Files
PSO/mnist_tf.py
jung-geun 2b010c4257 23-07-11
mnist one hot 인코딩 적용후 손실 함수 mse 로 변경
2023-07-11 15:00:50 +09:00

93 lines
2.2 KiB
Python

# %%
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
try:
tf.config.experimental.set_memory_growth(gpus[0], True)
except Exception as e:
print(e)
finally:
del gpus
from keras.datasets import mnist
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D
from keras.models import Sequential
from pso import Optimizer
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape((60000, 28, 28, 1))
x_test = x_test.reshape((10000, 28, 28, 1))
print(f"x_train : {x_train[0].shape} | y_train : {y_train[0].shape}")
print(f"x_test : {x_test[0].shape} | y_test : {y_test[0].shape}")
return x_train, y_train, x_test, y_test
def get_data_test():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_test = x_test.reshape((10000, 28, 28, 1))
return x_test, y_test
def make_model():
model = Sequential()
model.add(
Conv2D(32, kernel_size=(5, 5), activation="relu", input_shape=(28, 28, 1))
)
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Conv2D(64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
return model
model = make_model()
x_train, y_train, x_test, y_test = get_data()
y_train = tf.one_hot(y_train, 10)
y_test = tf.one_hot(y_test, 10)
# model.compile(
# optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
# )
model.compile(optimizer="adam", loss="mse", metrics=["accuracy"])
print("Training model...")
model.fit(x_train, y_train, epochs=100, batch_size=128, verbose=1)
print("Evaluating model...")
model.evaluate(x_test, y_test, verbose=1)
weights = model.get_weights()
for w in weights:
print(w.shape)
print(w)
print(w.min(), w.max())
model.save_weights("weights.h5")
# %%
for w in weights:
print(w.shape)
print(w)
print(w.min(), w.max())
# %%