Files
PSO/iris_tf.py
jung-geun 2a28b7fa04 23-06-23
readme 파일 수정 - env 파일 및 설명 추가 , 참고 자료 수정
iris_tf.py 모델의 성능 교차 검증을 위해 추가
2023-06-23 06:37:01 +00:00

51 lines
1.5 KiB
Python

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices("GPU")
if gpus:
try:
# tf.config.experimental.set_visible_devices(gpus[0], "GPU")
tf.config.experimental.set_memory_growth(gpus[0], True)
except RuntimeError as e:
print(e)
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
def make_model():
model = Sequential()
model.add(layers.Dense(10, activation='relu', input_shape=(4,)))
model.add(layers.Dense(10, activation='relu'))
model.add(layers.Dense(3, activation='softmax'))
return model
def load_data():
iris = load_iris()
x = iris.data
y = iris.target
y = keras.utils.to_categorical(y, 3)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, shuffle=True, stratify=y)
return x_train, x_test, y_train, y_test
if __name__ == "__main__":
model = make_model()
x_train, x_test, y_train, y_test = load_data()
print(x_train.shape, y_train.shape)
loss = ['categorical_crossentropy', 'accuracy','mse']
metrics = ['accuracy']
model.compile(optimizer='sgd', loss=loss[0], metrics=metrics[0])
model.fit(x_train, y_train, epochs=200, batch_size=32, validation_split=0.2)
model.evaluate(x_test, y_test, batch_size=32)