Files
PSO/mnist.py
jung-geun 99b1de3f82 23-07-21
pypi 0.1.4 업데이트
keras 의 메모리 누수를 어느정도 해결했으나 아직 완벽히 해결이 되지 않음
입력 데이터를 tensor 형태로 변환해주어 넣는 방식으로 전환
2023-07-21 15:20:24 +09:00

135 lines
3.0 KiB
Python

# %%
import json
import os
import sys
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import gc
import numpy as np
import tensorflow as tf
from keras.datasets import mnist
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.models import Sequential
from tensorflow import keras
from pso import Optimizer
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
y_train, y_test = tf.one_hot(y_train, 10), tf.one_hot(y_test, 10)
x_train, x_test = tf.convert_to_tensor(x_train), tf.convert_to_tensor(x_test)
y_train, y_test = tf.convert_to_tensor(y_train), tf.convert_to_tensor(y_test)
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def get_data_test():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_test = x_test / 255.0
x_test = x_test.reshape((10000, 28, 28, 1))
y_test = tf.one_hot(y_test, 10)
x_test = tf.convert_to_tensor(x_test)
y_test = tf.convert_to_tensor(y_test)
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_test, y_test
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
return model
def random_state():
with open(
"result/mnist/20230720-192726/mean_squared_error_[0.4970000088214874, 0.10073449462652206].json",
"r",
) as f:
json_ = json.load(f)
rs = (
json_["random_state_0"],
np.array(json_["random_state_1"]),
json_["random_state_2"],
json_["random_state_3"],
json_["random_state_4"],
)
return rs
# %%
model = make_model()
x_train, y_train = get_data_test()
loss = [
"mean_squared_error",
"categorical_crossentropy",
"sparse_categorical_crossentropy",
"binary_crossentropy",
"kullback_leibler_divergence",
"poisson",
"cosine_similarity",
"log_cosh",
"huber_loss",
"mean_absolute_error",
"mean_absolute_percentage_error",
]
# rs = random_state()
pso_mnist = Optimizer(
model,
loss=loss[0],
n_particles=100,
c0=0.25,
c1=0.4,
w_min=0.3,
w_max=0.9,
negative_swarm=0.1,
mutation_swarm=0.2,
particle_min=-5,
particle_max=5,
)
best_score = pso_mnist.fit(
x_train,
y_train,
epochs=200,
save_info=True,
log=2,
log_name="mnist",
save_path="./result/mnist",
renewal="acc",
check_point=25,
)
print("Done!")
sys.exit(0)