|
|
"print(f\"틀린 것 갯수 > {len(not_correct)}\")\n",
|
|
"for i in range(3):\n",
|
|
" plt.imshow(x_test[not_correct[i]].reshape(28,28), cmap='Greys')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"all__ = pso_xor.all_cost()\n",
|
|
"\n",
|
|
"def plot_history(history):\n",
|
|
" fig, loss_ax = plt.subplots()\n",
|
|
" acc_ax = loss_ax.twinx()\n",
|
|
"\n",
|
|
" loss_ax.plot(hist.history['loss'], 'y', label='train loss')\n",
|
|
" loss_ax.plot(hist.history['val_loss'], 'r', label='val loss')\n",
|
|
" loss_ax.set_xlabel('epoch')\n",
|
|
" loss_ax.set_ylabel('loss')\n",
|
|
" loss_ax.legend(loc='upper left')\n",
|
|
"\n",
|
|
" acc_ax.plot(hist.history['accuracy'], 'b', label='train acc')\n",
|
|
" acc_ax.plot(hist.history['val_accuracy'], 'g', label='val acc')\n",
|
|
" acc_ax.set_ylabel('accuracy')\n",
|
|
" acc_ax.legend(loc='upper right')\n",
|
|
"\n",
|
|
" plt.show()\n",
|
|
"hist = test()\n",
|
|
"plot_history(hist)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "pso",
|
|
"language": "python",
|
|
"name": "pso"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.16"
|
|
},
|
|
"widgets": {
|
|
"application/vnd.jupyter.widget-state+json": {
|
|
"state": {},
|
|
"version_major": 2,
|
|
"version_minor": 0
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|